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Abstract. The paper presents the methodology of modelling using the neural networks of the relationship between the chemical 
composition and austenitising temperature, and the supercooled austenite transformation kinetics during the continuous cooling. The 
model worked out makes it possible to calculate a complete CCT diagram for the steel with a known chemical composition and 
analysis of the influence of particular elements on the characteristic points and transformation curves of the supercooled austenite, 
and also the hardness resulting from cooling. It makes also possible forecasting of the structure developed in steel as a result of 
cooling at a particular rate, by the quantitative description of the percentages of ferrite, pearlite, bainite, and martensite with the 
retained austenite. Significant application potential of the method worked out has been demonstrated for forecasting the CCT 
diagrams for the newly developed steels, simulation of the alloying elements' effect, austenitising temperature and cooling rate on 
the shape of the supercooled austenite transformation curves, structure and hardness of steels cooled from the austenitising 
temperature. 
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1. Introduction 
 
 The appropriate selection or design of a material meeting the assumed requirements features an essential stage in the 
contemporary design process of machines and their elements. The extensive set of the available materials and the need 
for the multi-criteria optimization of their selection causes employment of the computer aided material selection 
becoming a necessity, especially in the presence of the growing demands that the contemporary products have to 
satisfy. The computer aided materials selection system (CAMS) should have the auxiliary tools making possible, for 
instance such tasks as computer simulation of the chemical composition effect on the required properties or 
optimization of the feasible solutions basing on the assumed criteria - all these tasks are not supported by the 
engineering materials databases. Meeting the requirements mentioned above calls for the appropriate numerical model. 
Neural networks, employed more and more often also in the area of materials engineering may be used, among others, 
to develop such model. Growing popularity of the neural networks results from the feasibility to represent relationships 
between the investigated quantities with no need to know the physical model of the described phenomena. Results 
provided by the neural network demonstrate very often better consistence with the experimental data than results 
obtained using the empirical formulae or using the mathematical models of the analyzed processes [Bhadeshia, 1999]. 
Attempts to develop a model making it possible to evaluate the CCT curves basing on the chemical composition and 
austenitizing temperature for some selected steel groups had been made, among others, in [Van der Wolk et al., 1996, 
Vermulen W.G. et al., 1997, Wang J. et al. 1999]. A single neural network was used in all these cases. Mass fractions of 
elements and austenitizing temperature were used as input data, yielding temperatures of the particular transformations 
at the output, depending on the cooling rate.  The results presented show the correct mapping by the network of some 
trends of transformation temperatures as functions of cooling time, however they differ significantly from the 
experimental results. 
 
2. Material and experimental methodology 
 
 Literature data were used for developing a method for evaluation of the anisothermic transformation curves of the 
supercooled austenite, including chemical composition, autenitizing temperature, and the CCT curves of the 
constructional steels. The obtained curves were analysed, assuming mass fractions of the alloying elements as the 
criterion. Basing on the collected data it was assumed in addition that total of the mass fractions of manganese, 
chromium, nickel, and molybdenum does not exceed 5%. The ranges of the assumed mass fractions of elements and 
austenitizing temperature are included in Table 1.  
 
Table 1. Ranges of mass fractions of elements and austenitizing temperatures for the analysed steels. 
 

 

Mass fractions of elements, % 

R
an

ge
 

C Mn Si Cr Ni Mo V Cu 

Austenitizing 
temperature, °C 

Min 0.08 0.13 0.12 0 0 0 0 0 770 

Max 0.77 2.04 1.90 2.08 3.65 1.24 0.36 0.3 1070 

jokamoto
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Calculating curves of the beginning and end of the transformations using a single neural network forces using a big 
number of neurons in the output layer, which – at the limited number of the available training curves and relatively big 
changes of the input values’ ranges – does not allow do work out a representative training set. A satisfactory increase of 
the training set size is difficult because of the lack of literature data, whereas a significant limiting of the number of 
neurons in the output layer must result in a loss of the important information pertaining the flow of the  supercooled 
austenite transformation. In case of a complex task, there is a possibility of splitting it into some less complicated ones 
and using separate networks for solving each of these problems. Therefore, while developing the algorithm for 
evaluating the CCT curves using the neural networks, the tasks were isolated, that could be solved with networks 
having less complicated structure, and organisation of the training set makes it possible to increase the number of 
examples with the number of the CCT curves remaining unchanged.  

