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Abstract: The stiffness of multi-layer plate and shell structures can be increased by employing piezoelectric layers and
making use of the piezoelectric coupling effect. It is well-known that the actuation performance to increase stiffness
depends on the distribution of material in the piezoelectric layers. Motivated by this idea, the concept of topology
optimization is applied in this work to determine the optimal distribution of piezoelectric material in a multi-layer plate
or shell structure to provide the minimum compliance when actuated. This should be achieved with a limited amount
of piezoelectric material, e.g., to reduce the weight of the structure. Topology optimization is a powerful structural
optimization method that combines the Finite Element Method (FEM) with an optimization algorithm to find the optimal
material distribution inside a given domain. The topology optimization applied in the present work is based on the so-
called SIMP (Solid Isotropic Material with Penalization) model, for which an extension to piezoelectric materials is
proposed that allows the algorithm to choose the optimum polarization of the piezoelectric material in each element.
For the modeling of the piezoelectric layers, newly developed piezoelectric plate and shell finite elements are employed,
which are free of locking and allow an accurate modeling of thin piezoelectric actuators of arbitrary geometry. The
potential of the proposed method is demonstrated by a numerical example, where an excellent performance of the enhanced
piezoelectric SIMP model is observed, confirming the importance of including the polarization as an additional design
variable in the optimization process.
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1. Introduction

Layered piezoelectric plates and shells, such as those encountered in smart structures, are composite struc-
tures made of piezoelectric and elastic materials. Usually, the piezoelectric layers are attached as sensors and/or
actuators to the top and bottom surfaces of an elastic base layer, commonly an aluminium or steel structure.
This allows a real-time sensing and actuation of the structural deformation so that, by employing a suitable
control circuit, the deformation can be controlled. Possible applications of smart structures include the shape
control of airplane wings (Chattopadhyay et al., 1999), car bodies, reflector antennas (Agrawal and Treanor,
1999), deformable mirrors, micromotors (Brei and Moskalik, 1997), etc. For the actuation, usually piezoceramics
such as PZT are employed, while piezoelectric polymers like PVDF are used as sensors.

Owing to the large number of applications, the computational modeling of (layered) piezoelectric plates and
shells has been extensively studied in the past few years, mainly using the Finite Element Method (see, e.g.,
Tzou and Tseng, 1990; Saravanos, 1997a,b; Kögl and Bucalem, 2002,2003). The distribution of piezoelectric
material over the plate or shell surface can be used to influence its structural characteristics, e.g., to increase
the stiffness, generate a desired displacement for a given applied voltage, or to improve the vibration control of
the structure. Thus, a very important question to be addressed in the design of smart structures concerns the
optimal distribution of piezoelectric material over the plate or shell. Many authors have studied this problem in
the past few years, usually by trying to find the optimal placement of small pieces of piezoceramics on the plate
or shell structure by using optimization algorithms (Chattopadhyay et al., 1999; Mukherjee and Joshi, 2002).
Recently, some authors have begun to apply sizing optimization techniques to find an optimal distribution of
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the piezoelectric layer over plate or shell structures, with very promising results (Mukherjee and Joshi, 2002).
However, some of the applied optimization techniques are empiric and no systematic approach was developed.

In a number of smart structures applications, the piezoelectric coupling effect is employed to increase the
structural stiffness. This can be achieved by using the piezoelectric layers as actuators, since the deformation
induced by the applied voltage or electric charge influences the structural stiffness. The objective of optimization
is then to obtain a maximum stiffness for a limited amount of piezoelectric material, e.g., to reduce the weight
of the structure. Motivated by this idea, the present work applies the concept of topology optimization to find
the optimal distribution of material in a piezoelectric layer in a composite plate or shell structure to provide the
minimum compliance when actuated. The presented approach is quite general and can be employed not only
for the design of layered piezoelectric plates and shells in smart structures, but also for a number of different
applications.

