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Abstract. The performance of squeeze-film damper bearings as a flexible support of a bearing-
rotor system is analyzed. The forces produced by dynamic pressure of the lubricant are obtained by 
the solution of the Reynolds equation for the fluid-film. The dynamical equations that govern the 
motion of the rotor supported by squeeze films are solved by Newmark method. Parameters 
associated to the mass and rotational speed of the axis, physical and geometric characteristics of 
the bearing, such as viscosity of the fluid, radial clearance, length and diameter of the bearing, 
were varied to allow evaluations of the orbital behavior of the rotor. For chosen groups of 
parameters, the influence of the unbalanced force of the rotor was studied. Results reveal a 
sensitivity of motion stability and orbital size to all parameters values. 
 
Keywords: Mechanical Vibrations, Squeeze Film Bearing and Numerical Method. 
 
Notation  
 
e  eccentricity between journal center and housing center 
c  radial clearance (housing radius - journal radius) 
h  oil film thickness  
L  bearing land length 
η  absolute viscosity 
ε  eccentricity ratio (e/c)  
Φ  attitude angle 
t  time 
g  gravitational acceleration 
m  rotor mass (per bearing land) 

ar  bearing radius 

br  journal radius 
U  unbalance parameter (Fu/mcω2)  
B  bearing parameter (12ηLra

2/mωc3)  
W  rotor weight (per bearing land) 
W  gravity (or weight) parameter (W/mcω2)  

xw′  load component per unit width perpendicular to line of centers 

zw′  load component per unit width along line of centers 

rF  non dimensional radial fluid-film force (Fr/mcω2)  
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tF  non dimensional tangential fluid-film force (Ft/mcω2)  
Fr fluid film force in radial direction 
Ft fluid film force in tangential direction 
Fu unbalance force 
wa,wb velocities of fluid in z direction acting at surface a and b, respectively, (m/s) 
ω rotational velocity of journal about sleeve center when eccentricity ratio is constant (rad/s) 
ωa bearing angular speed of surface bearing (rad/s) 
ωb rotor angular speed of surface journal (rad/s) 
φ  angular distance from the positive x-axis in the fixed x-z coordinate set 
φm upper limit of the positive pressure 
(') d/d(ωt)  
(.) d/dt 
 
2. MATHEMATICAL DEVELOPMENT  
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Figure 1. Squeeze film damper with the dynamic forces and coordinates defined. 
 
 The general Reynolds equation governing the flow of the squeeze film oil is well known as 

(Cameron, 1981, Barret and Gunter, 1975, Kirk and Gunter, 1970): 
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 Where the following assumptions were made: 



 

 -The fluid inertia terms in Navier-Stokes equations have been neglected due to their small 
magnitude. 

 -The flow is laminar. 
 -The fluid is Newtonian  
 -No slip exists at the fluid-solid interface. 
 -The flow in the radial direction has been neglected. 
 -The inclination of one surface relative to the other is so small that the sine of the angle of 

inclination can be set equal to the angle and the cosine can be set equal to unity. 
 The general Reynolds equation given in Eq. (1) can be applied to any section of the oil film 

and in this paper only the dynamically loaded infinitely wide-journal-bearing solution will be 
presented. The film thickness can be described as (Hamrock, 1994, Bisson and Anderson, 1992, 
Dubois and Ocvick, 1953): 

 
 ( )φε cos1+= ch           (2) 
 
 If the side-leakage term is neglected, Eq. (1) can be rewritten and integrated while making 

use of Eq. (2) which gives: 
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 Therefore, if ( ) ( ) ,20 ppp == == πφφ  
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 Replacing Eq. (4) in Eq. (3), one may write gives 
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 Once the pressure is known, the load components can be evaluated. One may determine the 

components of the resultant load along and perpendicular to the line of centers, as: 
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 Making use of the following assumptions: 
 
 2

r rF F mc= ω            (8) 
 
 2

t tF F mc= ω            (9) 



  

 x tw F L′ =            (10) 
 
 z rw F L′ =            (11) 
 
 One may write: 
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 Replacing Eqs. (5), (6) and (7) into the Eqs. (12) and (13) gives: 
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 Where the bearing parameter B may be defined as: 
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3. GOVERNING EQUATIONS FOR RIGID ROTORS SUPPORTED BY SQUEEZE-FILM 
DAMPER BEARINGS 
 
