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Abstract. This paper addresses the solution of inverse heat transfer problems. Basic concepts and 
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1. INTRODUCTION  
 

Inverse heat transfer problems rely on temperature and/or heat flux measurements for the 
estimation of unknown quantities appearing in the analysis of physical problems in this field. As an 
example, inverse problems dealing with heat conduction have been generally associated with the 
estimation of an unknown boundary heat flux, by using temperature measurements taken below the 
boundary surface. Therefore, while in the classical direct heat conduction problem the cause 
(boundary heat flux) is given and the effect (temperature field in the body) is determined, the 
inverse problem involves the estimation of the cause from the knowledge of the effect.  

Inverse problems are mathematically classified as ill-posed, whereas standard heat transfer 
problems are well-posed (Hadamard, 1923, Tikhonov and Arsenin, 1977, Beck and Arnold, 1977, 
Alifanov, 1994, Beck et al, 1985, Alifanov et al, 1995, Dulikravich and Martin, 1996, Sabatier, 
1978, Murio, 1993, Trujilo and Busby, 1997, Hensel, 1991, Kurpisz and Nowak, 1995, Denisov, 
1999, Yagola et al, 1999, Ramm et al, 2000, Ozisik and Orlande, 2000).  The solution of a well-
posed problem must satisfy the conditions of existence, uniqueness and stability with respect to the 
input data. The existence of a solution for an inverse heat transfer problem may be assured by 
physical reasoning. On the other hand, the uniqueness of the solution of inverse problems can be 
mathematically proved only for some special cases. Also, the inverse problem is very sensitive to 
random errors in the measured input data, thus requiring special techniques for its solution in order 
to satisfy the stability condition. For a long time it was thought that, if any of the conditions 
required for well-posedness were violated, the problem would be unsolvable or the results obtained 
from such a solution would have no practical importance. It was Tikhonov’s regularization 
procedure (Tikhonov and Arsenin, 1977), Alifanov’s iterative regularization techniques (Alifanov, 
1994, Alifanov et al, 1995) and Beck’s sequential function specification approach (Beck et al, 
1985) that revitalized the interest in the solution of inverse heat transfer problems.  
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Inverse problems can be solved as a parameter estimation approach or as a function estimation 
approach. If some information is available on the functional form of the unknown quantity, the 
inverse problem can be reduced to the estimation of few unknown parameters. On the other hand, if 
no prior information is available on the functional form of the unknown, the inverse problem can 
be regarded as a function estimation approach in an infinite dimensional space of functions. 
Techniques for the solution of inverse problems, as parameter estimation and function estimation 
approaches, are presented below. 

  
2. PARAMETER ESTIMATION  
 

In parameter estimation problems, we consider that some information is available on the 
functional form of the unknown quantity, which can be, for example, the transient heat flux at the 
surface of a space vehicle reentering the atmosphere. Let us assume that the unknown function 

)(tg  can be represented in the following general linear form:  
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where Pj , j=1,...,Npar , are unknown constants and Cj(t) are known trial functions. Therefore, the 
inverse problem of estimating the unknown function )(tg  is reduced to the problem of estimating a 
finite number of parameters Pj, where the number of parameters, Npar, is supposed to be chosen in 
advance. Another example of a parameter estimation problem is the identification of unknown 
constant thermophysical properties, such as thermal conductivity and volumetric heat capacity. 
 
2.1 Estimation Techniques 

 
For the solution of parameter estimation problems we consider here the use of minimization 

techniques. An objective function is then defined, involving the difference between measured and 
estimated variables, like temperature, for example. In order to appropriately choose the objective 
function, some hypotheses regarding the measurement errors are required. Let us assume valid the 
following statistical hypotheses (Beck and Arnold, 1977): the errors in the measured variables are 
additive, uncorrelated, normally distributed, with zero mean and known constant standard-
deviation; only the measured variables appearing in the objective function contain errors; and there 
is no prior information regarding the values and uncertainties of the unknown parameters. In this 
case, the least squares norm becomes a minimum variance estimator (Beck and Arnold, 1977). The 
least squares norm can be written in matrix form as: 
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where P is the vector of unknown parameters and 
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−  contains the difference between measured (Y) and estimated (T) 

variables for each of the M sensors at time ti, i = 1, …, I, that is,  
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for i=1,…,I (3.b) 