Topology optimization is a powerful structural optimization method that combines a numerical solution
method, usually the Finite Element Method, with an optimization algorithm to find an optimal material distri-
bution inside a given domain (Bendsøe and Sigmund, 2003). The topology optimization applied in the present
work is based on the so-called SIMP (Solid Isotropic Material with Penalization) model, which is extended to
piezoelectric materials in a way to allow a sign change of the electric polarization in each element. Two design
variables are employed for each element: the amount of piezoelectric material (“density”) and the polarization
of the material. In the Finite Element calculations, newly developed piezoelectric plate and shell elements
are employed, which are free of locking, reliable, and allow an accurate modeling of thin piezoelectric sensors
and actuators of arbitrary geometry. For the optimization, sequential linear programming (SLP) is used. The
potential of the proposed method is demonstrated by a numerical example, where an excellent performance of
the enhanced piezoelectric SIMP model is observed.

The paper is organized as follows. In Section 2, the Finite Element modeling of piezoelectric plates and shells
is briefly reviewed. In Section 3, the concept of topology optimization and the formulation of the optimization
problem are described. Section 4 discusses the numerical implementation of the optimization problem. In
Section 5, results are presented to illustrate the proposed method and finally, in Section 6, some conclusions are
given.

2. Finite Element Modeling of Piezoelectric Plates and Shells

At each iteration of the topology optimization procedure, a structural analysis has to be performed. This
is usually done with the Finite Element Method (FEM) (Bathe, 1996). It is very important that the finite
elements used in the analysis be reliable and accurate, so that the optimization procedure can yield good
results. In the analysis of piezoelectric plates and shells, this means that the elements must not present locking,
and that they should be able to model accurately the piezoelectric coupling. Recently, new piezoelectric plate
and shell elements that fulfil these requirements have been presented by two of the authors (Kögl, 2002; Kögl
and Bucalem, 2003), and these elements were used in the analyses described in this paper. Some features of the
elements that are relevant in the context of this article will be briefly revised in the following.

The elements are based on the Reissner-Mindlin kinematic assumptions and their generalization to shells.
For the electric field, a quadratic variation of the electric potential over the thickness is assumed by introducing
mid-surface electric degrees of freedom (Kögl and Bucalem, 2003), so that the elements can model accurately
the electric potential induced in bending deformations. To eliminate locking, assumed natural strain fields in
the form of the MITC approach are used (Bucalem and Bathe, 1997). With these assumptions, one obtains for
the elastic strains ε and the electric field E at the nodes (for a detailed description, see (Kögl, 2002))

ε = Bε u and E = −BE ϕ , (1)

where u contains the elastic degrees of freedom (displacements and section rotations), and ϕ contains the electric
potential degrees of freedom. The transformation matrices Bε and BE depend only on the geometry and not
on the material properties, which is important in the derivation of the sensitivities described in Section 3.2.
With the piezoelectric constitutive equations (Gaul et al., 2003), this yields the element stiffness matrices

K(e)
uu =

∫

Ω(e)

BT
ε C Bε dΩ , K(e)

uϕ =

∫

Ω(e)

BT
ε e BE dΩ , K(e)

ϕϕ = −

∫

Ω(e)

BT
E ε BE dΩ , (2)

where C, e, and ε are the elasticity matrix, piezoelectric matrix, and permittivity matrix, respectively; the
superscript (e) denotes the element. The final discretized FEM system of equations can then be written as

[

Kuu Kuϕ

KT
uϕ Kϕϕ

] [

u

ϕ

]

=

[

F

Q

]

or KU = Q , (3)

with (·)T denoting the transpose of the matrix. Note that the charge vector Q has non-zero elements only at
the electrodes since the electric charges are zero inside the piezoelectric material.



