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Abstract. A new mesh refinement technique for unstructured grids is discussed. The new technique
presents the great advantage of maintaining the original grid skewness tharks to the apallity of
handing hangng nodes. The paper also presents an interpretation d MacCormack' s methodin an
unstructured context. Results for a transonic convergent-divergent noz4e, for a convergent noz4e
with asupersonic entranceand for a NACA 0012 arfoil are presented and dscussd.
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1.INTRODUCTION

A major problem in computational fluid dynamics is the generation d an adequate mesh for the
problem at hand. This task usually consumes alarge anount of time and the quality of the generated
mesh is often very dependent on the acamulated experience of who is generating it. One has to
concentrate paints in the regions where the agodynamic flow presents sgnificant variations. The
regions in which these variations occur are dependent of the freestrean condtions. For example, the
position d shock waves in transonic and supersonic flows can varies substantialy. Hence, ore
would have to generate one mesh for ead freestream condtion and, for ead mesh, the user have to
know where the relevant regions are. An approac that is particularly suited for unstructured gridsis
the use of adaptive mesh refinement/coarsening, sinceit allows the solution to dctate where points
shoud be alded to, a subtrad from, the mesh.

A previous work in the group, Azevedo and Korzenowski (1998, has implemented a fairly
efficient grid refinement procedure for unstructured triangular meshes. However, the procedure had
a tendency of increasing the grid skewness and mesh coarsening was complicaed, as discussd in
Korzenowski et a (1997. In order to solve these problems, a new technique has been developed
and the present paper will discussit. Basicdly, the new tedhnique divides the triangle into four new
ones by the aedion d nodes in the middle of the sides of the original triangle. This way of splitti ng
triangles makes the new elements geometricdly similar to the origina triangle and, consequently,
the mesh maintains its original qudity. In addition, a hierarchicd coarsening procedure was
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implemented and the finite volume ade was modified to hande the existence of hanging nodesin
the mesh.

All smulations in the present case asume the flow to be inviscid and compressble, i.e., the
flow can be modeled by the compressble Euler equations. The ade implements baoth a simple
centered scheme with explicit time march, proposed by Jameson et a (1981), and an urstructured
version d the method popased by MacCormacdk (1969, 198%, which the authors have nat seen in
the literature yet. Both methods demanded the aldition d artificial disspation terms. This was true
even for MacCormadk’s method which, despite being a Lax-Wendroff type scheme, would na
remain numericdly stable with oy the numerica disgpation intrinsicadly provided by the 2nd
order Lax-Wendroff approacd. In the present case, the formulation d the atificial disspation terms
foll ows the work of Mavriplis (1988, 199)in an attempt to oltain stealy state solutions which are
independent of the time step, as discussed in Azevedo (1992

The work initially describes the theoreticd as well as the numericd formulation in the cde.
Particular attention is given to the numericd method and to the atificial disgpation terms. Results
are presented for a transonic convergent-divergent nozzle, a cnwvergent nozzle with a supersonic
entrance and a NACA 0012airfoil at transonic speeds. Finaly, the paper draws ome conclusions
andit indicaes the line of work that will be foll owed for the @ntinuation d the present effort.

2. THEORETICAL FORMULATION
2.1. General Formulation

A first approad to solve an ag'odynamic problem is to consider the flow to be compressble and
inviscid. This kind d flow can be modeled by the Euler equations. The Euler equations in a

dimensionlessconservative form, for atwo-dimensiona flow, are

a_Q+a_E+a_F:O’ (]_)
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where Q isthe vedor of dimensionlessconserved variables, defined as
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E and F arethe dimensionlessinviscid flux veaors, which can be written as
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In the previous expresson, the dimensionlesspresaure p from the egquation d state for a perfed
gasas

[
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where y isthefluid ratio of spedfic hedas. The adimensionalization processis detail ed described in
Pulli am and Steger (1980.



In this work, the finite volume technique was used in order to oltain the numericd solution o
the previous %t of equations. The formulation is obtained through an integration o the Euler
equationsin afinite volume. The use of the Gauss s theorem in ead finite volume yields

a - - -
a—?dV+£(E| +FJ)mS=0, (5)
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where dS is the outward ariented namal areavedor of the surfaces that defines the i-th vdume.
Defining

S
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as the mean value of the @nserved properties in the volume, the final form of the finite volume
formulation can be written for an elementary volume &

a& B inumbezof faces (Ek r+ Fk I) mék | (7)

ot V,
which aso shows that the integral was discretized assuming a wnstant value for the fluxes E and
F onthe faces. Many methods have been developed to solve Eqg. (7). The paper will now discuss
the two methods implemented.