The method proposed in the project employs two applications of the neural networks: classification and regression. 
The CCT diagrams calculation process may be divided into two stages. In the first stage it was determined if along the 
analyzed cooling rate path zones occur of: ferrite, pearlite, bainite, and if the martensitic transformation occurs. The 
range of the cooling duration time, characteristic for the particular transformations, and types of the structure 
constituents occurring in the steel after cooling were determined as a result of the classification process. Further, 
temperature values were calculated of start and end of the particular transformations for each of the analyzed cooling 
rates. Information regarding the types of the structure constituents that originated in the steel as a result of its cooling at 
a particular rate was used to determine steel hardness and percentage portions of: ferrite, pearlite, bainite, and 
martensite with the retained austenite. The method consists of four modules: data entry module, classification module, 
calculation module, set of conditional statements. The outputs from the particular modules feature the data that 
unequivocally defines the form of the CCT diagram and are the basis for its graphical representation. The task of the 
data entry module is receiving information like chemical composition and austenitizing temperature and linking them 
with the cooling rates. The classification module composed of classifiers based on the neural networks carries out the 
task of identification of the structural elements occurring in the steel after completing its continuous cooling at a pre-
determined rate. The calculation module employs neural networks for determining the critical values of the time and 
temperature of transformations, temperatures of beginning and end of transformations, hardness, as well as fractions of 
the structural elements. Some information from the classification and calculation modules is processed using rules 
included in the fourth module.   

Division of the main task, consisting in calculation of the transformations’ start and end curves into the partial 
tasks, limited to determining the start or end of a single transformation, assuming a certain saddled calculation error, 
may result in failing to satisfy the following conditions:  
 

sfsfsfs MBBPPFF ≥>≥>≥>  (1) 
 
where:  
 
Fs, Ff, Ps, Pf, Bs, Bf - temperatures of start and end of the following transformations: ferritic, pearlitic, bainitic;  
Ms – temperature of the martensitic transformation start. 
 

I was assumed that occurrence zones of the successive transformations do not have a common line determining an 
end of one transformation and start of another one, should the difference between the calculated temperatures be greater 
than the total of the absolute values of the Ej errors (where: j=Fs, Ff, Ps, Pf, Bs, Bf, Ms), featuring one of the quality 
evaluation coefficients for the developed models. Otherwise, the analyzed temperature range, enlarged with the Ej error 
value for the successive transformations has a common zone. Temperature T, determining simultaneously the end and 
start of the successive transformations was calculated using the weighted average, according to the formula:  
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where:  
 
E1, E2 – error values for the temperature;  
T1, T2   successive transformations. 
 

The weighted average was also used to determine the common temperature when the condition described with 
formula (1) was not satisfied, which might happen for transformations characterized by a narrow temperature range at 
the analyzed cooling rate. Fig.1 demonstrates the method used to determine finally the temperatures of start and end of 
the transformation. Symbols (Fs, Ff, Ps, Pf, Bs, Bf, Ms) were used in Fig.1 to designate temperature values calculated 
using the neural network model; symbols (Fs

*, Ff
*, Ps

*, Pf
*, Bs

*, Bf
*, Ms

*) designate temperature values determining, 
along with the cooling rate, the points presented in the temperature - time coordinate system, featuring the basis for the 
graphical representation of the CCT diagrams. The relationship - T1

*=śr.(T1;T2) is a weighted average specified by 
formula 2. 

 



 

 
 
Figure 1. Algorithm for determining the temperatures of start and end of the particular transformations. 
 