3. Formulation of Topology Optimization Problem

Topology optimization is based on two main concepts (Bendsøe and Kikuchi, 1988; Bendsøe and Sigmund,
2003): the extended design domain and a suitable material model. The extended design domain is a large fixed
domain that must contain the whole structure to be determined by the optimization procedure. The objective
of topology optimization is to determine the holes and connectivities of the structure by adding and removing
material in this domain. Thus, the topology optimization problem is defined as a problem of finding the optimal
distribution of material in the extended domain. Since the extended domain is fixed, the Finite Element model
domain is not changed during the optimization process, which simplifies the calculation of derivatives of any
function defined over the extended domain. In the current problem the design domain has the size of the elastic
base layer, since piezoelectric material can only be added on top or bottom of this base layer.

3.1. An Extended SIMP Model for Piezoelectricity

If the amount of material in each element could assume only values equal to either one or zero, the material
distribution function would be discrete and very discontinuous. This would present difficulties in the numer-
ical treatment of the problem. To overcome this, the concept of a continuous material model is introduced.
Essentially, the material model approximates the material distribution by defining a function of a continuous
parameter that determines a mixture of two materials throughout the domain. By allowing the appearance
of intermediate (or composite) materials – rather than only void or full material – in the final solution, this
provides enough relaxation for the design problem.

The material model employed in the present work is based on the so-called SIMP (Solid Isotropic Material
with Penalization) model. This model was initially defined for elastic materials (Bendsøe, 1989) and was
recently extended to piezoelectric materials (Silva and Kikuchi, 1999). However, it did not allow a sign change
of the piezoelectric polarization during optimization. In the design of piezoelectric plates or shells, this is very
important since the actuators must be able to both expand and contract. Although in practice this is achieved
by applying either positive or negative charges to the electrodes, the numerical implementation is considerably
simplified by treating this as a change of sign of the polarization. Otherwise, the design domain would not remain
fixed, but separate electrodes with different charges would appear and disappear during the optimization, which
would introduce an enormous difficulty into the analysis.

Therefore, in this paper, a more comprehensive SIMP material model for piezoelectric materials is proposed
which allows to change the sign of the piezoelectric matrix e – and as a result the polarity of the piezoelectric
material – by introducing a new design variable ρ2:

C = ρpc

1 C0 , (4)

e = ρpe

1 (2ρ2 − 1)
pi e0 , (5)

ε = ρpε

1 ε0 . (6)

In Eqs (4)–(6), ρ1 is a pseudo-density describing the amount of material in each finite element, and ρ2 describes
the polarization. Both ρ1 and ρ2 can assume values between 0 and 1. The matrices C0, e0, and ε0 contain
the components of the elasticity, piezoelectricity, and permittivity tensors of the ‘real’ material. Even though
intermediate (composite) materials are allowed during the optimization, the final topology should contain only
values of ρ1 and ρ2 equal to (or very close to) 0 or 1. To achieve this, following the idea of the original
SIMP model, penalization factors pc, pe, and pε are employed to penalize intermediate densities. For an elastic
material, the optimum value for pc was found to be equal to 3 (Bendsøe and Sigmund, 2003). In the present
paper, the same value will be used for all exponents of ρ1, i.e, pc = pe = pε = 3; in addition, pi = 1. The
effect of using other values for the penalization factors is not addressed here but is currently the subject of
investigation.

Regarding the expression (6) for the permittivity ε, one may argue that from a physical point of view the
minimum possible value is not zero but the vacuum permittivity εvac, thus a correct expression would be:

ε = ρpε

1 ε0 + (1 − ρpc

1 ) Iεvac , (7)

where I is the 3×3 identity matrix. However, using the simplification (6) does not present any numerical
difficulties, and since for ρ1 → 0 the material vanishes anyway, expression (6) is a reasonable approximation
and will be employed to simplify the implementation.

3.2. Formulation of Design Problem

The problem of minimum compliance design for elastic plate and shell structures has been extensively studied
in the literature (see for example (Suzuki and Kikuchi, 1991; Dı́az et al., 1995; Kumar and Gossard, 1996)).
However, to the authors’ knowledge, no investigations have been carried out so far dealing with the minimum
compliance problem for thin piezoelectric plate or shell structures.



