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Abstract. In this article a formal statistical approach for the treatment of turbulence generated by large eddy
computer simulations is presented. A model for compressible flows at large Reynolds numbers and low Mach
numbers is used for simulating a backward facing step air flow. A scaling analysis has clearly shown that the
internal energy transport due to turbulent velocity fluctuations and the work done by the pressure field are
the relevant mechanisms needed to modeling subgrid-scale flows. From the numerical simulations, the velocity
temporal series collected for ten different positions in the flow domain, are statistically treated. The statistical
approach is based on probability averages of the flow quantities evaluated over several realizations of the simulated
flow. In order to define these realizations a long-time record of a turbulent velocity signal is cut up into pieces of
length T, where T is much longer than the characteristic relazation time occurring in the flow. These pieces are
then treated as observations of different responses in an ensemble of similarly simulated flows. The underlying
assumption here is the so-called ergodic hypothesis. The ergodic hypothesis is verified, and it is shown that in
some regions of the flow the standard statistical approach of time averaging is not appropriated to characterize
the turbulence. The ergodic deviations are compared with theoretical predictions given by scaling arguments and
a good agreement is observed. Results for velocity signals, auto-correlation functions, probability distributions,
as well as skewness and flatness coefficients are presented. The statistical approach explored in this work has
been used as a potential tool for estimating computer simulation time scale in order to produce flow recordings
with sufficient information for a long time statistical description of turbulent velocity fluctuations.
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1. Introduction

Large-eddy simulation (LES) is an important technique in the study of turbulent flows. In LES the gov-
erning equations are spatial averaged allowing the large-scale motion to be solved. In other hand, from this
averaging process, the so-called subgrid terms remains and constitutive models are needed to its calculations
(Sagaut, 1988). LES requires less computational effort than direct numerical simulations (DNS), which at-
tempts to solve all scales present in the turbulent flow (Vreman, 1995). Other important characteristic is the
unsteady feature of LES. This implies that a statistical treatment is needed in order to permit an accurated
characterization of the simulated turbulent flow. The purpose of this paper is to perform a statistical treat-
ment of a flow resulting from large-eddy simulations. The simulation method is not focused, but a study of the
magnitude order of the subgrid terms are performed and a statistical treatment that characterizes the memory
time scales and evaluates the ergodicity of the investigated turbulent flow is presented and applied.

In a general case, a formal statistical treatment is based on probability averages evaluated over an ensemble
of several realization of the same process, which defines a stochastic set. From ergodic process, the probability
average can be replaced by a temporal average, and the statistical analysis is more feasible. Nevertheless, when
the turbulence is dominated by large structures, typically strongly correlated, the ergodic hypothesis cannot
be assumed and only a probability analysis may correctly describe the statistical features of the flow (Ifeachor,
1993). In a LES context, the total time of simulation needs to be long enough to ensure the ergodicity of the
process or to allow a probability analysis. In a non-homogeneous flow, this total time may be different for
each region in the domain.

In this work, a large-eddy simulation model in the limit of high Reynolds number and low Mach number
compressible flows is presented. A scale analysis is performed in order to evaluate the relative importance
of the subgrid terms when the flow obeys the Res, > 1 and M., < 1 limit. A scaling analysis is also used
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to the estimation of the error e due to the ergodicity hypothesis. A turbulent flow over a backward-facing
step is simulated and a correlation analysis is made in order to quantify the memory time scales for ten
different position on the domain. Based on this correlation time a stochastic set is build and a probability
analysis is done. Its results are confronted with the results of a temporal analysis and the differences found
are used to validate the € parameter predicted by the scaling. In addition, turbulent intensities, skewness and
flatness factors are presented. All of this statistical quantities are calculated using the probability approach
and a confidence interval for its values are obtained. This paper is organized as follows. The mathematical
approach, specifying the averaging process of the governing equations, including the scale analysis for subgrid
terms and constitutive relations for the remaining, is found in §2 . Statistical formulation is presented in §3.
The simulation setup is shown is §4. Results are the subject of §5. A summarization of the main conclusions
of the work is presented in §6.