 
The iterative procedure of the Levenberg-Marquardt Method for the minimization of the 

ordinary least squares norm (2) is given by (Beck and Arnold, 1977, Ozisik and Orlande, 2000): 
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where k denotes the number of iterations, J is the sensitivity matrix, ΩΩ  is a diagonal matrix and λ is 
a scalar named damping parameter (Beck and Arnold, 1977, Ozisik and Orlande, 2000). The 
purpose of the matrix term λ

k
ΩΩ

k
 in equation (4) is to damp oscillations and instabilities due to the 

ill-conditioned character of the problem. 
 If we relax the statistical hypotheses described above, by considering that some information 
regarding the unknown parameters is available, we can use the maximum a posteriori objective 
function in the minimization procedure (Beck and Arnold, 1977). Such an objective function is 
defined as: 
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where P is assumed to be a random vector with known mean µµ and known covariance matrix V. 
Therefore, the mean µµ and the covariance matrix V provide a priori information regarding the 
parameter vector P to be estimated. Such information can be available from previous experiments 
with the same experimental apparatus or even from the literature data. By assuming valid the other 
statistical hypotheses described above regarding the experimental errors, the weighting matrix W is 
a diagonal matrix with the inverse of the covariance of the measurements on its diagonal (Beck and 
Arnold, 1977). 

The iterative procedure for the minimization of the maximum a posteriori objective function (5) 
is given by (Beck and Arnold, 1977): 
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 The iterative procedure given by equation (6) can be written in a more convenient form for 
computational purposes, which avoids matrix inversions, by employing the sequential estimation 
technique (Beck and Arnold, 1977). In such a case, the measurements in the estimation procedure 
are sequentially used, so that estimates are obtained based on the current measurement and on the 
estimates for the parameters obtained with the measurements previously used in the analysis. 
 It is considered for the sequential estimation technique that one single measurement is added to 
the estimation procedure at a time. Even if transient measurements of multiple sensors are used, 
they can also be arranged in such a manner, that is, 
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where N = I M and Mimn )1( −+= , for i=1,…,I and m=1,…,M. 
 The computational algorithm for the sequential estimation technique consists of the following 
basic steps (Beck and Arnold, 1977): 

Step 1. Initialize the iterative procedure by setting the iteration index k to 0 and making µµ=0P . 

Step 2. Compute the estimate for the vector of unknown parameters sequentially, for n=0,…,(N-1), 
by  using 
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Step 3. Check convergence of the values estimated sequentially with all N measurements, that is, 
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 If the criterion given by equation (9.a) is not satisfied, increment k, make 

 k
N

k PP =  (9.b) 
and return to step 2. 

In equation (8.j), σ denotes the standard deviation of the measurement errors, which is assumed 
constant and known. Note that the above algorithm does not contain matrix inversions because ∆  is 
a scalar. Also, it was derived for a case where previous estimates were available for the vector of 
parameters and its covariance matrix. However, it can also be used for cases where no previous 
estimations are available, or if available, they have large uncertainty. For such cases, take µµ as any 
vector, say, with null components. Also, take V as a diagonal matrix with large values on the 
diagonal as compared to the square of the expected values for the parameters. 
 
2.2 Statistical Analysis 
 

By performing a statistical analysis it is possible to assess the accuracy of jP̂ , which are the 

values estimated for the unknown parameters Pj, j=1,...,Npar. By assuming valid the statistical 
hypotheses about the measurement errors described above, the covariance matrix, of the estimated 

parameters jP̂ , corresponding to the ordinary least squares norm, is given by (Beck and Arnold, 

1977): 
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The covariance matrix of the estimated parameters jP̂ , corresponding to the maximum a 

posteriori objective function, is given by (Beck and Arnold, 1977): 
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The standard deviations for the estimated parameters can thus be obtained from the diagonal 

elements of )ˆ(cov P  as 
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Confidence intervals for the estimated parameters at the 99% confidence level can be obtained as 
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2.3 Design of Optimum Experiments 
 