It is well-known that the stiffness of a piezoelectric plate can be changed by applying an electric charge, an
effect that is commonly employed in the control of piezoelectric plates. Hence, the minimum compliance design
problem for piezoelectric structures should not be considered by defining as objective function the minimum
(elastic) compliance function uTF alone, since a large electrical energy may be necessary to achieve this mini-
mum compliance. Instead, the objective function for the minimum compliance design problem for piezoelectric
structures should also take into account the electrical energy.

Consider a piezoelectric plate domain as shown in Fig. 1, which is subjected to an input electric charge
Q in an electrode (region Γq) and mechanical tractions ti in region Γt. Then the optimization problem for a

electrode Γq

piezoelectric
layer

layers

ti
Γt

Γu

x1

x2

x3

Figure 1: Layered piezoelectric plates subjected to mechanical loads ti and electric charges Q

piezoelectric layered structure is obtained by minimizing the so-called mean compliance

L(ui, ϕ) :=

∫

Γt

tiui dΓ −

∫

Γq

q ϕ dΓ , (8)

where q = −Dini is the electric charge density. In the case of piezoelectric plate and shell structures, the region
Γq corresponds to the electrodes attached to the piezoelectric layers, as shown in Fig. 1. Since the electrodes
are equipotential surfaces, it follows that

∫

q ϕ dΓ = Q ϕ, which is the electrical work used to increase the plate
stiffness. By minimizing the mean compliance function L, the structural compliance is thus minimized with
the minimum amount of electrical energy. Observe that the definition (8) is similar to the mean compliance
function defined in (Silva et al., 2000).

Expressing now the mean compliance in terms of the discretized equilibrium equation (3), one obtains

L(u, ϕ) = uTF + ϕTQ =

[

u

ϕ

]T [

Kuu Kuϕ

KT
uϕ Kϕϕ

] [

u

ϕ

]

. (9)

Note that if either no electric charges are applied to the electrodes (Q = 0) or if the electrodes are short-
circuited (ϕ = 0), then the electrical work is zero, and the problem becomes equal to the traditional minimum
compliance design problem. It should be mentioned here that the piezoelectric stiffness matrix K as given
in Eq. (3) is indefinite, which suggests that the minimum mean compliance design problem for piezoelectric
structures may be non-convex, in contrast to the traditional minimum compliance design problem. Essentially,
Eq. (9) describes a multi-objective function given by the linear combination of the mechanical and electrical
compliances, where the weights are the applied force and electric charge. Thus, depending on the values of the
applied forces and electric charges, the optimization algorithm will focus more on the electrical than on the
mechanical compliance, or vice versa.

Now, to minimize the mean compliance of a piezoelectric structure, the following optimization problem must
be solved:

Minimize: L(u, ϕ)
ρ1, ρ2 subject to: KU = Q (FEM equilibrium equations)

0 < ρmin ≤ ρ1 ≤ 1
0 ≤ ρ2 ≤ 1
Θ0 ≤ Θ(ρ1) = 1

S

∫

ρ1 dS ≤ Θ1 ,

where S is the volume of the design domain, Θ is the volume fraction, and {Θ0, Θ1} ∈ [0, 1] are the lower and
upper bounds on the amount of material to be used in the piezoelectric layer. The other constraints are the
equilibrium equations (3) and box constraints for the design variables ρ1 and ρ2 in each element. The lower
bound ρmin = 0.001 specified for ρ1 is necessary to avoid numerical problems that would result if the stiffness
matrix became singular. Since regions with ρ1 = 0.001 have virtually no structural significance, for all practical
purposes they can be considered regions without piezoelectric material in the final design.

Notice that the electrical excitation is provided by the electric charges Q applied to the electrodes, which
are isopotential surfaces. Hence, by reducing the amount of piezoelectric material in certain regions of the



domain, the electric charge density q = dQ/ dS is increased. This yields also an increase in the electric field in
regions where piezoelectric material is present. However, the electric field must at no point exceed the maximum
admissible field strength that the piezoelectric material can support without being damaged. To ensure this,
the electric field can be indirectly controlled by adjusting the lower volume constraint Θ0 in the optimization
problem.