2.2. Janeson’s Method
The present paper used the Jameson et a (1981) method and a version d the method popaosed

by MadcCormadk (1969, 198%. For the first method,time integration d Eq. (7) can be written, using
a 5-stage Runge-K utta scheme, as
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In the previous equations, C(Qi) is the anwvedive operator caculated for the i -th control volume,
which isthe summation d the fluxes on the faces which constitutes the dement, written as

numbg faCes( E(Qk)r + F( k)] )ms ! Where Qk = Qm ;QI '
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Moreover, Q. and Q, are the mnserved properties in eat side of the k-th face ad mindicaes
the neighbar of the i-th element. The a, elements have the values 1/4, 1/6, 3/8, 1/2 and 1 for
| =1,---,5 respedively. The superscript | indicaes that the atificial disspation terms are

evaluated only in thetwo initial stages.
The atificia disdpation operator, D(Qi), is cdculated acording to the ideas developed by

Mavriplis (1988, 199). It is a blend d undvided harmonic and ki-harmonic operators. In regions
where gradients are strong, the bi-harmonic operator is turned doff to prevent oscill ations whereas in



smoath regions the harmonic operator is turned off. A numericad presaure sensor does this switching
between the operators. The operator can be written as

D)= number{ie'ghborsgg%g Q,-Q)+e (DZQ -0%Q )]D (10)

where mrepresents a summation ower the neighbars of the i -th element. The undvided harmonic
operator 0% andthe A coefficients are written as
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As before, k indicates properties caculated onthe faces, i.e., using smple averages between the i -
th element and its neighbar, the m-th element. The £ fadors are based onthe presaure sensor. The
presaure sensor can be cdculated as

numberof neighbors
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2.3.MacCormack’s Method

The original formulation for the MadCormadk method, a two-stage, predictor-corredor method,
can be foundin MadcCormadk (1969, 198% In Jameson's method, the anserved variables on the
face used doform the fluxes, were cdculated as the aithmetic average between the values of the
elements that contain the face In the MadCormadk method, the nserved variables on the faces are
set equal to the conserved variables in ore of the dements that contain the face acwording to the
stage of the method that is being cdculated. In this work, an edge-based data structure was used in
order to improve the computational efficiency. In this type of data structure, ore stores the 2 nodes
which constitute the edge and the two elements which contain the eldge, i and melements in the
previous notation. In this work, in the first stage of the method,the cnserved variables on the face
are set equal to the mnserved variables in the i-th element. On the second stage, the mnserved
variables onthe face ae set equal to the mnserved variablesin the m-th element.

The mathematica expresson for MadCormad<’s method in an urstructured grid context can be
written as
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The mnvedive operators are cdculated as in Eq. (9) with Q, =Q, for thefirst stage and Q, =Q,,

for the second stage. The atificia disgpation term is cdculated using Eq. (10) dropping the bi-
harmonic operator, i.e., setting £, to zero. The ideahere was to add an artificial disspation term



only in regions with strong property gradients, because the work of MacCormack (1985) states that
the method does not need an artificial dissipation term. Nevertheless, the authors were never able to
use this method without added artificial dissipation.

2.4. Initial and Boundary Conditions

In order to have a well-established mathematical problem, one has to set the boundary
conditions. In this work, the necessary types of boundary conditions were wall, inlet, outlet and
freestream conditions. In the finite volume context, the boundary conditions are set in virtua
elements, called ghost elements, which are neighbors of the boundary elements. The idea here is set
the conserved property values in the ghost volumes in order to have the correct boundary flux on
the face. For example, in awall boundary there is no flux through the wall. Hence, the expressions
for the conserved variables in the ghost volume, using the properties of the internal element, are set
in away that, when using Eqg. (9), the flux normal to the face is zero.

For the freestream surface, the conserved variables in the ghost volumes were set equal to those
in the freestream. One should observe, however, that in this case it is necessary to place the far field
boundary far away from the body in order to avoid reflection of perturbations at the boundary. For
internal flows, there are the inlet and outlet boundary conditions. These types of boundary
conditions can be better understood utilizing Riemman invariants, described in Long et a (1991),
which determines how many variables one can fix in the boundary. For supersonic inlets, one can
fix four variables. Therefore, for supersonic entrances, all the four variables in ghost volumes can
be calculated using the stagnation properties and the Mach number. For supersonic exits, the four
conserved variables are obtained by zero-th order extrapolation from inside the domain. For
subsonic inlets 3 variables must be fixed. The variables normally chosen are the total pressure, Py,

the total temperature, T,, and the angle of the flow entering the nozzle. The variable normally

extrapolated from the domain is the uvelocity component. For subsonic outlets, one variable must
be fixed. In this work, the chosen variable was the static pressure. The extrapolated variables were
the velocity components and the static temperature.