 The data set used to develop the model employing the neural network was split into four subsets: training, 
validating, testing, and verifying one. Allocation of data to the particular subsets was done randomly. The optimum type 
and structure of the neural network, error function form, normalisation method for the input data, as well as training 
method and parameters were assumed after analysing their influence on the quality assessment coefficients of the 
developed models. For the regression issues the following were analysed: the average network forecast error (Ej), ratio 
of standard deviations of errors and data, which for the ideal forecasts assumes value of 0, as well as the Pearson’s 
correlation coefficient r. The following quality assessment coefficients were assumed for classification problems: 
coefficient expressing in [%] the number of correct classifications and the area under the ROC curve. The ROC curve 
expresses the network sensibility (second class classified correctly) as a function of the incorrectly classified first class. 
In case of random classifications the area under the ROC curve assumes value of 0.5. In case of the „ideal” classifier, 
the area under the ROC curve assumes value of 1. 
 Total of 20 neural network models are used for calculating the complete CCT diagram for the assumed chemical 
composition using the method presented in the paper, their task is to: determine the types of the occurring 
transformations at given cooling rates (classification), calculate the critical temperatures of transformations (Ac1, Ac3, 
Ms, Bs), calculate time to start and end of the particular transformations as functions of cooling rate, calculate hardness 
and portions of the particular structural constituents as functions of cooling rate. 
 Information on neural network models used for determining the types of structural constituents occurring in the 
steel after the completed cooling process at a particular rate is presented in Table 2. Table 3 presents information 
characterizing neural networks employed for calculating the temperatures of start and end of the particular 
transformations as functions of the chemical compositions and cooling rate.  
 
Table 2. Specifications of the developed classifiers based on neural networks. 
 

Transformation 
area 

Input 
parameters Network type Network 

structure 

Number of 
cases in data 

sets: 

Training 
method 

Number of 
training epochs

Ferritic 10-7-1 Training - 1692 85 

Pearlitic 10-15-1 Validating - 846 456 

Bainitic 10-20-14-1 Testing - 846 506 

Martensitic 

C, Mn, Si, 
Cr, Ni, Mo, 
V, Cu, vch, 

TA 

MLP 

10-12-1 Verifying - 610

conjugate 
gradients 

1008 

 

 



Table 3. Specifications of the neural networks used for calculating the temperatures of the beginning and end of the 
supercooled austenite transformations. 

 
Number of cases in data sets Tempe-

rature training validating testing verifying
Input 

parameters 
Network 

type 
Network 
structure 

Training 
method 

No of 
epochs 

Fs 10-11-1 quasi-Newton 627 
Ff 

918 459 459 327 10-7-1 quasi-Newton 1248 

Ps 10-5-1 conjugate 
gradients 258 

Pf 
755 377 377 273 

10-15-1 quasi-Newton 2124 

Ms 854 427 427 319 

C, Mn, 
Si,Cr, 

Ni, Mo, 
V, Cu, 
vch, TA 

10-11-1 conjugate 
gradients 84 

Bs 830 415 415 284 

C, Mn, Si, Cr, 
Ni, Mo, V, 
Cu, vch, TA, 

Bsmaxx 

 
 

MLP 

11-7-1 Lavenberg-
Marquardt 430 

Bf 1250 200 200 284 C, Cr, Ms, 
vch, Bsmax 

GRNN 5-1250-2-
1 k-averages - 

 
3. Calculation results 
 
 In Table 4 the quality assessment coefficients of the neural networks are presented, used as classifiers yielding 
information on the successive transformations occurring along the analysed cooling curves. The error values, ratio of 
standard deviations, and the Pearson’s correlation coefficient R for neural networks are given in Table 5, making it 
possible to determine the temperatures of beginning and end of the particular transformations as functions of cooling 
rate. Examples of the CCT diagrams, worked out basing on the calculations carried out, along with the experimental 
plots, are presented in Figures 2, 3 and 4. 
 
Table 4. Quality assessment coefficients for neural networks, used as classifiers for determining the types of occurring 

transformations. 
 

Testing set Verifying set 
Transformation areas Coefficient of correct 

classifications, % ROC Coefficient of correct 
classifications, % 

Ferritic 90 0.959 91 
Pearlitic 92 0.975 92 
Bainitic 88 0.945 89 
Martensitic 92 0.973 94 

 
Table 5. Error values and correlation coefficients for the temperatures of beginning and end of transformations 

calculated for data from the testing / verifying data sets. 
 