 Figure 1 shows schematically a rigid rotor axis within the oil container, under the action of a 
steady load W due to the dead weight of the rotor it supports. Vibration arises from a centrifugal 
force Fu due unbalance. The amplitude of orbital motion will depend on W, Fu, Fr, and Ft. The 
latter two forces Fr and Ft are those arising hydro-dynamically from the squeeze film (Cookson and 
Kossa, 1979 and Edgar J. Gunter, 1966). 
 The following assumptions are made; 
 -The rotor is rigid and symmetric. 
 -The angular speed of rotation is constant. 
 -No significant exciting forces are introduced by the rolling-contact bearings. 
 Therefore, the equations governing the motion of the bearing are then  
 
 ( ) ( )2 cos cosu rm e e F t w Fω− Φ = − Φ + Φ −!!!        (17) 
 
 ( 2 ) sen( ) senu tm e e F t w FωΦ + Φ = − Φ − Φ +!! !!        (18) 
 
 Dividing throughout these equations by 2mcω  produces,  



 

 2 cos( ) cos rU t W Fε ε ω′′ ′− Φ = − Φ + Φ −        (19) 
 
 ( )2 sen sen tU t W Fε ε ω′′ ′ ′Φ + Φ = − Φ − Φ +        (20) 
 
 Replacing Eqs. (14), (15) and (16), into Eqs. (19) and (20) respectively, yields the following 
non-dimensional form of the equations of motion;  
 
 2 cos( ) cosU t Wε ε ω′′ ′− Φ = − Φ + Φ −
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 ( )2 sen senU t W′′ ′ ′εΦ + ε Φ = ω − Φ − Φ −
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 The angle mφ  is the upper limit of the positive pressure, which is obtained numerically.
 Equations (21) and (22) of motion of the center journal are numerically solved by Newmark’s 
method to give the journal position, velocity and acceleration. 
 
3.1. Integration of the Pressure Profile 
 
 The forces arising in the fluid film have been expressed as an integral over the circumference of 
the journal. The forces are given by Eqs. (14) and (15). 
 The expressions under the integral are now representative of the pressure in the film and hence 
will be equated to zero when its value is less than zero. This is equivalent to keeping only those 
pressures that are greater than ambient. This will avoid the sub ambient pressure contributions that 
appear in closed-form solutions. According to this approach, one needs to calculate the extent of the 
positive pressure region. 
 The exact region of film cavitations and the resulting pressure therein are by no means well 
understood or well defined in the literature. (Dubois and Ocvirk, 1953) argued that in the absence of 
high datum pressures, the effect of any negative pressure (not exceeding atmospheric) could be 
neglected as being negligible in comparison to the positive pressure region. 
 A numerical method is used to obtain the fluid forces from the integral above. An appropriate 
method for this purpose is the well-known trapezoidal method, which can be expressed as follow: 
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 Where: ( ) habn /−=  and hiaxi .+=  
 
 The error of the above formula is of course directly related to the increment, h  and hence the 
number of points chosen to evaluate, as well as the order of curve that is being integrated. 
 
3.2. Integration of the Equations of Motion 
 



  

 The most basic self-starting method is simply a Taylor Series Expansion truncated after some 
arbitrary number of terms. By truncating the series, which is known as Newmark’s Method Rao et 
al. (1995) one may obtain: 
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 ( ) ( ) ( ) ( )1 1
2 2
t tf n f n f n f n∆ ∆+ = + + +! ! !! !!        (25) 

 
 This integration method is also based on the assumption that the acceleration varies linearly 
between two instants of time. 
 Applying Newmark's method, Eqs. (24) and (25), in the motion Eqs. (21) and (22), one may 
obtain the axis position in each time interval iteratively. 
 
4. RESULTS 
 
 A computer code, based on Newmark approach, was written. Eqs. (19) and (20) are solved 
simultaneously, and therefore, an interactive routine had to be created to get convergence at each 
time step. 
 Some cases were devised and for each case one or more system parameters were varied. These 
cases and the correspondent parameters values are listed in Tab. (1): 
 

Table (1). System parameters for a rigid rotor supported in squeeze-film damper bearings. 
 