In this work, theinitial conditions are very simple. For external flows, theinitial conditions were
taken as the freestream conditions. For internal flows, the initial conditions were taken as stagnation
conditions.

3. ADAPTIVE MESH REFINEMENT

The quality of the numerical simulationsis extremely dependent on the mesh. For a good quality
solution, it is necessary to have points concentrated in the regions where the flow presents sudden
variations. These regions may be determined by geometrical factors, such as corners or arcs, or by
aerodynamic factors, such as a shock wave or a shear layer. Geometric factors are easy to handle,
because they do not vary in time, a least for static configurations. The aerodynamic factors,
however, vary according to the flow conditions. For example, a shock wave position over an airfoil
varies according to the freestream Mach number. Hence, to obtain good numerical solutions, one
should create a mesh for each aerodynamic condition, which requires a previous knowledge of the
solution. Of course, sometimes aerodynamicists do not have this previous knowledge and the first
numerical solution is not good.

The idea behind the adaptive mesh refinement is to attribute to the flow the responsibility of
concentrating computational points by using automatic routines that alter the mesh. These routines
identify the regions where more computational points are needed by using a numerical sensor.
Then, the routine concentrates points in this region by many forms. One way is to move points from
regions that do not need many points to the regions where they are needed. Another way is to create
more points in the region. In this work, the option of adding points was chosen, because of its
easiness of implementation in an unstructured grid context.



The sensor for regions that need refinement was developed in the work of Azevedo and
Korzenowski (1998). It uses an undivided density gradient, normalized by the largest difference in
density verified in theflow, i.e.,
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Note that, for cell centered finite volume calculations, discrete properties refer to control volumes.
If this sensor is greater than a threshold value, the volume is refined.

After the sensor decided that the volume has to be refined, the volume is divided in 4 elements,
as sketched in Fig. (1a). One can observe the presence of hanging nodes in the mesh. Another
criterion for refinement is that the logic in the code does not alow elements which have been twice
refined adjacent to elements that have not been refined. This is required in order to have a smooth
decrease in element size throughout the mesh. This criterion isillustrated in Fig. (1b).
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Figure 1. Refinement of elements caused by sensor criterion and by size decrease criteria.

When the element is refined, the original element is destroyed. Its number is used to store the
newly created center triangle. Three more elements are added to the end of the element array. The
edge data structure changes too. The edges that constitute the original element are kept in memory,
but they are marked with a flag that zeroes out the flux calculation for these edge. Besides the flag,
the original edges store the number of the newly created edges, in order to make possible a
hierarchical de-refinement. The edges that are created have two elements that contain them. One is
a newly created element and the other is one of the neighbors of the original element. Of course, if
an element besides a previoudly refined element is also refined, there is no creation of new edges.
The code just changes the information concerning the neighbor elements of the previously created
edges. In order to permit the hierarchical mesh de-refinement, the information concerning the new
elements which are created from an existing element is also stored. After each refinement pass, a
check for the size decrease criterion is performed and new refinement passes are done until such
criterion is satisfied. These passes do not use the sensor criterion, just the size decrease criterion.

The treatment of hanging nodes is a very important aspect of the code, but it is a very smple
implementation. The data structure of the code is edge-based. Therefore, it isirrelevant for the code
if the node is a hanging node or not. The important aspect is that elements in this approach will no
longer be treated just as triangles. In fact, each element may have the number of edges ranging from
3to 6. Moreover, oneis limited to 6 edges in the present case because of the size decrease criterion.
Furthermore, this does not mean that the code wastes memory, because the data structure is edge-
based and each edge stores the elements that contain it. All loops are edge-based and this makes the
flux and dissipation factor calculations independent of the type of element.

The mesh derefinement is basically the opposite of refinement. The code evaluates the
refinement sensor for the elements that were refined in the last refinement pass. Despite the fact that
the original element is no longer stored, it can be rebuilt using the array for creation of elements. If
the sensor for the original element is smaller than a threshold value, it is marked for de-refinement.



The mde destroys the dements creded by refinement and changes the wnredivity array bad in
order to have no hdes in it. This process requires changing al the arays that have dement
information, such as the alge data structure. The @de has to ched if the refined edges can be
destroyed becaise the neighbars of the original element can still be refined. After the de-refinement
pass a dhed for the size deaease aiterion is performed and refinement passes are dore urtil the
size deaease aiterionis stisfied. Again, these passes do nd use the sensor criterion, just the size
deaease aiterion.

4. RESULTSAND DISCUSSION

The technique presented so far was used to simulate aeodynamic flow inside 2 dff erent nozzles
and transonic flow over a NACA 0012airfoil. The first nozzle is a transonic convergent-divergent
nozzle and the second ore is a wnvergent nozzle with a supersonic entrance. The cdculations for
the nozzZles do nd have experimental results for comparison bu they are very interesting to
demonstrate the mesh refinement and de-refinement capabilit y.