Tempe-
rature Error Ej, ºC Error Ej, % Standard deviation 

of the error, ºC 
Ratio of standard 

deviations 

Pearson’s 
correlation 

coefficient r 

Fs 18.2 / 21.6 2.6 / 3.0 18.1 / 20.3 0.52 / 0.54 0.87 / 0.85 

Ff 19.4 / 20.5 3.1 / 3.2 19.2 / 17.7 0.49 / 0.50 0.87 / 0.86 

Ps 15.5 / 17.1 2.4 / 2.6 14.5 / 14.8 0.54 / 0.54 0.85 / 0.84 

Pf 22.8 / 21.6 3.8 / 3.6 21.3 / 18.9 0.57 / 0.55 0.80 / 0.85 

Bs 25.8 / 28.4 5.3 / 5.9 27.2 / 28.0 0.58 / 0.62 0.80 / 0.79 

Bf 24.1 / 26.6 7.2 / 8.0 30.9 / 32.3 0.62 / 0.64 0.78 / 0.77 

Ms 21.2 / 22.4 7.1 / 8.0 19.9 / 22.2 0.53 / 0.51 0.83 / 0.86 

 



 

 
 

Figure 2.  CCT diagram for steel with concentrations: 0.13% C, 0.51% Mn, 0.31% Si, 1.5%Cr, 1.55% Ni, 0.06% Mo, 
0.01% V, austenitised at a temperature of 870ºC; a) experimental, b) calculated. 

 

 
 

Figure 3.  CCT diagram for steel with concentrations: 0.16% C, 1.12% Mn, 0.22% Si, 0.99% Cr, austenitised at a 
temperature of 1050ºC; a) experimental, b) calculated. 

 

 
 

Figure 4.  CCT diagram for steel with concentrations: 0.52% C. 0,52% Si, 1.09%Cr, 1.72% Ni, 0.43% Mo, 0.14% V, 
austenitised at a temperature of 950ºC; a) experimental, b) calculated. 

 



4. Application example of the developed model 
 
 The synergetic effect of the alloying elements on austenite transformations during the continuous cooling is the 
reason for which analyzing the influence of single elements does not reveal fully their real effect. The influence of the 
alloying elements should be analyzed for the particular elements at the fixed concentration of the remaining constituents 
in the analyzed steel. The artificial intelligence tools, including the neural networks, make it possible to substitute 
partially the costly and time consuming experimental investigations with the computer simulation and using the 
obtained results as data for further analyses.  
 The developed neural network models make it possible to carry out computer simulation of the effect of chemical 
composition, austenitising temperature and/or cooling rate on a selected quantity describing austenite transformations in 
the CCT diagram:  
− temperature of the eutectoidal transformation during heating Ac1,  
− temperature of the ferrite to austenite transformation during heating Ac3, 
− temperature of the bainitic transformation start Bs, 
− temperature of the martensitic transformation start Ms, 
− time referring to the lowest austenite life in the temperature range characteristic for the ferrite occurrence zone tF,  
− time referring to the lowest austenite life in the temperature range characteristic for the pearlite occurrence zone tP, 
− time to the start of the bainitic transformation, referring to the point of the shortest supercooled austenite life in the 

bainitic occurrence zone tB, 
− temperatures of start and end of ferrite occurrence at a particular  cooling rate, 
− temperatures of start and end of pearlite occurrence at a particular  cooling rate, 
− temperatures of start and end of bainite occurrence at a particular  cooling rate, 
− temperature of start of the martensitic transformation at a particular cooling rate,  
− hardness of the steel cooled from the austenitising temperature at a particula rate,  
− portions of ferrite, pearlite, bainite, and martensite in structure of the steel cooled from the austenitising 

temperature at a particular rate.  
 
