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Abstract. In this work, numerical simulations are performed for the airflow through the SELIG 
1223 airfoil. The numerical simulation is performed using two computer programs, namely the 
FLUENT code, a CFD finite-volume based software, and XFOIL, an interactive boundary-layer 
code. Results are presented in terms of lift and drag coefficients and pressure distributions for the 
chord based Reynolds number of 2x105. They are calculated in FLUENT using different turbulence 
models, namely Spalart-Allmaras (one-equation) and Realizable k-ε (two-equation) model. For the 
near-wall region treatment, the low Reynolds approximation is employed. Results obtained with 
XFOIL, using free and forced transition, are also shown. The numerical results are compared to the 
experimental work of Selig et al.  
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1. INTRODUCTION 
 

The prediction of aerodynamic characteristics of an airfoil is still a challenging task, in spite of 
recent developments in Computational Fluid Dynamics. There are two principal methods of 
obtaining the desired results (Cebeci et al, 1998) – one is the solution of the Navier-Stokes 
equations using structured or unstructured grids and the other is based on an interactive viscous-
inviscid boundary-layer theory. 

The S1223 airfoil was designed by Michael Selig for the SAE R/C small airplane competition 
for weight lifting. This heavy-lift airfoil was designed to provide 30% more lift than the Wortmann 
FX 63-137 airfoil, which to date has been one of the favorites for the competition. These airfoils are 
not expected to perform well much below a Reynolds number of 2x105, that is the typical design 
Reynolds number for the competition. 
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2. NUMERICAL ANALYSIS USING XFOIL 
 
2.1. Introduction to XFOIL 
 

XFOIL is an iterative boundary layer code written by Drela (1987) for design and analysis of 
airfoils, which can handle both inviscid and coupled viscous-inviscid boundary layer flows. XFOIL 
uses a two-equation boundary layer integral formulation based on dissipation closure for both 
laminar and turbulent flow. It includes in the laminar formulation a transition prediction based on 
the spatial amplification theory. A linear model is employed to predict transition, which accounts 
for the growth of the amplitude n of the most amplified Tollmien-Schlichting wave (Schlichting, 
1979). In the turbulent formulation it also includes a lag equation to account for lags in the response 
of the turbulent stresses to changing flow conditions. The inviscid freestream is computed using a 
linear-vorticity panel method. The boundary layer and transition equations are solved 
simultaneously with the inviscid flow field by a global Newton method. The boundary layers and 
wake are described with a two-equation lagged dissipation integral boundary layer formulation and 
an envelope en transition criterion. The entire viscous solution (boundary layers and wake) is 
strongly interacted with the incompressible potential flow via the surface transpiration model. This 
permits proper calculation of limited separation regions. The drag is determined from the wake 

momentum thickness far downstream. A special treatment is used for a blunt trailing edge which 
fairly accurately accounts for base drag. The total velocity at each point on the airfoil surface and 
wake, with contributions from the freestream, the airfoil surface vorticity, and the equivalent 
viscous source distribution, is obtained from the panel solution with the Karman-Tsien 
compressibility correction added, when necessary. This is incorporated into the viscous equations, 
yielding a nonlinear elliptic system which is readily solved by a full-Newton method. 

 
2.2. Mathematical Model and Numerical Method 

 
The airfoil contour and wake trajectory are discretized into flat panels, with N panel nodes on 

the airfoil, and Nw nodes on the wake. A linear vorticity distribution is associated with each airfoil 
panel. Each airfoil and wake panel also has a constant source strength related to viscous layer 
quantities. The stream function is given by: 
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where s is the coordinate along the airfoil surface, r is the magnitude of the vector from the surface 
point at s and the field point (x ,y), ϑ is the angle of the vector, and u: and v: are the x and y 
components of the undisturbed freestream velocity. 

 
Figure 1. Selig 1223 airfoil geometry 



The viscous formulation is based on the ISES code written by Drela and Giles (1987). The 
streamline along the boundary layer edge, where the velocity is ue, is displaced normal to the wall 
by a distance equal to the local displacement thickness δ*. The present formulation employs the 
following standard integral momentum and kinetic energy shape parameter equations based on the 
streamwise coordinate ξ: 
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Here H=δ*/θ is the shape parameter, H*=θ*/θ is the kinetic energy shape parameter and θ is the 

momentum layer thickness. Also a kinetic energy layer thickness θ* is defined along with a 
maximum shear layer coefficient Cτ that represents a measure of the shear stresses in the wake. A 
shear stress lag equation, which has been slightly modified from the original formulation to improve 
the lift and drag prediction near stall, is used in turbulent flow regions. 
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For the laminar regions, Eq. (36) is replaced by a rate equation that models the growth of the 

amplitude n of the most amplified Tollmien-Schlichting wave. 
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The Reynolds number Reθ is based on the momentum layer thickness. The empirical relation 