2. Mathematical approach

2.1. Averaging governing equations

Let a generic flow property that can be a function of the space and time ¢(x,t). The spatial average ¢(x, t)
is defined as,

d(x,t) = / o(r,t)G(x —r)dr, (1)
Q
where x is the position vector and r is the displacement vector regarding to x. The function G(x —r) is a
filter function G : f® — [0, 1] and satisfies
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where D is the flow domain. This averaging process still regards the linearity and the commutability with the
spatial and temporal differentiations
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where s = x,t. The properties 3 are derived from the continuity of ¢ and the properties of the filter func-

tion presented in 2 (Sobral & Cunha, 2002). A density weighted average process is more appropriated for
compressible models. This process corresponds to the well known Favre filtering (Favre, 1983), defined as

p=—, (4)

where p is the density of the fluid. Note that according Eq.(4), p¢ = ﬁqz. This identity is largely applied for
the averaging of the governing equations. In 5 and 6 it is shown the averaged mass and momentum balance
equations:
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Here, u; are the components of the velocity vector u, p is the mechanical pressure, p the dynamical viscosity
coefficient and D;; are the components of the strain rate tensor D. Since velocity co-variance is defined as
0w = Ujl; — Uiy, the averaged product of velocities that appears in Eq.(6) can be written as w;u; = w;uj + 0y,.
If we use that ?ij ~ §ij, in terms of scaling, the averaged momentum equation becomes

o ,__ o ... 0p 3} ~ 0 .
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Now, defining the tensor ¥;; = —po,, a modified Cauchy equation can be written as follows
Du ~
p—=V_-T, 9
P 9)
where the new constitutive equation for the stress tensor is

T = —pl + 24 [15 - %(V : G)I} +3. (10)

Where I is the identity tensor. In this formulation, 3 represents the momentum transport, by velocities
fluctuations, in the subgrid scales. The same averaging process is applied to the energy equation leading to
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where g; are the components of the heat flux vector q, given by q = —kVT, and ey is the total energy given

by er = e+ pu-u/2, where e is the internal energy. The terms on the right hand side identified by IT and 111
represents the work done by the shear stress in the subgrid scale, whereas term I is the convective transport
of total energy and can be decomposed into new contributions expressed bellow,

Pliger — i;er) = plige — W;€) + 5 (i — ;i) (12)
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Using the equation of state for perfect gases, terms I'1 and IV are directly related by the following expression:
pu; — pu; = (y — 1)(pew; — pet;) = (v — 1)p(eu; — €u;). (13)

In Eq.(13), v = ¢p/cy, where ¢, and ¢, are the specific heat at constant pressure and volume, respectively .
Adding terms IT and IV it is defined the vector @); that represents the transport of internal energy in the
subgrid scales, namely

Qj =p (eu; — euy). (14)

Terms I11, IV and the vector ), resulting from averaging process of energy equation, needs to be modeleted
in a general case.

2.2. A scaling analysis

Before to propose a model to the subgrid terms, some scaling analysis can be performed in order to evaluate
the relative importance of each subgrid mechanism. First, note that the vector (); can be expressed in terms
of temperature diffusion in the subgrid scale

Q; = (€; — ;) = pey (Tu; — T ). (15)

This diffusion mechanism is promoted by the velocity fluctuation transport in this scale. In such case, a
typical scale of these velocity fluctuations is given by U* = v/u’ - u/, where u’ = u — u. From a perfect gas,
the temperature can be related to sound speed c in the form T = ¢2/yR. Then, a typical scale for the vector
Q; is given by

pe,U*c?
~ —.

