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Abstract A visualization study and Quantitative velocity measurements have been performed in Taylor-Couette flow with a 
medium-gap (η= 0.356), over a large range of Taylor numbers (2.1x104 < Ta < 1.1x1011), with the outer cylinder fixed and the inner 
cylinder rotating about its axis. Quantitative velocity measurements were carried out using the PHANTOMM flow tagging 
technique. For visualization study, two techniques were used: the PHANTOMM technique that allowed flow structure visualization 
from small to moderate Taylor numbers, and the Particle Streak Imaging, PSI (the flow  was seeded with neutrally buoyant 
polystyrene micro spheres) that permitted to flow structure visualization from moderate to high Taylor numbers. The results 
illustrate the expected three-dimensional features of flow and presence of Taylor cells at low Taylor numbers.  Our study examined 
the interplay between small and large scales present in the flow as well as showed the gradual transition to turbulence with 
increasing Taylor numbers. Taylor cells were found for Taylor numbers less than 1.13 x 1010.  At low Taylor numbers, the flow in 
the cells appeared to be a rotational laminar flow with a high degree of coherence.  At higher Taylor numbers, the cells aspect 
became more irregular, and the flow inside them became turbulent.  The Görtler instability developed inside Taylor cells and close to 
the inner cylinder wall.  At the highest Taylor numbers, turbulence increased up to the point where no Taylor cells could be detected.  
For the flow in our study,  at Ta = 1.13 x 1010, the homogenization by turbulence spread across the gap, and the flow structure 
sharply changed its pattern as a toroidal vortex in helical motion developed in a thin layer on the inner cylinder wall. Instantaneous 
velocities, average velocities, angular-momentum ratio and spectral density function were computed for all ranges of Taylor numbers 
in the range studied. These quantitative results show the same conclusions as the ones presented by the visualization study. 
 
Key words: Visualization study, Turbulences, Taylor-Couette flow, phantomm flow tagging 

 
1. The Taylor-Couete Flow and Objectives 

 
A particularly interesting aspect of the Taylor-Couette flow study is the transition from laminar to turbulent flow. 

Studies of instabilities at Taylor numbers that manifest themselves slightly higher than the critical value for the onset of 
Taylor vortices were performed by Ioos (1986); and Benjamin & Mullin (1982), among many others, but the complete 
transition to the turbulence takes place at Taylor numbers higher than those studied in previous papers. In fact, most of 
the earlier studies were carried out at Taylor numbers lower than the ones corresponding to that expected for a complete 
transition.  A possible exception is the paper of Smith & Townsend (1982) who studied Taylor-Couette flow for Taylor 
numbers larger than the other authors, but they did not visualize the flow structure. 

Some of the studies in Taylor-Couette flow have suggested that the flow structure is composed of large Taylor cells 
throughout the gap, typically due to the Taylor instability (also called the instability of the first kind) and an instability 
characteristic of the Görtler instability (also called either a secondary instability or an instability of the second kind) in 
the thin boundary layer on the inner cylinder wall. The disturbances in the boundary layer are of the counter-rotating 
vortex pairs form, with axes in the circumferential direction, with a motion similar of that Taylor cell (Smith & 
Townsend 1982; Barcilon & Brindley 1984; Wei et al. 1992). It should be noted that the Görtler instability is not 
limited to concave wall geometry. For example, this instability also occurs in a wall jet over a convex surface, and 
Görtler vortex structures exist in turbulent boundary layers over concave surfaces such as the pressure-side of turbine-
compressor blades (Floryan 1991).  

The Görtler instability may also be an important mechanism for the transition control in a boundary layer along 
curved surfaces, for both compressible and incompressible turbulent flow.  One of the first investigations concerned 
with the Görtler instability in compressible flow was due to Ginoux (1971) who observed the presence of Görtler 
vortices in the re-attaching flow downstream of a backward-facings step at a Mach number of 5.5.  The experimental 
evidence shows that the boundary layer becomes unstable, leading to Görtler vortices. These vortices were also 
observed in the presence of a shock wave boundary layer interaction (Delery & Coet 1985).  In addition, high noise 
levels - which are caused by Mach wave radiation from the turbulent boundary layers on the nozzle walls - in 
conventional supersonic wind tunnels cause premature transition from laminar to turbulent flow in the boundary layers 
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on test models (Chen et al. 1985). An important step in delaying transition is to control the amplification of the Taylor-
Görtler vortices. It is known that the transition of a boundary layer from laminar to turbulent flow on the wall of a 
supersonic nozzle can also be caused by a Görtler instability. 

Turbulence in Taylor-Couette flow may be better understood if one thinks that the transition process in turbulence 
is guided by two mechanisms. The first one is led by the overall structure, that is, the Taylor cells.  These cells present 
slower changes and contain intermittent turbulent flow at high Taylor number.  If Taylor cells are present in highly 
turbulent flow, they set up particular characteristics to the turbulence linked with the system geometry and provided 
with a characteristic time scale.  The second process is linked with the transition mechanism on a small scale (Görtler 
instability).  This mechanism exists within the Taylor cell that becomes turbulent at high Taylor number.    

