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Abstract. A transonic aerodynamic influence coefficients approach is presented to improve the doublet-lattice method to take into
account the non-linear behavior characteristic of the transonic flow.  The methodology is based on corrections of the linear
aerodynamic influence coefficients matrix for a given reduced frequency and Mach number through the post multiplication by a
weighting matrix. The simulated lifting surface is put to move rigidly around its span axis at the desired reduced frequency.
Unsteady pressure distributions are computed by finite-difference Navier-Stokes simulation of the flow around lifting surface for the
same above mentioned parameters. Based on comparisons of the linear obtained unsteady pressure and the corresponding non
linear ones, the weighting matrix can be calculated solving a linear equations system. Then a conventional aeroelastic analysis is
performed with the corrected doublet lattice method to take into account the transonic dynamic behavior of these flow regime.  
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1. Introduction

The aeroelastic behavior of an aircraft is typically more critical in the transonic flight regime. The transonic “dip”
phenomenon is due to the increase of the quasi-steady lift curve slope and the sudden variation downstream of the
center of pressure position (Mabey, 1989; Landahl, 1951). Most modern aircraft fly under these conditions and methods
for analyzing the aeroelastic stability are usually based on CFD computations, which are computationally expensive
and, thus, inadequate for industrial development (Bennet, 1998).

Most flutter computations use commercial finite-element codes with aeroelastic modeling capability such as
NASTRANTM. These codes, however, are usually based on linear aerodynamic methods and, thus, limited to subsonic
or supersonic analysis. In recent years there have been a number of attempts at solving the transonic aeroelastic problem
using mixed procedures based on corrections of the linear unsteady aerodynamic flow by the introduction of correction
factors to modify the aerodynamic influence coefficients (Bergh and Zwaan, 1966; Giesing et all., 1976; Houwink et
al., 1982; McCain, 1985; Zwaan, 1985; Pitt and Goodman, 1987; Suciu et al., 1990;  Liu et al., 1988; Baker et al.,
1998;  Silva and Mello, 1999; Chen et al., 2000). Bergh and Zwaan (1966) present a procedure to obtain the general
unsteady lift distribution based on measurements of unsteady pressures associated to a single mode of vibration by the
use of correction factors which multiply the aerodynamic influence coefficient matrix (AIC). Their results show some
insensitivity of the correction factors to the reduced frequency, for the case of incompressible flows, and when the
experimental pressure distribution is reasonably described by the theory. Giesing, Kalman and Rodden (1976)
developed some procedures to correct the subsonic lifting surface theory based also on experimental results. They use
pre- and post-multiplication of the AIC matrix by weighting factors to match the experimental pressure results. Their
work was principally motivated by the requirement of a safe prediction of the control surface flutter, usually
underestimated by the potential theory due to boundary layer thickness effects which change the effective downwash.

In the above mentioned work, the correction factor technique was applied successfully for subsonic cases.
However, near the transonic flight regime, nonlinear effects are important to be considered. As shown by Ashley
(1980), the shock wave movement and strength usually destabilize the single-degree-of-freedom flutter, and affects
profoundly the flexure-torsion flutter. In this way, it is necessary to pay special attention to the flutter mechanism in
these circumstances.

In the work of Dowell, Bland and Williams (1983) some studies in the linear behavior of the nonlinear unsteady
transonic flow were made in order to identify the range of parameters, such as phase angle and shock strength, related to
reduced frequency and angle of attack, over which the linear behavior occurs. The objective in this case is to understand
the limits of linear behavior for aeroelastic applications, where most analyses apply linear equations and the motions are
small. Some conclusions arise such as, the linearity of shock wave motion with respect to a small angle of attack
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change, which is the case of aeroelastic applications, and the importance of an accurate mean flow calculation to take
into account the correct shock wave position and strength.

As long as the applications of interest are within the region for which the linear behavior of unsteady transonic
flows can be considered, the correction factor techniques applied in the modification of unsteady potential flows are
adequate tools for aeroelastic engineering applications. The papers by Houwink, Kraan and Zwaan (1982; 1985),
McCain (1985), Pitt and Goodman (1987), for example, use correction factor techniques in the calculation of unsteady
transonic flows. Other methods based on corrections of the linear AIC matrix include the Transonic Equivalent Strip
method (TES) (Liu et al., 1988), used in conjunction with a modal AIC approach (Chen et al., 2000), and the correction
procedure of Baker, Yuan and Goggin (1998).