3.3. Calculation of Sensitivities

To solve the optimization problem with the SLP algorithm, it is necessary to calculate the sensitivities (or
gradients) of the objective function L and constraints with respect to ρ1 and ρ2. The gradient of the volume
constraint is straightforward. The sensitivity of the objective function L = UT

Q with respect to ρ (where ρ
can be either ρ1 or ρ2) is obtained by considering that ∂Q/∂ρ = 0, thus

∂L

∂ρ
=

∂UT

∂ρ
Q . (10)

Equally, it follows for the derivative of the equilibrium equation KU = Q:

∂K

∂ρ
U + K

∂U

∂ρ
= 0 . (11)

Substituting this into Eq. (10) yields

∂L

∂ρ
=

∂UT

∂ρ
KU = −UT ∂K

∂ρ
U . (12)

With the material model proposed in Eqs (4)–(6), the sensitivities of the stiffness matrices with respect to the
design variables ρ1 and ρ2 are given by

∂Kuu

∂ρ1
= pc

Kuu

ρ1
,

∂Kuϕ

∂ρ1
= pe

Kuϕ

ρ1
,

∂Kϕϕ

∂ρ1
= pε

Kϕϕ

ρ1
,

∂Kuu

∂ρ2
= 0 ,

∂Kuϕ

∂ρ2
= 2pi

Kuϕ

(2ρ2 − 1)
,

∂Kϕϕ

∂ρ2
= 0 .

(13)

This yields

∂K

∂ρ1
=

1

ρ1

[

pc Kuu pe Kuϕ

pe KT
uϕ pε Kϕϕ

]

and
∂K

∂ρ2
=

2pi

2ρ2 − 1

[

0 Kuϕ

KT
uϕ 0

]

, (14)

and the sensitivities of the objective function with respect to the design variables are obtained by substitution
into Eq. (12).

4. Numerical Implementation

A flow chart of the optimization algorithm is shown in Fig. 2. The algorithm was implemented in the first
author’s Finite Element program CoFAS, employing the newly developed piezoelectric plate and shell elements
described in Section 2. The structures can consist of an arbitrary number of layers, which are assumed to be
perfectly bonded. The design domain for the topology optimization contains only the piezoelectric layer(s). The
design variables are the pseudo-densities ρ1 and ρ2, which can assume different values for each finite element.
The Finite Element equilibrium equation (3) is solved at each iteration step using a direct skyline solver.

In this study, owing to the large number of design variables, Sequential Linear Programming (SLP) is
employed to solve the optimization problem (Hanson and Hiebert, 1981; Vanderplaatz, 1984). The problem is
linearized by developing the objective function and constraints into Taylor series at each iteration up to the
linear term. This requires the sensitivities (gradients) with respect to ρ1 and ρ2 as derived in Section 3.3.
Suitable move limits are introduced to assure that the design variables do not change by more than 5–15%
between consecutive iterations. A new set of design variables ρ1 and ρ2 is obtained after each iteration, which
continues until convergence is achieved for the objective function. Uniform values for ρ1 and ρ2 are used as an
initial guess.

When the optimization process has converged, the result is an optimum distribution of the densities ρ1 and
ρ2 over the mesh. This distribution may contain intermediate values for the densities (“gray scale”) representing
an intermediate material, but the results need to be interpreted as a distribution of two phases (“black” and
“white”), which are easier to manufacture in practice. In this work, no special filtering is employed, using only
an ordinary threshold value to represent the optimum topology as a black and white image.
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Figure 2: Flow chart of optimization procedure

5. Results

An example is presented to illustrate the minimum mean compliance design for a piezoelectric plate structure
using the proposed method. A quadratic plate with sidelength L = 300 mm is clamped at two sides Γ1 and Γ2