Some of the previous studies have visualized the flow by the front lighting of a radial plane and by seeding the 
flow with the reflecting particles (Coles 1965;Fenstermacler et al. 1979). This visualization method has been 
inadequate to show the small-scale, counter-rotating vortices formation (Görtler instability). It has also been inadequate 
to show the large-scale structure (Taylor cell) at high Taylor number.  Generally, experimental techniques applied to 
Taylor-Couette flow were designed to provide an evidence that small-scales lead flow either to turbulence (Wei et al. 
1992) or to find the point that corresponds to the critical Taylor number in the lower Taylor number flow (Coles 1965).  
However, the interplay between small and large scales in a gradual transition to turbulence at high Taylor numbers is 
not well understood. 

It due to such reasons that we have made a new study of Taylor-Couette flow. Our primary objective was to study 
the Taylor cells structure,  and the instabilities in the boundary layer on the inner cylinder, over the Taylor number 
range where the flow goes from laminar to turbulent. In particular, we aimed: 

 
I. to determine the interplay between small and large scales in a gradual transition to turbulence, and 
II. to determine if Taylor cells are present in highly turbulent flow, and, if so, to study their stability: how they 

influence the turbulence behavior, and how they depend on the system geometry. 
 

In addition, the aspects of the Taylor-Couette flow described in  the paragraph above have not been investigated in 
details by quantitative velocity measurements. The hot wire anemometer, by Smith & Townsend (1982), is not adequate  
for this study because it affects adversely the flow structure within the small gaps. Also, it  is not possible to get 
information about the large Taylor cells global features since it is inherently a single-point technique. This aspect may 
also restrict the LDV (Laser Doppler Anemometry) use. On the other hand, the PHANTOMM technique can extract 
defined interesting facts of the flow structure because spatial measurements performed with this technique provide 
information that happens along  a line. The statistical treatment of velocities spatial changes can help to show the main 
flow aspects. 

Thus, we opted for studying the Taylor-Couette flow using the PHANTOMM technique. In this investigation by 
quantitative velocity measurements, we aim the following objectives: 

 
I. To characterize the performance this technique presented to measure velocities in incompressible turbulent 

flow in high Reynolds number, and 
II. To carry out a measurements treatment with an aim to understand the flow structure as a function of Taylor 

number, in the range where the flow goes from laminar to turbulent. The measurement procedure used then 
will be explained in the next section.  

 
2.  The phantomm  technique 

 
The ability to obtain accurate, high spatial resolution velocity data over a wide range of Reynolds numbers poses a 

significant challenge to existing optical diagnostic techniques.  Flow tagging is an optical diagnostic in which a laser 
beam is used to "write" a spatially continuous pattern into a specific flow field region. The temporal evolution of the 
initial pattern is tracked ("interrogated") through Laser-Induced Fluorescence (LIF) imaging.  The displacement within 
the elapsed time interval constitutes a measurement of velocity, with an absolute accuracy limited only by the ability to 
determine position and time. 

Flow tagging based on caged dye Photo-Activated Fluorphores (PAF) (McCray 1989). PAF tracers has been 
termed as Photo-Activated Nonintrusive Tracking of Molecular Motion (PHANTOMM).  Caged dye PAF's are organic 
dye molecules in which a chemical caging group has been attached in order to quench the normally bright laser 
fluorescence.  The caging group is photolytically cleaved upon an exposure of the wazzu molecule to ultraviolet (UV) 
light, typically, but not necessarily, from a laser.  Upon photolysis, the original dye is recovered which can be tracked 
indefinitely using ordinary laser sheet fluorescence imaging approaches (Dahm et al. 1990).  As was discussed by 
Lempert et al. (1995), the uncaged dye exhibits an extremely intense fluorescence, with the result that low 
concentrations (less than 10-6 M) are required.  As in ordinary dye visualization, the fluorescence is Stokes-shifted so 
that simple long-pass colored glass filters can be used to attenuate elastic scattering from the laser.  This produces high 
contrast images which are conducive to measurements at high Reynolds number.  In many respects, the technique is 
similar to Laser-Induced Photochemical Anemometry (LIPA), in which time lines are written into a flow using 
photochromic phosphorescent materials (Falco & Nocera 1993).   



  

 The technique capabilities for measuring velocities in high-speed flow are directly linked to PAF tracers optical 
and chemical properties.  In particular, it should be pointed out that, while there is no limit to maximum time between 
cage-breaking (tag) and interrogation (since the photochemical change is permanent), there is a minimum time dictated 
by the kinetic rate for the cage-breaking photolysis process.  The finite rate results in a time lag between the firing of 
the tagging laser and the evolution of sufficient dye in its fluorescent form to be interrogated with sufficient signal-to-
noise.  The magnitude of the signal-to-background ratio is a function of the caged dye purity, as well used as the sheet 
thickness.  This ratio needs to be adjusted by experiment (Lempert  et al. 1995). 