dn/Reθ is a correlation of spatial growth rates computed from solutions to the Orr-Sommerfeld 
equation and Reθ/dξ is obtained from the properties of the Falkner-Skan profile family. The 
transition point is defined by the location where n reaches a user-specified critical value ncrit. This 
parameter is in practice used to represent the background disturbance level and has a dramatic effect 
on low Reynolds number airfoil performance. The governing equations, Eqs. (2) to (5), are 
discretized using two-point central differences. The boundary layer variables θ, δ* and Cτ or n and 
ue are defined to be located at the panel nodes. In laminar regions, n replaces Cτ. Each panel 
therefore has three coupled nonlinear equations associated with it. The influence of the viscous 
layer on the potential flow is modeled by the wall transpiration concept if the local source strength 
σ is equal to the local gradient of mass defect, λ≡ueδ. 
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This source distribution is then used to calculate ue in the wake. 
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Equation (7) is used to solve for the three unknown variables θ, δ* and Cτ , in the three Eqs. (2), 
(3), (4) and (5). The resulting value of δ* gives a new source distribution, Eq. (6), for the inviscid 
calculation where the new boundary layer edge velocity distribution is obtained. 

 
3. NUMERICAL ANALYSIS USING FLUENT 
 
3.1. Introduction to Fluent 
 

Fluent is a CFD software based on the solution of the Navier-Stokes equations using the finite-
volume method. It is widely used in the aerospace, automobilist, chemical and micro-electronic 
industries. 

 
3.2. Governing Equations 
 

Fluent solves conservation equations for mass and momentum. The general form of the 
continuity equation is given by,  
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where Sm is a source term. Conservation of momentum in the i direction in a inertial reference frame 
is given, 
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where p is the static pressure, τij is the stress tensor, ρgi and Fi are respectively the gravitational 
body force and the external body forces in the i direction. The stress tensor τij is given by 
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3.3. The Spalart-Allmaras One-Equation Turbulence Model 
 

This turbulence model was proposed by Spalart and Allmaras (1992) and it solves a transport 
equation for a quantity that is a modified form of the turbulent kinematic viscosity. The transported 
variable, ν , is identical to the turbulent kinematic viscosity except in the viscous affected region. 
The transport equation for ν  is 
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where Gν and Yν are, respectively, the production and destruction of turbulent viscosity that occurs 
in the near-wall region, νσ  and Cb2 are constants and ν is the molecular kinematic viscosity. 

The modified turbulent kinematic viscosity, ν , is set to zero at walls. When the mesh is 
sufficiently fine, so that it can resolve the laminar sublayer, the wall shear stress is obtained from 
the laminar stress-strain relationship: 

 



µ
ρ τ

τ

yu
u
u =             (12) 

 
Fluent has implemented the boundary conditions for the S-A model so that it can work on coarse 

meshes using wall functions, instead. When it is the case, it is assumed that the centroid of the wall-
adjacent cell falls within the logarithmic region of the boundary layer, and the law of the wall is 
employed: 
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where κ=0.419 and E=9.793. 
 
3.4. The Realizable k-εεεε Two-Equation Turbulence Model 
 

The Realizable k-ε model is a variant of the standard k-ε and it was proposed by Shih, Liou and 
Zhu (1995). It was intended to overcome some deficiencies of the traditional k-ε models by 
adopting a new eddy-viscosity formula involving a variable Cµ originally proposed by Reynolds 
(1987) and a new model equation for dissipation, ε, based on the dynamic equation of the mean-
square vorticity fluctuation. The modeled transport equations for k and ε are: 
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and 
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Gk and Gb represent the generation of turbulent kinetic energy due to mean velocity gradients 

and buoyancy, respectively. YM is the contribution of the fluctuating dilatation in the compressible 
turbulence to the overall dissipation rate. C2 and C1ε are constants. σk and σe are the turbulent 
Prandtl numbers for k and ε, respectively. The eddy viscosity is calculated from Eq. (18) with Cµ  
no longer being constant. It now is a function of the mean strain and rotation rates, the angular 
velocity of the system rotation and the turbulence fields. 
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3.5. Near-Wall Treatment 
 

In the numerical simulations of the present work it will be used the low-Reynolds numbers 
approximation for the near-wall region. For the Spalart-Allmaras turbulence model, the mesh 
should be sufficiently fine so that the low-Reynolds numbers approximation can be automatically 
set by Fluent. For the Realizable k-ε turbulence model, the Fluent version of the low-Reynolds 
numbers approximation, called “Two-Layer Zonal”, is selected and then the mesh should be fine in 
the near-wall region. The y+ (non-dimensional node distance to the wall) values should be equal to 
or less than the unity. 
The whole domain is subdivided into a viscosity-affected region and a fully-turbulent region. The 
demarcation of the two regions is determined by a wall-distance based turbulent Reynolds number, 
Rey, given by  
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The fully-turbulent region is defined by Rey > 200, and there the k-ε model is employed. In equation 
(19) y is the normal distance from the cell center to the wall. The viscosity-affected region is 
defined by Rey < 200, and there the one-equation model of Wolfstein (1969) is employed. For this 
region, the turbulent viscosity and the ε field are given, respectively, by: 
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The length scales µl  and εl  are computed from: 
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The constants of Eqs. (22) and (23) were taken from Chen and Patel (1988). They are 

4/3−= µκCcl , 70=µA  and lcA 2=ε . 
 