(uy is not constrained at Γ2) and is subjected to a unit point force at A(240 mm,210mm), as shown in Fig. 3.
The plate is made of aluminium, with Young’s modulus E = 71 GPa and Poisson’s ratio ν = 0.334, and has a

A

Γ1

Γ2

x y

z

Figure 3: Quadratic plate clamped at sides Γ1 and Γ2, and subjected to a unit point force at A

thickness of a0 = 1 mm. On top of the aluminium layer, a piezoelectric layer made of the piezoceramic PZT is
attached, with a thickness of a1 = 0.2 mm. In matrix notation, the material properties of PZT are given by

C =

















107.6 63.1 63.9 0 0 0
63.1 107.6 63.9 0 0 0
63.9 63.9 100.4 0 0 0
0 0 0 19.6 0 0
0 0 0 0 19.6 0
0 0 0 0 0 22.2

















GPa , (15)

e =





0 0 0 0 12.0 0
0 0 0 12.0 0 0

−9.6 −9.6 15.1 0 0 0



N/Vm , (16)

εrel =





1936 0 0
0 1936 0
0 0 2109



 , (17)

where εrel are the relative permittivities.
In the following, the piezoelectric layer is chosen to be the design domain, and a constant charge Q is

applied to the electrode attached to the piezoelectric layer. The optimization problem now consists in finding



the optimum distribution of piezoelectric material in this layer and choosing a suitable polarization for each
element, so as to minimize the mean compliance. A mesh of 30 × 30 piezoelectric plate elements is used for
the Finite Element analysis. The volume constraint is chosen as Θ0 = Θ1 = 0.3, i.e., the piezoelectric shall
be distributed over 30 % of the plate area. Since the volume is prescribed and does not change during the
iterations, the optimization procedure needs to start with an initial volume constraint of Θ = 0.3, to guarantee
that the optimization problem starts in the feasible domain (all constraints satisfied).

5.1. Stability Considerations

The optimization procedure is carried out with different electric charges Q, since the optimum charge is not
known in advance. The resulting optimum topologies after 20 iterations are shown in Fig. 4, where the ‘+’ and
‘-’ sign indicate positive and negative polarization, respectively. The image labelled ‘elastic analysis’ shows the
solution of the elastic minimum compliance problem, for which the piezoelectric matrix was set to zero (d = 0).

elastic analysis

+

+

_

Q = 0.5 µC

+

+

_

Q = 1 µC

+

+

_

Q = 2 µC

+

+

_

Q = 2.5 µC

+

_

+

Q = 3 µC

Figure 4: Optimal topologies (ρ1) for different applied charges Q; ‘+’ indicates positive polarization, ‘-’ indicates
negative polarization of the respective electrode

Tab. 1 gives the ratio between the electric energy Wϕ = Q ϕ and the elastic energy Wu = FA uA
z . Observe

that for small charges Q the topologies do not differ very much, but the picture changes rapidly when the charge
reaches a critical value. Between Q = 2.0 µC and Q = 2.5 µC, the topologies start to become blurred and
the displacement uA

z (which has the same absolute value as Wu since FA is a unit force) increases instead of
decreasing. Regarding the ratio between the electric and elastic energies, one observes that for small Q the
ratio increases only slowly, while for Q > 2 µC, a drastic increase is observed, confirming the pattern instability
observed in Fig. 4.

Table 1: Ratio between electric energy Wϕ = Q ϕ and elastic energy Wu = FA uA
z

Q [µC] elast. 0.5 1.0 1.5 2.0 2.5 3.0

Wϕ [µJ] 0.00 0.55 1.30 2.29 3.63 13.64 30.36

Wu [µJ] 56.93 53.57 53.15 52.88 52.69 63.32 74.62

Wϕ/Wu [%] 0.00 1.02 2.45 4.33 6.89 21.54 40.68

This instability becomes also apparent when regarding the mean compliance during the iterations, as shown
in Fig. 5. For Q = 1.5 µC and Q = 2 µC, the mean compliance converges smoothly, while for higher values
of the charge Q the compliance oscillates, indicating that the optimization algorithm encounters difficulties in
finding an optimum solution.
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Figure 5: Mean compliance L for different charges Q