Qj R (16)

Where R is the gas constant given by Carnot formula like R = ¢, — ¢, and L is a typical lenght scale of the
turbulent flow. Similarity to the @; we have
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where L is a characteristic length scale of the large eddies. Comparing the magnitude of the term I1I and V'
with the vector @); and supposing a high Reynolds number and a low Mach number flow, one obtains:
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Where Reo, = pLU/u, M, = U/c and U is a typical velocity scale of the non disturbed flow. By this way, it
is clear that in low Mach and high Reynolds numbers, the work done by shear stress and the kinetic energy
transport done by subgrid eddies are small when comparing then with the transport of internal energy ;. The
scalings are supported by Knight et al.(1998), who haves evaluated the subgrid terms remained from energy
equation using direct numerical simulation. In conclusion, the only two terms to be modeleted under the limit
Reo > 1 and My, < 1 in these situations are the subgrid stress tensor ¥;; and the subgrid internal energy
transport vector @;.

2.3. Constitutive relations for the remaining subgrid terms

The model used to the evaluation of the subgrid stress tensor is the well-known Smagorinsky model
(Smagorinsky, 1963). It suggests a constitutive relation for X tensor in the form

= = 2,D, (21)

Where the coefficient i is a turbulent viscosity is calculated under conditions of inertial equilibrium sub-range
of turbulence (Landau, 1995) namely

pe = p(Cs\)’ID]|. (22)

Here ||D|| is the norm of strain rate tensor defined like [|D|| = (2D : D)¥2. The filter width X is set equal
to 2h, where h is the grid spacing. It indicates that the smallest eddies are represented by two grid points.
The factor Cs are known as Smagorinsky constant. Several values have been proposed for this constant and
its value varies in 0.1 — 0.2 range (Lilly, 1987; Deardorff, 1970). In the present work is used Cs = 0.20, as
suggested by Deardorff (1970). Thus, the model for the subgrid-stress tensor takes the form

¥ = 25(CsA)?||D||D. (23)

The subgrid internal energy transport tensor (); is related to the diffusion of temperature in the subgrid
scales due to velocities fluctuations and may be modelated as being a diffusive heat transport given by a
modified Fourier law in the form
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Qi =g (24
The turbulent heat conductivity k; may be written in terms of a turbulent Prandtl number, Pr; (Lesier, 1993)
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For the edge of a turbulent boundary layer Pr; = 0.6 (Fulachier & Dumas, 1976) and this value has been used
in the simulations. The set of governing equation can also be non-dimensionalized by using a characteristic
length L and the properties of the non disturbed flow. From this point through all over work we will omit any
superscript notation and assume that all properties are dimensionless averaged quantities. The final model
to be simulated is given by the continuity principle, written in the Eq.(5), and the momentum and energy
averaged equations written as
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where Pro, are the Prandtl number of non disturbed flow, given by Pro, = ¢ppico/k-
3. Statistical formulation

The main goal of this work is to treat statistically turbulent flows from numerical simulations. In this
context, the flow is considered a stochastic process given by u = u(t, ), where a = 1..N are the realizations
of the process (see Fig.(1)). The randomic function u(t,, @), for a fixed time ¢t = t,, may be any flow property
like pressure or velocity fluctuations. A temporal average u(a) of a realization of the process is given by

T—o0

T
u(a) = lim %/0 u(t, a)dt. (28)

In the other hand, if each realization has the same probability to occur, a statistical (or probability) average
is defined as being

N

. 1

(u(®) = Jim <" u(t,a) (29)
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A fluctuation about the probability average, is defined as u/'(t) = u(t) — (u). Using this definition, the velocity

fluctuation correlation function of the process is given by

(o (0 (¢ + 7))
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Figure 1: Stochastic process u(t,«). Each temporal series is a realization of the process.