The present work is based on the method proposed by Pitt and Goodman (1987), who developed modifications of
the doublet-lattice influence coefficients by the post-multiplication of the AIC matrix using results from a transonic
small disturbance (TSD) code. That method was capable of simulating the transonic dip phenomenon with small
differences with respect to wind tunnel data. Post-multiplication allows modifying both the real and imaginary parts of
the downwash, thus changing the pressures and phase angles (McCain, 1985). Some discrepancies were found and
attributed by the authors to viscous effects. Indeed, viscous effects alter the strength and location of shock waves over
the wing surface, which in turn, may have a significant effect on the flutter computations. Post-multiplication typically
worsened the phase angles and thus, the aeroelastic stability .

In order to take viscous effects into account and obtain a more accurate mean flow prediction, the present method
uses results from viscous simulations (Reynolds-averaged Navier-Stokes equations) to modify the doublet-lattice
influence coefficients. In previous works (Silva and Mello, 1999), aerodynamic coefficients were corrected based on
rigid wing pitch simulations, or modal displacements (Silva, Mello and Azevedo, 2001). The present work introduces a
modification of the latter work, now considering the unsteady pressure coefficients for a given reduced frequency of a
wing moving rigidly in pitch motion. Finite-difference Navier-Stokes simulations are performed around a lifting
surface, which is deformed according to the pitch mode shape. Unsteady pressure differentials are obtained from these
simulations and used to obtain correction factors to the doublet-lattice aerodynamic coefficients. The corrected
coefficients are then used for aeroelastic analysis, as a post-multiplying matrix of the AIC matrix.

2. Aerodynamic Models

Aeroelastic analyses are performed for the standard aeroelastic configuration AGARD Wing 445.6. The structural
properties for the AGARD wing were obtained from Yates (1988). The transonic aerodynamic approximation employs
a mixed formulation, which uses pressure coefficients obtained from a nonlinear aerodynamic model based on a
computational fluid dynamics (CFD) formulation. The linear steady pressure coefficient distribution, obtained by the
doublet lattice method (DLM) (Albano and Rodden, 1969), is then corrected considering the non linear baseline
pressure distribution.

2.1. Linear Model

The equations of motion can be written in a non-homogeneous form by the inclusion of the aerodynamic loading
terms which are also dependent of the state variables of the structure:
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where u is the physical displacement vector, u(x,y,z), M and  K are the mass and stiffness matrices respectively, and F is
the aerodynamic load vector.

The aerodynamic model for the right hand side of Eq. (1) has been based on a standard version of the doublet lattice
method (DLM) (Albano and Rodden, 1969). All the lifting surfaces of the aircraft have been discretized in terms of
interfering panels which contain singular solutions of the unsteady acceleration potential equation for a given value of
reduced frequency. These solutions are based on the Küssner relation between the acceleration potential (pressure) and
the normalwash on two distinct points. The individual solution of each panel, as well as the interference of one panel
onto others, can be represented by an algebraic form as
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 where [ ]AIC  is the aerodynamic influence coefficient matrix, w the induced downwash, U∞ the free-stream flow speed,
and q∞ the associated dynamic pressure. Equation (2) relates the pressure coefficient to the non-dimensional downwash
on all surface panels.

For the determination of the pressure coefficient vector in Eq. (2) it is necessary to know the induced non-
dimensional downwash, which may be regarded as an effective angle of attack. From the boundary conditions for small
perturbations, the relationship between the normalwash and the solid boundary displacement is given by
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In aeroelastic analysis it is usually more convenient to employ a modal representation of the aereolastic model.
Hence, the equations of motion can be rewritten as
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and Eq. (3) can be written as
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since { } [ ]{ }z = Φ η  and { } [ ] { }F FT= Φ , where [ ]Φ  is the matrix containing the structural mode shapes.