Optimum experiments can be designed by minimizing the hypervolume of the confidence region 
of the estimated parameters, in order to ensure minimum variance for the estimates. This can be 
accomplished by maximizing the determinant of Fischer's Information Matrix, which is given by 

JJF T≡  (Beck and Arnold, 1977), in the so-called D-optimum approach. If the restriction of a large 



but fixed number of transient measurements of M sensors is considered, optimum experiments can 
be designed by examining an alternative form of the matrix F, the elements of which are given by 
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where τf  is the duration of the experiment. 
 

 
3. FUNCTION ESTIMATION  
 
 In this section we present a powerful iterative minimization scheme called the Conjugate 
Gradient Method of Minimization with Adjoint Problem, for solving inverse heat transfer problems 
of function estimation. In this approach, no a priori information on the functional form of the 
unknown function is considered available (Alifanov, 1994, Alifanov et al, 1995, Ozisik and 
Orlande, 2000), except for the functional space that it belongs to. To illustrate this technique, we 
consider the estimation of an unknown function g(t), by using the transient readings Y(t) of a single 
sensor located at xmeas. We assume that the unknown function belongs to the Hilbert space of 
square-integrable functions in the time domain (Alifanov, 1994, Alifanov et al, 1995, Ozisik and 
Orlande, 2000), denoted as L2(0,tf), where tf is the duration of the experiment.  
 In order to solve the present function estimation problem, the functional S[g(t)] defined as 
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is minimized under the constraint specified by the corresponding direct problem. This is achieved 
with an iterative procedure by proper selection of the direction of descent and of the step size in 
going from iteration k to k + 1. The iterative procedure of the conjugate gradient method (Alifanov, 
1994, Alifanov et al, 1995, Ozisik and Orlande, 2000) for the estimation of the function g(t) is given 
by: 
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where β k  is the search step size and d k(t) is the direction of descent, defined as 
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 The conjugation coefficient γ k  can be computed with different expressions, including: 
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for  k =1,2,… with 00 =γ

 

for k = 0    (15.c)  

 Expressions for the search step size, β k , and for the gradient of the functional, )]([ tgS k∇ , can 

be obtained with the solution of two auxiliary problems, namely, the sensitivity problem and the 
adjoint problem (Alifanov, 1994, Alifanov et al, 1995, Ozisik and Orlande, 2000). 



 We note that the iterative procedure of the conjugate gradient method is not capable of 
providing by itself regularized solutions for inverse problems. However, the use of the conjugate 
gradient method may result on stable solutions if the Discrepancy Principle (Alifanov, 1994, 
Alifanov et al, 1995, Ozisik and Orlande, 2000) is used to specify the tolerance for the stopping 
criterion of the iterative procedure.  
 
4. RESULTS 

 
We now examine the application of the techniques described above to inverse problems of 

parameter and function estimation in heat transfer. The physical problem under picture in this paper 
consists of a one-dimensional slab of a solid material with thickness L, initially at the temperature 
Ti, which is lower than the temperature of ablation Tab. The surface of the slab at x = L is heated, 
while the other surface at x = 0 is kept insulated. As the slab is heated, eventually the temperature 
of the heated surface reaches the temperature of ablation, the material is removed because of 
physical and chemical phenomena and a moving boundary problem is established (Rey Silva and 
Orlande, 2002, Oliveira and Orlande, 2002). 

The mathematical formulation of this problem in dimensionless form, for the pre-ablation and 
ablation periods, is given respectively by: 
Pre-ablation Period  (0 < τ < τ0): 
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Ablation Period (τ > τ0): 
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where the energy balance at the surface is given in the form: 
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 For the non-dimensionalization of the problem, the following dimensionless groups were 
defined: 
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where kR, CR and ρR are reference values for thermal conductivity, volumetric heat capacity and 
density, respectively, L is the initial thickness of the slab, b(t) denotes the position of the ablating 



front, q(t) is the applied heat flux and H* is the heat of ablation. In equation (17.d), θ0(X) denotes 
the temperature distribution inside the slab at the moment that ablation begins, i.e., τ0. 