5.2. Inversion of Polarization

A very important aspect of the proposed optimization algorithm is the newly introduced inversion of polar-
ization, described by the design variable ρ2. As shown in Fig. 6 (left), three regions of opposite polarization ρ2

can be distinguished: the bright region indicates negative polarization, while the dark regions indicate positive
polarization. This leads to three clearly distinguishable electrodes in the final design, of which the middle one
has negative polarization.

+

+

_

polarization ρ2

+

+

_

density ρ1

Figure 6: Optimum topology for Q = 1 µC: the choice of optimum polarization by the algorithm leads to three
separate electrodes, of which the middle one has negative polarization

In Fig. 7, three different topologies are shown for Q = 1 µC. The first topology is obtained with the algorithm
choosing the optimum polarization (0 ≤ ρ2 ≤ 1) for each element, while the other topologies are obtained with a
constant, fixed polarization throughout the piezoelectric layer, using a positive (ρ2 = 1) and a negative (ρ2 = 0)
polarization.

+

+

_

0 ≤ ρ2 ≤ 1

+

+
+

ρ2 = 1

_

_

_

ρ2 = 0

Figure 7: Optimum topologies (ρ1) for Q = 1 µC: polarization ρ2 chosen by the algorithm (left) or held constant
(center, right)

Regarding the displacement at point A, given in Tab. 2, one observes that the lowest value is achieved
when the algorithm optimizes the polarization. This is to be expected, since an optimal stiffness is obtained
when some of the piezoelectric regions contract while others expand, which can only be achieved with opposite



Table 2: Displacement uz at point A for Q = 1 µC and different constraints for the polarization ρ2

polarization uz [µm]
0 ≤ ρ2 ≤ 1 53.15
ρ2 = 1 57.61
ρ2 = 0 57.00

polarizations or applied charges. The results therefore confirm the excellent performance of the proposed new
SIMP model for piezoelectrics including polarization, and the capacity of the algorithm to choose an optimum
polarization.

Observe also that in Fig. 4, the topologies obtained with the piezoelectric material are very similar to the
topology obtained solving the elastic minimum compliance problem (upper left image in Fig. 4). In this case,
the distribution of material is carried out in such a way as to increase the elastic compliance. It would appear
that in the piezoelectric calculations, the charge Q is too low, so that the topology depends only on the elastic
stiffness. However, the clearly different topologies shown in Fig. 7 for fixed polarization indicate that this is not
the case: the charge Q = 1 µC – and therefore the electric energy – is large enough to influence the topology.
It appears rather that the optimum topology obtained through the use of piezoelectric actuators is indeed very
similar to the topology obtained through the (purely elastic) increase of stiffness by adding an extra layer.

6. Conclusions

The concept of topology optimization was successfully applied to find the optimal distribution of piezoelectric
material in one or more layers of a multi-layer plate or shell structure to provide the minimum compliance when
actuated. The design problem of layered piezoelectric plates and shells for minimum compliance was formulated
and a new material model was proposed for piezoelectric materials based on the SIMP model. As a new feature,
this model considers the change of piezoelectric polarization during the optimization, which is indispensable for
obtaining an optimal design.

The developed optimization procedure was tested with an example, and the results confirm the proposed
strategy and demonstrate the importance of including the polarization as an additional design variable. In the
example, the algorithm determined a number of clearly distinct electrodes with different polarizations. The
resulting design can be easily manufactured by using available technologies for bonding sensors and actuators
on plate or shell surfaces.
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Kögl, M. and Bucalem, M. (2002). Piezoelectric MITC plate elements. In Proceedings of the
Fifth World Congress on Computational Mechanics (WCCM V), July 7–12, 2002, Vienna, Austria,
http://wccm.tuwien.ac.at.
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