 Case I Case II Case III Case IV Case V Case VI Case VII 
Initial eccentricity (e/c) 0.5 0.5 0.8 0.8 0.8 0.8 0.8 
Journal weight (kg) 33.6 33.6 33.6 33.6 33.6 33.6 33.6 
Clearance (m) 1.016e-4 1.016e-4 2.540e-4 2.540e-4 2.540e-4 2.540e-4 2.540e-4 
Bearing radius (m) 6.477e-2 6.477e-2 2.540e-2 2.540e-2 2.540e-2 2.540e-2 2.540e-2 
Bearing length (m) 1.143e-2 1.143e-2 5.080e-2 5.080e-2 5.080e-2 5.080e-2 5.080e-2 
Unbalance force (N) 100.0 100.0 100,0 100,0 300.0 100.0 100.0 
Journal speed (rpm) 2000 5000 2000 5000 5000 2000 4000 
Viscosity ( 2/ mNs ) 2.622e-3 2.622e-3 8.276e-3 8.276e-3 8.276e-3 2.530e-2 2.530e-2 

 

 
 
 Figure 2. Case I: =ε 0.5, =W 33.6 Kg, =c 1.016e-4 m, =br 6.477e-2 m, =L 1.143e-2m, 

=uF 100 N, =bV 2000 rpm, =η 2.622e-3 2mNs . 
 



 

 
 

Figure 3. Illustration of pressure variation for iterations from 1 to 10 for Case I 

 
 
 Figure 4. Case II: =ε 0.5, =W 33.6 Kg, =c 1.016e-4 m, =br 6.477e-2 m, =L 1.143e-2m, 

=uF 100 N, =bV 5000 rpm, =η 2.622e-3 2mNs . 
 

 
 
 Figure 5. Case III: =ε 0.8, =W 33.6 Kg, =c 2.54e-4 m, =br 2.54e-2 m, =L 5.08e-2 m, 

=uF 100 N, =bV 2000 rpm, =η 8.276e-3 2mNs . 
 



  

 
 
 Figure 6. Case IV: =ε 0.8, =W 33.6 Kg, =c 2.54e-4 m, =br 2.54e-2 m, =L 5.08e-2 m, 

=uF 100 N, =bV 5000 rpm, =η 8.276e-3 2mNs . 
 

 
 
 Figure 7. Case V: =ε 0.8, =W 33.6 Kg, =c 2.54e-4 m, =br 2.54e-2 m, =L 5.08e-2 m, 

=uF 300 N, =bV 5000 rpm, =η 8.276e-3 2mNs . 
 

 
 
 Figure 8. Case VI: =ε 0.8, =W 33.6 Kg, =c 2.54e-4 m, =br 2.54e-2 m, =L 5.08e-2 m, 

=uF 100 N, =bV 2000 rpm, =η 2.53e-2 2mNs . 
 



 

 
 
 Figure 9. Case VII: =ε 0.8, =W 33.6 Kg, =c 2.54e-4 m, =br 2.54e-2 m, =L 5.08e-2 m, 

=uF 100 N, =bV 4000 rpm, =η 2.53e-2 2mNs . 
 
5. CONCLUSION 
 
 Performing a preliminary analysis of the results for the motion, one may verify, that in certain 
situations the rotor center converges to a steady-steady position at a certain eccentricity and attitude 
angle. Under certain circumstance, journal develops a characteristic eccentric orbit. 
 Figure 3 illustrates the variation of the pressure profile, and most important, the variation of the 
limits of the positive pressure. 
 The increase on journal speed, as one can compare Case I and Case II, results in a more 
centralized orbit. 
 Case: III, IV, V, VI and VII consider the same clearance, bearing radius, and bearing length. For 
such cases, the increase in journal speed, comparing Case IV to Case III, results also in a more 
centralized orbit, although in these cases, the orbit increased in size. 
 The increase of the unbalanced force in Case V produced less consistent orbits. 
 In Case VI, the unbalanced force and the journal speed were reduced, which produced a smaller 
and more centralized orbit. 
 In Case VII, the journal velocity was set to 4000 rpm, producing a final less eccentricity orbit. 
 One may conclude that all the listed parameters interfere on the journal behavior. 
 The size, position and shape of the orbit are a result of the combined values of these parameters. 
It can be shown that in the absence of unbalance forces, the journal center converges to a steady 
position. Under special circumstances one can obtain instability of the journal. 
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