 
3. Concepts and definitions 

 
For a cylindrical geometry, (r,θ,z) to represent the radial, azimuthal and vertical axial directions, respectively, and 

the basic-state velocity vector
r
V v v vr z= ( , , )θ , is represented by radial, tangential and axial velocity components. 

Rayleigh (1916) showed that the necessary and sufficient condition for the existence of an inviscid ax symmetric 
instability is: 
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anywhere in the flow. Γ is the circulation defined as Γ=rVθ.  

The instability in Taylor-Couette flow is governed by the Taylor Number, Ta, defined by 
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where ν is the cinematic viscosity, Ri and Ro  are the radii of the inner and outer cylinders, respectively, Ωi and Ωo and  
are the inner and outer cylinders angular velocities. 

When the outer cylinder is fixed and the inner cylinder is rotating about its axis µ=0. This case is that one studied 
in this paper. 

The parameter that determines the establishment of the Görtler vortex instability is the Görtler number defined by 
Eq. (9). In this equation, ∞V  is the local free-stream velocity, δ is the boundary-layer thickness and r  is the local mean 
radius of curvature, defined by Eq.  (7). 
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The Görtler number is proportional to the square root of Taylor number.  Eqs. (2) and (9) establish an analogy 

between Taylor-Couette and boundary layer flow on a concave surface. Experiments in Taylor-Couette may have 
important consequences for the boundary layer control on concave surfaces. 

Most of discussions on Taylor-Couette flow have concentrated on cases with small gaps, although important 
changes occur when the gap size increases (Stuart 1986). The parameter that characterizes the gap length is the radius 
ratio, η, by Eq. (10): 
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In general, we can classify the gap size as follows: 
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The gap size studied in this paper is at the higher end of the medium gap size range (η= 0.38), which the large gap 

range starts at η = 0.33). 
Also, two somewhat distinct but interacting lines of theoretical and experimental research activity can be discerned, 

relating to long and short cylinders.  Stuart (1986) affirms that experiments in long cylinders have shown asymmetric 



 
 

 

Taylor vortices and wavy Taylor vortices traveling in the azimuthally direction. On the other hand, experiments in short 
cylinders have shown that the flow contains a secondary flow in the meridian plane due to end effects.  The ratio of the 
cylinder length to the gap, Θ , is defined by Eq. (12). 
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4. Experimental apparatus 

 
  No description will be present about Taylor-Couette apparatus used in this work and also about the optical scheme. 
Both apparatus and optical scheme used are described with detail in a paper submitted to publish in Brazilian Journal of 
Mechanical Science  

For the study the flow pattern was imaged using a CCD camera with an image capture rate of 300 images per 
minute. This CCD camera temporal resolution used, associated with a good enough spatial resolution (defined by the 
use of lens with large aperture angle, covering all light sheet on the gap area, which was in the worse cases about 
9.2x7.6 cm2), was sufficiently to evince the smaller coherent structure present in the flow. Besides, with aim to 
guarantee the repeatability of the visualize flow structure it was monitored the flow behavior in each Taylor number 
before to acquire the images in each experimental run, observing for a long time (fifteen minutes) the images of the 
flow feature on the image monitor. Thus, it is possible to affirm that the presented results were repeatable. 

 
5. Results: qualitative analysis 

 
The visualization using Particle Streak Imaging, PSI, has shown interesting characteristics of the flow from 

moderate to high Taylor number, but it was less revealing for small Taylor numbers.  The PHANTOMM technique, 
however, was more useful at small to moderate Taylor numbers.  The combination of the two techniques permitted 
information to be obtained over a very wide dynamic range. 

It was used the PHANTOMM method to elucidate some aspects of the flow structure. The general characteristics 
of the Taylor-Couette flow for small Taylor numbers are well-defined larger counter-rotating vortices. These cells are 
typical of the first kind instability (Taylor cells).  In each cell, a rotational laminar flow with a high degree of coherence 
is observed.  In this study,  the structure of the Taylor cells was observed for the smallest rotational velocity our 
apparatus could achieve (Ta = 0.21 x 105 and Re = 154). Taylor cells exhibit a very a slow counter-rotating motion that 
forms unsteady vortex pairs with their axes in the circumferential direction. 