4.1. Transonic Convergent-Diver gent Nozzle

The geometry and the initial mesh for this nozzle can be observed in Fig. (2a). The nozZe is
symmetric, hence, only one half of the nozzle was included in the simulation. The presaure & the
exit of thenozzleis %t to P, /3 in order to start the flow. Figure (2b) presents the final mesh after 2
refinement passes. The density sensor ads only where the flow variations are more important.

Figure (3a) shows details of the interface between a refined and a nonrefined region. The size
deaease aiterion enforcement is evident.
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Figure 2. Transonic convergent-divergent nozzle geometry and initial mesh and final mesh after 2
mesh refinement passes.

Figure (3b) presents the dimensionless density contours for the mnverged solution wing
MaaCormad’s method. The results for Jameson's method are esentiality equal to thase shown in
Fig. (3b) and they will not be presented here. It is interesting to nde that the dasdcd theory for
nozzle flow is a good approximation for the nozzle, except for the throat region, where the one-
dimensional approximation dces not predict that the flow accéerates faster nea the wall .

4.2. Convergent Nozzle with a Supersonic Entrance

Figure (4a) presents the geometry of the nozzle. This nozzZle has a supersonic flow with
M =1.6onits entrance Figure (4a) also shows the initial mesh for the problem and the evolution d
the mesh. From the original mesh to the seand, shown in Fig. (4b), there was one mesh refinement
pass From the second mesh to the third, shown in Fig. (4c), there were one passof de-refinement
followed by one passof mesh refinement. Finally, from the third mesh to the fourth, shown in Fig.
(4d), there was ancther passof mesh refinement. One can seethat the de-refinement routine does
not reduce significantly the quantity of points in the mesh. The de-refinement routine is suited for



non-stationary problems in which the regions of the flow with strong gradients can vary
substantially.
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Figure 3. Mesh detail of the final mesh after two mesh refinement passes and dimensionless density
contours on the final mesh for the transonic convergent-divergent nozzle.

The converged solution for dimensionless pressure on the fourth mesh is presented in Fig. (5).
The good shock capturing for the two first shock waves can be clearly seen in the figure. The
reflection of the second shock wave is very near the corner of the convergent nozzle, where a
supersonic expansion occurs. This fact reduces the intensity of the subsequent shocks reflections. In
fact, these reflections could be solved only because of the massive mesh refinement in this region
provided by the adaptive mesh routine.
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Figure 4. Convergent nozzle geometry and mesh history.
4.3. Transonic Flow over a NACA 0012 Airfoil

In order to apply the mesh refinement routines in externa flows, a NACA-0012 airfoil was
simulated under transonic flow conditions. The initial mesh for this problem is presented in Fig.
(6a). The final mesh after 2 refinement passes is shown in Fig. (6b). After the results for the
convergent nozzle with supersonic entrance, the authors opted not to use the de-refinement routine
because the gain in stationary problems is irrelevant. The entire region over the airfoil was refined
and probably alarger threshold value for the sensor is needed.




Figure (7) presents the Madch contours for the problem in the final mesh. The shock wave isvery
well defined becaise of the extreme refinement creded in its region. Despite the fad that the mesh
is nat symmetricd, the contour plot shows a symmetricd solution kecause of the refinement.

B
0463095
0.443195
1 0423293
1 04033
1 0.353455
1 0.363356
1 03436535
1 0532373
- 0.303879
1 0.233976
1 0264074
= 0244171

L 0.224269
S 0204367
L1 III L1 II Ll III Ll III IIIII IIIIII III L1l II I:I1 84454

a o0& 1 15 2 25 3 358 4 45 5 55 6
X

Figure 5. Dimensionlesspresaure antours for the mnvergent nozzle with a supersonic entrancein
the final mesh.

5. CONCLUDING REMARKS

An interpretation for MadCormad<’s method in an urstructured mesh context was presented. It
uses the dements which contains eat edge in an aternate way to cdculate the fluxes in the
predictor and in the crredor stages. The results obtained are very close to those obtained with
Jameson’'s method,which islargely used for unstructured caculations.

Furthermore, a new approach for mesh refinement was presented. The new tedhnique does nat
increase the skewnessof the original mesh and it all ows hierarchicd mesh de-refinement. The mesh
de-refinement does nat deaease significantly the number of paints in a stationary problem, but it
catainly can be extremely important in a nonstationary problem. Some results presented showed
an excessve mesh refinement that can be solved with some aljustment in the sensor threshold
value. The aaptive refinement technique increases the quality of the solution, as can be seenin all
the results presented.
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Figure 6. Initial mesh and final mesh after 2 mesh refinement passes for the NACA 0012airfoil .
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