In the case which the probability average and the correlation function do not vary with time we simply write
(u) and R(7) and the process is said statistically stationary. A process which the temporal and the probability
averages do not differ is said to be an ergodic process. In order to evaluate the ergodicity of a stochastic
process, we take the variance between the two averages. Also using the definition of correlation function given
in Eq.( 30) is possible to shown that

(1) = ((w— (u)*) = @ / ' (1- %) R(r)ar. (31)

Equation (31) is an important result that relates the correlation function with the variance 0. Note that if
T — oo leads to 02 — 0, that implies the ergodicity condition. Usually, in a process in which the correlation
function decays rapidly for a relatively short time 7', the ergodic condition is verified. In particular, in the
case of a homogenous and isotropic turbulence, the correlation function is closely to one of a random walk
process, say R(T) ~ e~ 7/© where © is a relaxation time associated to an interval in which the events are
weakly correlated. The value of © can be estimated using the integral scale L/U,, . If we define the error due
to non-ergodicity of the process as

€=0/(u) (32)



and use the exponential decay for the correlation function, the integral in the Eq.(31) may be performed and
gives an estimation of €, namely

2 2
2 20200 (33)
T (u)? T

where I = \/(u’2)/({u) is the turbulent intensity of the flow. Equation (33) gives also an estimation of the long
time 7" necessary to hold the ergodicity of the process. In this case, the time average approach is sufficient
to describe statistically the ergodic process. In this work, the result expressed in the Eq.(33) is tested by a
direct calculation of the variance o2.In order to build a stochastic process from the numerical simulations a
large temporal series is dropped into smaller series corresponding now to the realizations of the process (see
Fig.(2)). The short temporal series are independent events of the turbulent flow, since the time scale involved
are long enough for the complete decaying of the correlation function. It means that a series has no memory
on the events that occur in the preceding time. This fragmentation procedure is equivalent to starts a new
simulation from a different initial condition which has no correlation with the first one.

ut,l) ut2) ut3) utd) ut.>)

Figure 2: Fragmentation of the simulated turbulent signal in several independent realizations.

Another important quantity of the flow memory is the Taylor time scale. Using a Taylor series to expand
u/(t + 7) in a neighborhood of ¢ and supposing a stationary statistical process, the correlation function based
on a time average may be written as

2 7\ 2
oy , o ™ 1 [(Ju 3
R(r) =u'(t)u OH_TVU__I_EE(E) + O(1°), (34)
or
72 1 1 [ou'\?
R(T) ~1-— )\—3-7 where )\—72— = @ <E) . (35)

From Eq.(35) it is clear that A, is the short time scale of the correlation process. Using a second degree
polynomial function in order to fit the correlation function for short times it is possible to estimate the ;.
Typically, the Taylor scale is larger than a dissipative time scale, but is not related to the integral scale observed
in the macroscopic flow, i.e. \2/v < A\, < L/Us, where )\g is the Kolmogorov length scale. Effectively, the
Taylor scale is a memory characteristic time of the flow. If ¢ is the present time, we can say that the flow has
an intense dependence of the events that occur in the interval (¢ — A, t).

4. Simulation setup

The turbulent flow over a bi-dimensional backward facing-step is simulated in this work. Figure (3) shows
the flow domain. The inflow velocity profile imposed is uniform. The Reynolds number based on the step
height is Rey = 38000, (Re > 1) and the Mach number is M, = 0.03, (M, < 1). The numerical method
used to discretize the filtered governing equation is the MacCormack method written to a finite volume
formulation (Hirsch, 1990). This procedure leads to a second order precision discretization, in the space and
time differentiations. The initial transients, corresponding to 10° iterations, i.e. 2,3s of physical time are
ignored. A convective time scale of the flow i.e. t. ~ H/U, was about 5 x 1073 the longest simulation time,
i.e. T = 21s . This wide interval is necessary because the velocity signal is fragmented into smallest temporal
series to define the stochastic set. It will be shown that in some regions of the simulated flow even this long
time interval is not appropriated for a statistical description of the flow based on temporal series. Figure (3)
shows the position of the points in the flow and the streamlines of the mean turbulent field.
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Figure 3: Flow domain and position of velocities probes in the flow. Equally spaced probes from x/H=1.5
(probe 1) to x/H=15.0 (probe 10). The height of all probes is y/H=0.5. H = 5.08cm, U = 11.63m/s