Austenitising temperature may be selected from the range presented in Table 1 or assumed basing on the Ac3 

temperature calculated using the neural network model. 
 The influence of a single factor, and also an arbitrary pair of factors on a selected quantity describing austenite 
transformations during the continuous cooling can be analysed in the steel chemical composition range presented in 
Table 1. The additional limitation refers to the sum of mass concentrations of manganese, chromium, nickel, and 
molybdenum, which should not exceed 5%. Examples of diagrams illustrating the effect of pairs of elements on the 
values of temperatures Fs and Bs at the fixed concentrations of other constituents are presented in Figures 5-12. One 
should note that analysis of the chemical composition effect on temperatures of start and end of the particular 
transformations calls for checking if for the assumed mass concentrations of elements, austenitising temperature, and 
assumed cooling rate the analysed transformation occurs. The relevant information can be obtained thanks to the 
developed neural classifiers.  
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Figure 5. Effect of carbon and chromium on Fs 
temperature of the steel austenitised at the temperature of 
1050 oC with concentrations: 1.06% Mn, 0.21% Si, 
0.18% Ni, 0.02% Mo, 0.1%V; cooled at 350 o/min rate.  rate. 

 
Figure 6. Effect of carbon and molybdenum on Fs 
temperature of the steel austenitised at the temperature of 
1050 oC with concentrations: 1.06% Mn, 0.21% Si, 
0.18% Ni, 0.79% Cr, 0.1%V; cooled at 350 o/min
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Figure 7. Effect of carbon and nickel on Fs temperature 
of the steel austenitised at the temperature of 1050 oC 
with concentrations: 1.06% Mn, 0.21% Si, 0.79% Cr, 
0.02% Mo, 0.1%V; cooled at 350 o/min rate. 

. in rate. 

Figure 8. Effect of nickel and molybdenum on Fs 
temperature of th steel austenitised at the temperature of 
1050 oC with concentrations: 0.24% C, 1.06% Mn, 0.21% 
Si, 0.79% Cr, 0.1%V; cooled at 350 o/min rate. 
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Figure 9. Effect of carbon and chromium on Bs 
temperature of the steel austenitised at the temperature of 
850 oC with concentrations: 0.65% Mn, 0.25% Si, 0.25% 
Ni; cooled at 130 o/min rate. 

Figure 10. Effect of carbon and manganese on Bs 
temperature of the steel austenitised at the temperature of 
850 oC with concentrations: 1.05% Cr, 0.25% Si, 0.25% 
Ni; cooled at 130 o/min rate. 
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Figure 11. Effect of carbon and nickel on Bs temperature 
austenitised at the temperature of 850 oC with 
concentrations: 0.65% Mn, 0.25% Si, 1.05% Cr; cooled 
at 130 o/min rate

Figure 12. Effect of chromium and nickel on Bs 
temperature austenitised at the temperature of 850 oC 
with concentrations: 0.34% C, 0.65% Mn, 0.25% Si; 
cooled at 130 o/m

 

 



 

4. Summary 
 
 The model developed in the project features a valuable research tool making it possible to carry out computer 
simulation of the effect of the chemical composition on location and shape of the supercooled austenite transformation 
curves or hardness obtained after cooling at the analysed rate. Using each of the models developed in this project one 
can determine a hypersurface originating from the values of the analysed quantity as the function of the chemical 
composition, austenitising temperature and/or cooling rate. Employment of the optimisation algorithms makes search 
possible, within the ranges of the assumed mass concentrations of the elements and values of the austenitising 
temperature, maximum values of the objective function on the analysed hipersurface, which leads to obtaining the 
optimum solution in respect to the assumed criterion. The presented procedure may be used for selection of the 
chemical composition of the steel and/or austenitising temperature, meeting the particular requirements connected with 
austenite transformations during continuous cooling, and therefore, specify the chemical composition of the steel with 
the predetermined CCT diagram shape. Thanks to the method developed in the project, analyses can be made referring 
to the effect of the selected elements on any temperature or time describing the austenite transformation and also 
hardness and portions of the structural constituents which originate due to cooling the steel from the austenitising 
temperature. One should also stress the big potential of employment of the developed model in the didactic process.  
The detailed description of all modules of the developed method of determining the complete CCT diagrams is 
presented in [Trzaska, 2002], and some of its elements in [Dobrzański et al., 2001, Dobrzański et al., 2002]. 
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