Fig. (1) shows the flow structure for Ta=6.02x106.  In this case, no turbulence is seen, and regular cells, equally 
spaced along the cylinder axis dominate the central flow in the gap. Cells measure about 6.3 cm length and have a 
width spanning the entire gap (5.04 cm). This figure illustrates very interesting flow feature, whose the facts remarked 
with these line images constitute new flow characteristic in Taylor-Couette. It evinces the characteristic of flow 
rotational slow motion within the Taylor cell flow (there is one second of delay between successive photographs). As 
enhanced on the Figure (1), the flow motion in each Taylor cell is characterized by an inflectional point that point out a 
shift in the velocity sign axis. This inflectional point constitutes an equilibrium center that moves in the radial direction 
along the gap, when the time flows. This inflectional point motion can be observed clearly on the photographs of the 
Figure (1) (for example, the inflectional point position is closer the inner cylinder wall on the third image than that one 
showed on fifth image, which represent the flow aspect two seconds later). In the case shown by the Figure (1), The 
inflectional point dislocates in direction of the out cylinder wall, when it overtakes the gap central axial line, the profile 
velocity slope changes its sign. In the moment the inflectional point approaches of the out cylinder wall, the rotational 
sense of the Taylor cell changes and the displacement sense of the inflectional point changes too. This flow feature was 
verified for all Taylor numbers in the range that well-defined Taylor cells were remarked in this study visualization. 
However, it could be better observed on frame sequences of video records. 

By contrast with flow structure show in the Figure (1), when the Taylor numbers increase, the flow pattern in the 
gap central region contains similar cells, but with a more irregular appearance. The flow is intermittently turbulent.  The 
flow inside the Taylor cell displays the onset of another instability by the presence of smaller counter-rotating vortex 
pairs. These counter-rotating vortices are called the Görtler vortices, vortex pairs or secondary instability.  The vortex 
pairs, which appear in the flow for low Taylor number, are small and develop inside the Taylor cells and close to the 
inner cylinder wall.  For larger Taylor numbers, the flow inside the Taylor cells becomes more turbulent and the Görtler 
vortex pairs occur unsteadily and become very large.  Sometimes these vortices appeared inside the Taylor cells or 
close to the inner cylinder wall, but more commonly they occurred in the shear layer between the Taylor cells. These 
vortex pairs appear constantly in the flow and they play an important role in the transition process to turbulence. Due 
no space in the paper, nether illustration will presented to show clearly this aspect flow described. 

 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

 
Figure 1. Collage of representative PHANTOMM line images for Ta=6.02x106 (Re=2600), in the (r,z) plane. Six 
seconds of delay between successive pictures. 
 

In our experiment, small Görtler vortex pairs were observed inside the Taylor cells and near the inner cylinder wall 
when the Taylor number increases.  The smaller vortices move quickly inside the cells and the flow appears to be more 
turbulent.  The Taylor cells size changes constantly in the flow, and they oscillate in the direction of the cylinder axis. 
Nonetheless, one can clearly distinguish the Taylor cell (observing the videotape in real-time illustrates these aspects 
more clearly). 

Indeed, the explanation to be presented along the text related with the PSI technique figures  evinces an important 
purpose of the research. It was intended along the flow visualization description to show the influence of the large 
scales, as the Taylor cells, on the turbulence transition in a large Taylor number range; and to enhance also, if there is 
the presence of Taylor cells in high turbulent flow, how they force the behavior of the turbulence and how it may be 
linked to the system geometry. Nevertheless, although the flow visualization presentation evinced almost clearly these 
facts, it can be improve if it is used figures with tracing lines of the flow structure similar that ones showed in Fig. 
(6.b). The tracing lines of the flow structure presented on the Fig. (6.b) have the aim to aid in the flow visualization 
description for high Taylor numbers, at this point the flow configuration became complex and irregular, thus it was 
difficult to enhance it with a limited set of photographs, in spite of the flow configuration described in the text for high 
Taylor numbers is clearly when observing the videotape in real-time. 

 When the Taylor number increases, cells become more turbulent. Even at quite high Taylor numbers the flow is 
dominated by large Taylor cells (Ta=1.47x1010). However, cells become more irregular and the flow inside the cells 
become more turbulent when the Taylor number increases, and although the outflow (flow in the gap core) presents 
high degree of turbulence, the Taylor cells are still identifiable. For higher Taylor number, the disturbance in the flow 
increases, and as a consequence the flow becomes more homogeneous inside the Taylor cells, becoming more difficult 
to identify the cells. The Taylor cells appear to break up, and for even larger Taylor numbers the homogenization 
occurs due to the turbulence spreads across the gap and the flow structure changes its patterns. At Ta=2.02x1010, a 
toroidal vortex in helical motion develops in a thin layer on the inner cylinder wall (see bright spot on the inner cylinder 
on Figure (6.a) that can be seen clearly on videotape in real-time). One can suggest that this helical toroidal vortex 
constitutes instability of third kind. While the quality of the visualization flow, at this point up to higher Taylor 
numbers was not good enough to observe clear the flow structure, thus to explaining better the flow behavior, it is used 
to assist the interpretation of the visual images of the tracing lines.  