5. Results

The first step in the statistical treatment is to define the stochastic set in the probes locations. The
temporal series for each probe must be fragmented into smaller ones with lengths are sufficiently large to
define an independent realization. In order to evaluate this interval, a no-memory time scale are estimated
by the interval in which the correlation function is already null. In this context, the correlation function is
evaluated by an temporal averages approach. Figure (4) shows the normalized velocity fluctuation correlation
function behavior for probes in two different dimensionless positions x/H.
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Figure 4: Normalized velocity fluctuation correlation function, R(7) = u'(t + 7)u’(t)/u’?, for probes 4 and 8.

From the graphs in Fig.(4), it can be observed that there is a remarkable difference between the memory scales
for the probes 4 and 8. In probe 4, the memory time scale has an order of magnitude of 500 7U,,/H, since
in probe 8 this time scale has order 10 7U,,/H. The temporal series in the probe positions are divided into
fragments in which it is possible to consider the process non correlated. Table (1) shows the length of this
fragments OUy/H, and the number of fragments (realizations) for each probe. By this way, a probability
analysis have been carried out. All statistical quantity has an error associated that defines a confidence interval.
Figure (5) shows the average velocity fluctuations in the probes 4 and 8. It is seen temporal oscillations in
the value of the mean velocity fluctuation, that is more intense in the probe 4. This oscillation is a direct
consequence of the difference between temporal and probability averages, what is related to a non-ergodic
behavior. A variance between the averages processes gives a direct measure of the error ¢, defined in the
Eq.(32). This error can also be estimated by the relation proposed in the Eq.(33). Table (2) shows the
predicted and the calculated error for each probe in the turbulence. The purpose of relation 33 is to give an
estimation of the order of magnitude of the error introduced when the probability analysis is replaced by a
temporal analysis. The results presented in Tab.(2) shows a very good agreement between the calculations.
By this way, Eq.(33) can be used in order to estimate the appropriated long time T needed to a temporal
analysis promotes a precise statistical description of the turbulent flow. In the case of non steady numerical
simulations, it also possible from our approach to estimate the total time of simulation required for a correct
statistical characterization of the flow.

In the case of probes 4 and 5, an exponential decay does not fit the decaying behavior of the normalized
correlation function. It indicates that the turbulence in this region has a quite different behavior of a random
walk process. The dispersion process of momentum transport by velocity fluctuations seems to characterize an
anomalous diffusion. In that case, the integral in the Eq.(31) is evaluated numerically. The probe 4 shows a
strong non-ergodic behavior, suggesting that in this region a temporal analysis cannot be used to describe the



Table 1: No memory time and number of realizations for each probe

Probe | ©U,/H | Number of realizations
12,3 100 40
15 500 9
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Figure 5: Averaged velocity fluctuation signal in the probes 4 and 8.

Table 2: Comparison between e predicted by relation 33 and directly evaluated from numerical simulation
data using the variance between the temporal and probability averages.

Probe | «/H | Directly evaluated error | Predicted error
1 1,5 16,3 % 20 %
2 3,0 12,1 % 20 %
3 4,5 13,8 % 20 %
4 6,0 4975 % 3400 %
5 7,5 24,5 % 13 %
6 9,0 9,6 % 10 %
7 10,5 2,5 % 3 %
8 12,0 32 % 3 %
9 13,5 3,5 % 3 %
10 15,0 32 % 3 %

local turbulence. It is possible to infer that all probes inserted into the recirculation bubble shown in Fig.(3)
presents a significant deviation from the ergodic condition. Consequently, the flow in this regions persist
strongly correlated for a long time as shown in Tab.(1). It means that large turbulent structures dominate
the flow in the recirculation bubble. In probes 7 to 10, in the other hand, the turbulence is characterized by
structures of small scales with short memory intervals and behaviors closer to randomic motions. In this case,
a temporal analysis describes precisely the flow. The correlation functions for probes 4 and 8 are shown in
Fig.(6). From this plots, it is possible to evaluate the memory level of the process. In probes 4 and 5 the
correlation function decays very slowly with respect to the other ones. Their shapes are also different and an
exponential or parabolic fit are not appropriated. For the all other probes, an exponential fit can be used for
determining the no-memory intervals.