The direct problem, associated with the formulation of the physical problem described above, 
involves the determination of the transient temperature field θ(X,τ) in the slab, from the knowledge 
of initial and boundary conditions, as well as of the physical properties appearing in the 
formulation. Two different inverse problems are considered here: (i) the simultaneous estimation of 
the dimensionless thermal conductivity, volumetric heat capacity and heat of ablation, that is, k, C 
and ν, respectively, by assuming that the other quantities appearing in the formulation are exactly 
known for the inverse analysis; and (ii) the estimation of the surface heat flux Q(τ), by assuming 
that the other quantities appearing in the formulation are exactly known for the inverse analysis. For 
the test-cases examined below, teflon is considered as the ablating material, with thermophysical 
properties given by (Rey Silva and Orlande, 2002, Oliveira and Orlande, 2002): k* = 0.22 W/mK, 
ρ* = 1922 kg/m3, C* = 2.414x106 J/m3K, H* = 2.326x106 J/kg and Tab = 560 oC. The initial 
temperature was assumed as Ti = 25 oC. The reference values kR, CR and ρR were taken equal to 
those of teflon, so that k =C = 1 and ν = 3.46. 
 
4.1 Estimation of Thermophysical Properties of Ablating Materials (Rey Silva and Orlande, 
2002) 
 

Figures 1.a-d present the normalized sensitivity coefficients with respect to C, k and ν at the 
measurement positions Xm = 0, 0.32, 0.64 and 1, respectively, for a constant heat flux  
Q = 2.5. For this case, the ablation of the surface starts at τ = 0.13, when the sensitivity coefficients 
at Xm = 1 vanish. We can notice in these figures that the normalized sensitivity coefficient with 
respect to ν, despite being much smaller than those with respect to C and k, attain values different 
from zero after ablation begins, at the positions Xm = 0, 0.32 and 0.64. Figures 1.a-d show that the 
normalized sensitivity coefficients with respect to C and k are linearly dependent, except at the 
measurement position Xm=0.64. The analysis of the sensitivity coefficients reveals that 
measurements taken during the pre-ablation period do not contribute with useful information for the 
estimation of the heat of ablation, because its sensitivity coefficient is null. Besides that, the 
estimation of ν is quite difficult even with measurements taken after ablation begins, because the 
magnitude of the sensitivity coefficient is rather small. In order to overcome such difficulties, the 
following approach is used to estimate ][ ν,k,C=P : (i) By utilizing the Levenberg-Marquardt 
method with measurements taken during the pre-ablation period, estimates for the volumetric heat 
capacity, C, and for the thermal conductivity, k, are obtained; (ii) The heat of ablation, ν, is then 
estimated, by taking into account the values just estimated for C and k with their respective 
uncertainties, by using the sequential parameter estimation technique with measurements taken 
during the ablation period. 

Figures 2.a,b present the determinant of the matrix *
IF , the elements of which are given by 

equation (13), for the pre-ablation and ablation periods, respectively, for different number of 
sensors. For the pre-ablation period, the unknown parameters were considered as C and k, while for 
the ablation period the three parameters C, k, and ν were regarded as unknown. For the case of a 
single sensor (M = 1), its position was taken as X1 = 0; for M = 2, the two sensors were located at  
X1 = 0 and X2 = 1; for M = 3, the sensors were located at X1 = 0, X2 = 0.49 and X3 = 1; and for  
M = 4, the sensors were located at X1 = 0, X2 = 0.32, X3 = 0.64 and X4 = 1. We can notice in figure 
2.a that the determinant of *

IF increases when the number of sensors increases. Figure 2.a shows that 

det( *
IF ) is practically null when a single sensor is used in the analysis, as a result of the linear 

dependence of the sensitivity coefficients for C and k shown in figure 1.a. Also, figure 2.a shows 
that measurements shall be taken until ablation begins for the estimation of C and k during the pre-
ablation period, when det( *