There is strong evidence that vortex pairs lead the flow transition to turbulence, therefore they have been subject of 
studies in several previous experiments.  In particular, Wei et al.4 observed the presence of Görtler vortex pairs at 
moderate to high Taylor number for medium gap (1.99 x 106 <  Ta < 9.1 x 107).  In their description, the Görtler vortex 
pairs form in the boundary layer close to the inner cylinder wall and then they are advected by the outflow.  Also, they 
noted that the presence of Görtler vortex pairs is an exception in some cases. These cases included the low Taylor 
number for all three gap sizes that they studied and high Taylor number for the small gap.  With a small gap, counter-
rotating vortex pairs were observed to form very infrequently at the inner cylinder wall.  Smith and Townsend (1992) 
found that, for small Taylor numbers (less than 4.7 x 108), radial velocity shows almost perfectly periodic fluctuations, 
but breaks and phase jumps become noticeable for Taylor number over 9.4 x 108.  In this case, periodicity was still 
observed, but the wave forms were far from sinusoidal, being peaked but symmetrical around the flow center, and 
asymmetric near the flow boundaries.  The oscillation coherence degree may be assessed more precisely from 
measurements of autocorrelations. Measurements by these authors had a local character, and we suggest that their 
description was related with the behavior of the Görtler vortex pairs. This explanation suggests that the appearance of 



 
 

 

Görtler vortex pairs presage the transition to turbulence in Taylor-Couette flow, and our visualization study supports 
this conclusion. 

Our study demonstrated that interplay between small and large scales present in the flow and showed the gradual 
transition to turbulence in the flow at high Taylor numbers. Taylor cells were found over a large range of Taylor 
numbers (0.21 x 105 < Ta < 6.81 x 1010) until highly turbulent flow appeared.  At low Taylor numbers, the flow in the 
cells appears to be a rotational laminar flow with a high degree of coherence.  When the Taylor number is increased, 
the aspect of the cells becomes more irregular, and the flow inside the cells becomes turbulent.  These cells have a 
strong imprint on the turbulence in Taylor-Couette flow that is linked with the system geometry and a specific time 
scale.  We have provided supporting evidence for previous suggestions that the flow transition from laminar to 
turbulent is led by the generation of Görtler vortices, which develop inside the Taylor cells close to the inner cylinder 
wall. The presence of Taylor cells even in highly turbulent flow suggests that the turbulence mechanism in this flow is 
constrained by these cells.  For example, the Taylor cells influence the location of the Görtler instability, its geometrical 
form, and its oscillation in time.  This observation appears to be new. 

Disturbances in the flow grow as Taylor number increases.  At high Taylor numbers, the flow presents more 
homogeneous turbulence close to the inner cylinder wall and in a large part of the outer flow.  Eventually, Taylor cells 
break down.  At Ta=1.47 x 1010,  the turbulence homogenization has spread across the entire gap and the flow structure 
has changed its nature.  A toroidal vortex in helical motion develops in a thin layer on the inner cylinder wall.  This 
flow pattern is similar to that of boundary layer flow in concave surfaces.  This transition has not, to our knowledge, 
been noted in previous Taylor-Couette flow studies. 
 
5.2 Quantitative Results 
 

We have applied the PHANTOMM technique to measure the instantaneous velocities in the (r,z) and (r,θ) planes. 
Images from both views were recorded at 40 different Taylor numbers in the range 0.21x105<Ta<0.11x1012 and for 
several different delays between tagging and interrogation. 

Fig. (2) shows a typical interrogated line,  overlaid with an estimate of the line center estimated using the gray scale 
intensity as a function of r. The center of intensity was found using a peak searching algorithm. For the measurements 
in the (r,z) plane, the algorithm simply located the pixel corresponding to the maximum gray scale intensity over each 
vertical “slice” of data. For the measurements in the (r,θ) plane, the center of intensity was found in two steps:  as a first 
approximation, the maximum intensity pixel in a vertical “slice” was located, as above for the (r,z) plane. Since the 
principal flow direction is along theta, a set of 30-40 pixels about each “vertical” maximum, normal to the radial 
direction, was, subsequently, evaluated.  The maximum intensity pixel of each of these sets was taken as the 
interrogated line center point as a function of r. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figura 2.  (a) Typical view of the interrogation line in the (r,θ) plane. 15 ms after tagging for Ta=5.96x107 (Re=8176) 
and (b) the corresponding fitted line position. 

 
Fig. (2) shows a typical interrogated line,  overlaid with an estimate of the line center estimated using the gray scale 

intensity as a function of r. The center of intensity was found using a peak searching algorithm. For the measurements 
in the (r,z) plane, the algorithm simply located the pixel corresponding to the maximum gray scale intensity over each 
vertical “slice” of data. For the measurements in the (r,θ) plane, the center of intensity was found in two steps:  as a first 
approximation, the maximum intensity pixel in a vertical “slice” was located, as above for the (r,z) plane. Since the 
principal flow direction is along theta, a set of 30-40 pixels about each “vertical” maximum, normal to the radial 
direction, was, subsequently, evaluated.  The maximum intensity pixel of each of these sets was taken as the 
interrogated line center point as a function of r. 