The statistical distribution of the process is shown in Fig.(7). A non-gaussian distribution is clear in probe
4, whereas in the probe 8, the behavior of the probability density function is closer to the normal distribution.
The behavior of the statistical distribution are quantified by the skewness and flatness factors, defined as
o = ())& and k = (u'*)/¢*, where €2 = (u/?), respectively. These factors and the turbulent intensities
for each probe are listed in Tab.(3). A normal statistical process has ¢ = 0.0 and £ = 3.0. It is possible to
infer that all process display some non-gaussian behavior. The turbulent intensity at probe 4 has the order
of 2 x 10*%, whereas between the others the grater value of this parameter has the order of 1 x 10? (see
probe 1, Tab.(3)). That fact strongly contributes to the non-ergodicity of probe 4. The interval of confidence
represented by the error bars in the plots shown in Fig.(7) and by the associated errors to the quantities in
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Figure 6: Normalized velocity fluctuations correlation function for the probes 4 and 8. Attempt to different
time scales used in the plots. In probe 8 it is possible to fit a second degree polynomial function and estimate
the Taylor time scale as A, ~ 2 dimensionless time unities.
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Figure 7: Probability density function for probes 4 and 8. The full line shows the corresponding gaussian
process.

Table 3: Turbulent intensities, skewness and flatness factors for each probe.

Probe | /H | Turbulence intensity %) K
1 1,5 113+38 % -0,3+0,6 | 2,7+£0,8
2 3,0 77T +26 % —-0,2+0,5 | 2,7+0,5
3 4,5 82+ 16 % 0,2+0,3 | 2,7+0,5
4 6,0 | (2,1£0,4)x10*% | 0,5+0,3 |2,6+0,6
5 7,5 88+ 16 % 0,0£0,3 |2,3+0,3
6 9,0 43+6 % —-0,3+£0,3 | 2,54+0,2
7 10,5 37T+4 % -0,5+0,4 | 2,9+£0,7
8 12,0 3T+4 % —-0,2+0,5 | 2,94+0,5
9 13,5 39+3% 0,0£0,3 | 2,8+0,4
10 15,0 41+3 % 0,0+0,2 | 2,7+0,4

Tab.(3) are relatively large. It suggest that for a better characterization of these parameters more realizations
are required, consequently it demands more computational effort in order to simulate larger time intervals.

6. Conclusion

In this article a formal statistical approach for the treatment of turbulence generated by large eddy computer
simulations has been presented. A scaling analysis has been shown that the only two significant subgrid terms
in the averaged energy equation are the internal energy transport, due to turbulent velocity fluctuation, and
the work done by the pressure field in the subgrid scale. A large-eddy simulation of the turbulent air flow
over a backward-facing step has been realized. From the numerical simulations, ten different points in the
flow domain have been statistically treated using a probability approach. The realizations of the statistical
ensemble was defined by the cut up of a long-time velocity record into pieces of a length much longer than the



characteristic relaxation time. For the definition of this no-memory time scale an analysis of the correlation
function has been made. The ergodicity of the turbulence was investigated. The deviations of this condition
was compared with theoretical predictions given by scaling arguments and a good agreement was observed.
It suggests that the error due to ergodicity hypotheses may be used as a tool to predict the total time of
simulation required for a well statistical characterization of the flow. Probability functions, skewness and
flatness coefficients have been shown a deviation of a gaussian behavior in all analyzed positions.
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