IF ) is maximum. Differently from the pre-ablation period, the curves for 

det( *
IF ) for different number of sensors for the ablation period (see figure 2.b) are practically 



identical. Therefore, the use of multiple sensors is not necessary to improve the accuracy of the 
parameters estimated during the ablation period. Figure 2.b shows that there exists an optimum 
duration of the experiment (around τ = 1) for the estimation of the parameters C, k, and ν during the 
ablation period, when det( *

IF ) is maximum. The different number of sensors examined in this paper 
does not affect such an optimum duration of the experiment. As expected from the analysis of the 
sensitivity coefficients shown in Figs. 1.a-d, a comparison of Figs. 2.a,b reveals that the maximum 
values for det( *

IF ) during the pre-ablation period are much larger than those during the ablation 

period. This is a result of the small values of the sensitivity coefficients for ν in the ablation period. 
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(b) Sensor Position:  Xm= 0.32
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(c) Sensor Position:  Xm= 0.64
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Figures 1. Normalized sensitivity coefficients for Q = 2.5 at: (a) Xm=0, (b) Xm=0.32,  
(c) Xm=0.64 and (d) Xm=1. 
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Figure 2. Determinant of de Information Matrix for (a) Pre-ablation Period and (b) Ablation Period 
 

Table 1 presents the results obtained with simulated measurements of two sensors, containing 
random errors of standard-deviation σ = 0.005. For a 99% confidence level, such standard-deviation 
can result on errors of the order of 7oC. The results presented in Table 1 were averaged over 100 
runs of the program, in order to reduce any bias introduced by the random number generator used to 



calculate the simulated measurements. Table 1 shows that very accurate estimates were obtained for 
the unknown parameters, even with large experimental errors. 
 

Table 1. Estimated parameters and confidence intervals 

Parameter 
Exact 

Parameter 
Initial 
Guess 

Estimated 
Parameter 

Confidence 
Interval 

C 1.000 10-4 1.001 (1.000, 1.002) 
k 1.000 10-4 1.001 (1.000, 1.002) 
ν 3.46 0.5 3.46 (3.45, 3.47) 

 
4.2 Estimation of the Heat Flux at the Surface of Ablating Materials (Oliveira and Orlande, 
2002) 
 

The inverse problem now under picture is concerned with the estimation of the surface heat flux 
Q(τ) by using the transient measurements of temperature sensors located inside the slab. 
Furthermore, we assume available for the inverse analysis the transient measurements of a sensor 
capable of measuring the position of the ablating surface, during the time interval fττ ≤≤0 . 

 Accurate estimates were obtained for the unknown function for a peak-flux of 100 kW/m2, by 
using only temperature measurements in the inverse analysis, as illustrated in figure 3.a. The 
temperature sensor was located at X = 0.9. Figure 3.a shows that stable results were obtained for 
measurements containing random errors, but the peak-flux was overestimated, even when errorless 
measurements were used in the inverse analysis. Figure 3.b presents the estimated functions 
obtained by using temperature measurements during the no-ablation periods, and surface position 
measurements during the ablation period. The temperature sensor was located at X = 0.9. We note 
that the heat flux was exactly recovered when errorless measurements were used in the inverse 
analysis, which was not the case when only temperature measurements were assumed available (see 
figure 3.a). A comparison of figures 3.a and 3.b reveals an increase in the oscillations of the 
solution after ablation began, when surface position measurements containing random errors were 
used in the inverse analysis. 
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Figure 3. Solution of the inverse problem for a peak-flux of 100 kW/m2 : (a) obtained with only 
temperature measurements and (b) obtained with temperature and surface position measurements 

 
5. CONCLUSIONS 

 
The objective of this paper was to discuss some fundamental aspects of inverse problems and to 

give practical examples of its applications in heat transfer. In the talk, the Levenberg-Marquardt 



method of parameter estimation, the sequential parameter estimation technique and the conjugate 
gradient method of function estimation will be described in detail and further examples will be 
given. 
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