  

The calibration of the image magnification was performed external to the experimental system because of the 
difficulty in performing this in-situ.  We utilized an image of a grid placed in the same optical geometry used for the 
experiments.  In this calibration, we did not apply corrections for the distortion caused by viewing the tagged lines 
through the cylindrical surface in the (r,z) plane.  Also, we did not correct the distortion caused by the mismatch of the 
indices-of-refraction for air and water.  However, by comparing the known gap length to that, determined using the 
calibration measurements, we estimated the error to be less than 3%.  The principal effect of the cylindrical surface is to 
compress the radial scale of the image very near the outer wall.  The z-axis is not affected, except for a very small 
translation.  Positioning the camera at the same height as the tagging laser minimized this translation.  A conservative 
estimate of the absolute velocity uncertainty introduced by these effects is less than ±5% . 

Figures 3 to 4 show the dimensionless instantaneous velocities across the gap for the plane and (r,z) for several 
Taylor numbers in the range of 0.21 x 105 < Ta < 0.11 x 1012.  In each figure curves were put on the same scale in order 
to illustrate relative fluctuations in the two planes as a function of Taylor number.  In all situations, the flow exhibits 
large spatial fluctuations. 

 

 
 
Velocity profiles shown in Figs.(3) and (4) correspond to the (r,z) plane measurements. One can observe in the Fig. 

(4) that the velocity profile is characteristic of a laminar rotational flow, typical of Taylor cells with a very slow 
circulation velocity. When the Taylor number increases, the characteristic of laminar rotational flow disappears and is 
replaced by flow with larger fluctuation with irregular aspects. At all Taylor numbers, the mean velocity is zero in (r,z) 
plane. 

The mean velocity in the (r,θ) plane (no illustration will be presented) becomes less affected by the three-
dimensional characteristic of the flow as the Taylor number increases. Moreover, the outflow velocity profile evolves 
with the Taylor number, and it achieves an almost constant slope (about 0.42) when the Taylor number becomes larger 
than 5.96x107. This behavior permits the enhancement that the outflow velocity profile is led for an universal profile in 
a high Taylor number. In the same way, the outflow means velocity in the (r,z) plane evolves  with the Taylor numbers 
and it achieves a constant slope about zero . 

Almost all variation in the angular momentum occurs within the two wall boundary layers since surface stresses are 
expected to be nearly proportional to the 7/5 power of the rotational velocity, according to Smith and Townsend (1982).  
One can observe that the boundary layer in the inner cylinder wall is concentrated in a region within 0.07 of the gap 
length.  The thickness of the boundary layer shrinks when the Taylor number increases.  For larger Taylor numbers, 
this thickness is less than 0.03 of the gap length.  This boundary layer thickness on the outer cylinder wall is larger than 
that of the inner cylinder wall.  However, the flow in this outer boundary layer appears to be more disturbed, fluctuating 
more intensively close to the wall.  This fact suggests that flow in the boundary layer on the outer cylinder is more 
affected by curvature.  It must be repeated, however, that optical distortions are maximum near the outer wall, and it is, 
therefore, difficult to quantify the boundary layer thickness.  

 We have evaluated the  angular-momentum ratio defined by the following equation: 
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Figura 4. Dimensionless instantaneous velocities 
along the gap, in the plane (r,z), for Ta=0,48x1011,  
Four seconds of delay from (a) to (d). 

 
Figura 3. Dimensionless instantaneous velocities 
along the gap, in the plane (r,z), for Ta=0.21x105,  
Sixteen seconds of delay from (a) to (d). 



 
 

 

 
where, Vi is the velocity in the θ and z direction,  Vrot is the rotational velocity and Ri is the radius of the inner 
cylinder. 
The mean angular-momentum is almost constant across the gap for larger Taylor numbers.  For the measurements in 
the (r,θ) plane, the mean angular-momentum ratio is close to 0.50, when the Taylor numbers are larger than 6.02x106 
(this value is the same found by Smith and Townsend, 1982). This fact suggests that for high Taylor number the 
outflow is not affected by the curvature effect associated with the cylinder surfaces, and for this circumstance it is 
similar to boundary layer flow in channels. Nevertheless, for the measurements in the (r,z) plane, the mean angular-
momentum ratio is constant and it is zero, even when Taylor numbers are larger than 6.02x106. In the same way, the 
outflow in this plane is not affected by the cylinder surfaces curvature. 