3.6. Grid Generation 
 

It was used a structured C-type grid that was generated using Gambit. The external boundaries 
of the grid are on the order of more than 10 times the airfoil chord. First, a study of grid 
independence was made. The results for lift and drag coefficients, CL and CD, respectively,  are 
shown in Tab. (1). The results were taken until convergence was achieved (1x10-6 for the continuity 
equation residuals). 

 
 
 
 



Table 1. Study of the grid independence 
 

Total number of cells Cells near the airfoil surface in the normal direction CL CD 
10200 20 1.137 0.0287 
14200 30 1.138 0.0274 
18360 40 1.142 0.0270 
21760 50 1.142 0.0270 

 

 
 

Figure 2. A detail of the grid 
 

Special attention was given to the regions where large pressure or velocity gradients were 
expected, like the normal direction to the airfoil surface and the downstream direction near the 
airfoil leading edge. A detail of the final grid is shown in Fig. (2). 
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Figure 3. Lift curve 
 

3.7.Boundary Conditions 
 

To achieve the desired chord-based Reynolds number of the experimental results (2x105), the 
inlet velocity is set equal to the freestream velocity of 11.69 m/s. Wall boundary conditions are 



applied to the airfoil top and bottom surfaces. The fluid contained in the interior region is air (ρ = 
1.225 kg/m3 and µ = 1.79x10-5). 

To simulate the airfoil with angle of attack, the freestream velocity vector was decomposed into 
two orthogonal  components not aligned with the original Fluent system of coordinates. It gives the 
advantage to simulate all angles of attack with one grid only, but the results output by Fluent are 
still based on its original system of coordinates and a transformation of coordinates is needed, as 
given by Eqs. (24) and (25). 
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Figure 4. Lift curve 
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where L and D are lift and drag, respectively, L´ and D´ are components of aerodynamic force based 
on the original system of coordinates of Fluent and α is the angle of attack. 
 
4.RESULTS 

 
Figures (3) and (4) show the results obtained for the lift coefficient. For both FLUENT 

turbulence models the agreement is good until the incidence of approximately 9º. It can be noted the 
difference between the results calculated by XFOIL with free and forced transition. When the 
transition is fixed in the leading edge, the agreement with the experimental results is good until the 
incidence of 8º, but the maximum lift coefficient is under predicted. With the free transition point 
calculated, the maximum lift coefficient is well predicted, although it occurs in a lower angle of 
attack. 

The polar drag plots for this airfoil are shown in Figs. (5) and (6). Both turbulence models of 
Fluent overpredict the drag coefficient values. It is interesting to note that the XFOIL results agree 
much better with the experimental ones when the transition point is calculated, as expected. 

The viscous and pressure drag for 0º incidence are presented separately in Tab. (2). It is clear 
that the FLUENT code overestimates the pressure drag. It also can be noted the difference in the 
viscous drag when the transition point is not calculated. 

 
 
 
 



Table 2. Viscous and pressure drag for the different models at 0º incidence  
 

Pressure drag coefficient (CDp) Viscous drag coefficient (CDf) 

Spal-Allm Real k-ε XFOIL 
forced trans 

XFOIL free 
transition Spal-Allm Real k-ε XFOIL 

forced trans 
XFOIL free 
transition 

0.015 0.018 0.009 0.009 0.012 0.014 0.012 0.008 
 

Figures (7) and (8) finally show the pressure coefficient distribution through the chord for the 
angles of attack 0º and 5º, respectively. 

The agreement between the computed results for the different models is good until x/c equals 
approximately 0.6. This means that the pressure gradients were different downstream this point, the 
same will happen to the prediction of the separation point and consequently the drag coefficients 
computed will also be different. 
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Figure 5. Polar drag 
 
5. CONCLUSIONS 
 

Two different turbulence models were used in Fluent calculations and XFOIL calculations were 
performed using forced transition at the leading edge and letting the code calculate the transition 
point (free transition). 

The computed lift coefficients have good agreement to the experimental values up to 
approximately 8º. The prediction of the maximum lift coefficient value is good, except for the 
XFOIL with forced transition case, although the incidence it occurs cannot be correctly predicted.   

The drag coefficient values computed by Fluent are always overpredicted. A significant 
difference between the values of drag coefficients (and the maximum lift coefficient) is found when 
employing or not the calculation of the transition point. It emphasizes the importance of calculating 
the onset of transition. 
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Figure 6. Polar Drag 
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Figure 7. Cp distribution (0º incidence) 
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Figure 8. Cp distribution (0º incidence)