 From the Equation 9, we can have one equation to determine the outflow velocity in the plane (r,θ), for Taylor 
numbers larger than 6.02x106, and which may approximate the outflow velocity in region of 90% of the gap. This 
equation is the following: 
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0.5           (14) 

 
 The spatial one-dimensional and one-sided spectral density function gives further information about the flow 

behavior. For example, the spectral density function of a periodic signal gives a maximum in the characteristic wave 
number of the signal.  In case the dynamic system has a quasi-periodic behavior, then the spectral density function 
presents several maxima that correspond to the wave numbers of unrelated phenomena. On the other hand, the spectral 
density function for a random signal has a continuous spectral representation over a large bandwidth of wave numbers 
that characterizes a disordered behavior. The disorder degree of a system is associated with the wave number 
bandwidth of the spectral representation. 

The spectral density function was determined for several Taylor numbers in the range 0.21x105<Ta<0.11x1012 
(Biage et al., 1996). Physically, these figures represent the energy flow as a function of the wave number. The flow 
feature characterized by these results is typically toroidal eddies with a regular  wave number (K=0.198 cm-1), that is, 
the Taylor cells, which have a  characteristic scale with the same dimension of  the gap (see also the flow visualization 
presented in Biage et al. (1996)). The spectral density function represents other maxima with significant energy 
(amplitude) when the Taylor number increases.  In reality, the flow becomes more irregular, with important 
contributions on characteristic scales less than the fundamental scale (approximately 0.198). The flow aspect showed 
by these results is almost perfectly periodic, for Taylor numbers less than 5.96x107. For Taylor number larger than this, 
the flow structure is quasi-periodic with contributions from several characteristic wavelengths. This flow structure 
persists  for  the higher Taylor numbers studied in this paper. 

The spectral density function that represents physically the flow oscillation energy as a function of the 
wavenumbers. The flow feature is characterized by toroidal eddies with regular wavenumbers. At low Taylor numbers, 
the vortices in the flow with predominance energy are toroidal eddies with a wavenumber K=0.198 cm-1, that is 
typically the Taylor cells, which have characteristic scales with the same gap dimension. However, as the Taylor 
number increases the flow pattern becomes more irregular and the spectral density function present others maxima with 
significant energy (amplitude), whose wavelengths are multiple scales with a factor two (e. g., high scales with smaller 
wavelengths have commensurately related wavelengths, whose a factor two is the ration between two successive 
maxima). In reality, when the flow feature becomes more irregular, it has important energy contributions from the small 
scales, in which their contributions can be either the same order or even larger than that one of the fundamental scale, 
depending of the Taylor number. At high Taylor number, the energies of the characteristic scales with small 
wavelengths exceed the energy the fundamental scale energy. Thus, the scales with predominant energies in the flow 
shrink their wavelengths when the Taylor number increases further. Therefore, it was performed the vortex wavelength 
measurements, taking the maxima found in the digital values of the spectral density function.  

Figure (5) is a plot of vortex wavelengths non-dimensionalized by the outer-cylinder radius versus a characteristic 
Reynolds number squared, powered 31− , where the Reynolds number is 

 
22

0i
0

R
Re















ν

Ω
= , (15) 

 
As prescribed by Barcilon & Brindley (1984), the Fig. (6) is a plot of vortex wavelengths scaled on inner-cylinder 

circumferential velocity and the kinematical viscosity of water versus the ratio ( )Ta Tacrit
−2 5 . 

On the Figs. (5) and (6), the solid squares represent the vortex wavelength measurements, as explained, obtained 
from the computed spectral density function, the open squares represent the vortex wavelengths with maximum energy 
levels and the open circles with solid line is the fitting curve that was obtained from the vortex wavelengths 



  

measurements with maximum energy levels, and finally, on the Figure 3 the open up triangle with solid line on the 
Figure 2 is the analytical results of Barcilon & Brindley (1984), defined as 

 

( ) 31
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0
Re89.31

R
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λ , (16) 

 
which were reproduced, using the small-gap approximation and the method of matched asymptotic expansions. 

It is observed on the Figure 5 that it is remarkable how well the analytical results of Barcilon & Brindley (1984) 
agree with the small scales verified in the flow.  More precisely, these authors obtained the following relation between 
Gortler wavelength and their characteristic Reynolds number: 

 

( )λ
R

Gc
0

1 3
0

1 3≈ −Re  (17) 

 
where λ is the Gortler wavelength and Gc is the critical Gortler number for the onset of the Gortler vortices.  

Thus, considering that the analytical results of Barcilon & Brindley (1984) were defined to represent the Gortler 
wavelengths as a function of the Re0, it is recommendable to consider that the smaller coherent scales verified in the 
vortex wavelength measurements of this study are the Gortler vortices. This argumentation is construed with an 
additional strong evidence that in this study the Gortler scales were verified in the Reynolds number squared range as 

( ) 92
0

7 108Re104.2 ⋅≤≤⋅ , which is almost the same Reynolds number squared range that Wei et al. (1992) verified the 

Gortler vortices; e. g., ( ) 92
0

7 101Re103 ⋅≤≤⋅ . In the Wei’s research the superior limited of the Reynolds number 

squared range is lower, however, in that study ( ) 92
0 101Re ⋅=  was the maximum value of the Reynolds number 

squared analyzed in the experiments. 
 

 

 
 
Other important fact observed on the Figure 5 is that the data representing the scales with maximum energy levels 

do not follow the -1/3 power dependence, as described by the Eq. (15), referent the analytical results of Barcilon & 
Brindley (1984). These data are described by the following fitting curve: 
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The behavior of the data corresponding to the scale wavelengths with predominance energies in the flow, which 

follow the -2/15 power dependence (Eq. 18), illustrates clearly, in a quantitative way, the strong influence of the large 
scales on the flow pattern. The scale wavelengths with predominance energies shrink their size when the Taylor number 
(it is proportional to the Reynolds number squared) increases. As described along flow visualization of the manuscript, 
at low Taylor numbers, the regular Taylor cells exhibit a slow counter-rotating motion that forms unsteady vortex pairs 
with their axes in the circumferential direction, equally spaced along the cylinder axis. By contrast, when the Taylor 
numbers increase, the flow pattern in the gap central region contains cells, but with a more irregular appearance. For 

 
Figure 6. Wavelength measurements of the vortices 
verified in the Taylor-Couette flow structure. 

 
Figure 5. Wavelength measurements of the vortices 
verified in the protted using the scaling prescribed by 
Barcilon  and Brindley (1984). 



 
 

 

larger Taylor numbers, the flow inside the Taylor cells becomes more turbulent and the Gortler vortex pairs occur 
unsteadily and become very large, as shown in the Figures 5 and 6 of the manuscript. Sometimes these vortices 
appeared inside the Taylor cells and close to the inner cylinder wall, but more commonly they occurred in the shear 
layer between the Taylor cells. The Gortler vortices move quickly inside the cells and the flow appears to be more 
turbulent. The Taylor cells' size change constantly in the flow, and they oscillate in the direction of the cylinder axis. 
There, the outflow presents a high degree of turbulence, but the Taylor cells are still identifiable. As the Taylor number 
increases farther, the disturbance in the flow increases, and as a consequence the flow becomes more homogeneous 
inside the Taylor cells. These cells assume irregular wavelengths due to the strong interaction among the cells and the 
streaky structure the inner cylinder boundary layer. 

The complex flow pattern described in the above paragraph is consistently represented by the data of the coherent 
scale wavelengths, plotted on the Fig. (5) as solid square. There, as it can be observed on the Fig. (5), these data involve 
a set of coherent scale wavelengths in the interval comprised of a spectrum, defined from the large Taylor cells up to 
the small scales as the Gortler vortices. Clearly, it is consistently that the scales with maximum energy levels are 
defined by larger scales than the Gortler vortices, also, that the coherent scale wavelengths shrink as the Taylor number 
increases. This characterizes the flow tendency to become more homogeneous, destroying the larger coherent scales. 

As suggest in Wei et al. (1992), because of the Gortler vortices were observed to form at the inner cylinder wall, 
thus, the scaling proposed by Barcilon & Brindley (1994), Eq. 1, was not sufficiently general to include results from 
larger gaps. Therefore, it is presented the Figure 2 that is a plot of vortex wavelengths scaled on inner-cylinder 
circunferential velocity and the kinematic viscosity of water versus the ratio ( ) 52

critTaTa − . The scale wavelength 
measurements included in this figure are the same data included in the Figure 5. Thus, data of the vortex wavelengths 
with maximum energy levels in this scaling in interesting way gives a fitting curve as 
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following the -2/5 power dependence, close to the -1/3 dependence. 
Therefore, one could remark that flow visualization presentation and quantitative scale wavelength measurements 

suggest strongly that the large scales, as the Taylor cells, influence on the turbulence transition in a large Taylor 
number range. It is also important to say that it was followed in this study a different procedure to obtained the coherent 
scale wavelengths present in the flow. In this study, as described above, the coherent scale wavelengths were obtained 
from the computed spectral density function, what one can regard as a precise procedure to obtain the wavelengths of 
the coherent scales. However, this is possible only using a technique that allows instantaneous spatial measurements, as 
the PHANTOMM technique.  For example, in Wei et al. (1992), they obtained the Gortler wavelengths measuring the 
core-to-core separation distance between two counter-rotating vortices in a Gortler vortex pair and by multiplying the 
core-to-core measurements by two. The measurements were done with the aid of the slow-motion of the video recorder, 
in this case,  when the Gortler vortex was found the video was then frozen and the core-to-core measurements were 
made. This is a hard procedure to measure the Gortler wavelength and it is passive to introduce significant errors in the 
measurements. 
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