In the right hand side of Eq. (5) a substantial derivative is applied to the modal displacement vector {η}. In matrix
form, the substantial derivative is denoted by D. The aerodynamic loading vector, F, may be expressed by Eq. (2) with
the multiplication of the pressures by an integration matrix S, which is constructed from the panel elements geometry.
The normalwash vector can be substituted by Eq. (5), closing the right hand side of Eq. (4) as a function of the
generalized coordinates of the system.
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2.2. Non-Linear Model

A numerical procedure for solving the Reynolds-averaged Navier-Stokes equations (RANS) is used to obtain viscous
non-linear solutions so that correction factors could be developed. The numerical method employs an implementation of
Roe’s flux difference splitting (FDS) method (Roe, 1981; and Vinokur, 1988), which is capable of good shock
resolution and, thus, is considered adequate in representing shock strength and location effects. The Navier-Stokes
solver used in the present work is a modified version of a code developed by Sankar and Kwon (1990). This modified
code is used to obtain the non-linear pressure coefficient (

pC ) distributions over the wing surface

2.3 The Correction Procedure

The method used here to obtain the correction factors is based on Eq. (2), which relates the theoretical surface
pressure coefficients to the downwash and it is rewritten as
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where { }w  is the dimensionless downwash or the effective angle of attack. From the CFD computations, or
experimental data, it is possible to obtain the nonlinear pressure coefficient differential between lower and upper
surfaces of the wing which can be written as ∆C C Cp p

l
p
u= − . In the DLM, the lifting forces at each panel are

concentrated on the ¼ element chord, at element midspan. Therefore, the CFD computed 
pC∆ ’s are linearly

interpolated to these locations on the wing surface.
Considering a steady state situation, Eq. (7) applies and the downwash vector may be expressed as an angle of

attack, as shown below.  When one rewrites Eq. (5) in the frequency domain, it is possible to obtain
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where k b U= ∞ω is the reduced frequency. In matrix form, Eq. (8) becomes
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The [ ]RD  and [ ]ID  matrices are the real and imaginary part of the substantial derivative matrix [ ]D which relates the
downwash to the physical displacement vector. This downwash may be regarded as an unsteady perturbation in angle of
attack, for a given reduced frequency. Here, for the rigid pitch motions the choice is an amplitude of ∆α=1.5o in this
angle. From the unsteady pressures  acquired, a Fourier transformation is used to obtain the frequency-domain
components for both lower and upper surfaces as follows:
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The discrete transformation is
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Thus, the complex ( )kC D
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Considering the non-dimensionalization of the Navier-Stokes formulation, the non-dimensional time is given as
cta∞=τ . The pressure differences of Eq. (14) need to be scaled by the reduced frequency, k, the Mach number, M,

the dimensionless time step ∆τ and the amplitude of the oscillation ∆α. After the pressure difference, C
pC∆ , is

computed, it is possible to determine correction factors which satisfy the relation
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It is interesting to note that the CF vector is a downwash vector related to a disturbance pressure coefficient
differential. On the other hand, the AIC matrix relates pressure coefficients to unit displacements (downwash). Then, it
is necessary to scale the CF quantities by the complex displacement of each panel given by the Eq. (9). This is
performed by the division of each coefficient of CF, which is associated to a known panel, by the complex displacement
of the panel, for the same reduced frequency which generates the unsteady pressure coefficients. In this way, it is
possible to rewrite Eq. (7) as
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Here, WT is a diagonal weighting matrix which affects a change in the downwash vector to take into account the
transonic nonlinear effects. The diagonal elements are the scaled quantities of the vector of correction factors CF .The
introduction of the weighting matrix in NASTRANTM is done by the post-multiplication of the AIC matrix internally in
the aeroelastic solver. Hence, the resulting right-hand side of the aeroelastic equations can be written as
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3. Results

The test  case considered here is known as the  AGARD wing 445.6 weakened (no. 3). Known as a standard
aeroelastic configuration, the AGARD wing is discretized by the doublet lattice method as an isolated wing in different
flow conditions. The aerodynamic model is comprised of 240 panels (Figure 1). The test conditions are the same as in
Lee-Rausch and Batina (1993)  and  Yates (1988), which present numerical and experimental results, respectively. The
model under study is described in Yates (1988). The Mach numbers and air densities for the cases considered here are
presented in Table 1.

Table 1: Flow conditions for AGARD wing 445.6 aeroelastic analysis.

Mach Reynolds Density (kg/m3)

0.678 1,410×106 0,2082
0.901 0,911×106 0,09947
0.960 0,627×106 0,06339

In order to proceed with the unsteady aerodynamic calculations, a set of reduced frequencies is chosen for each of
the values of the flutter Mach number. In Table 2 the chosen values for the reduced frequency are presented. It is
important to remember that the values of reduced frequency for the linear aeroelastic analysis are different from the
values which are input for the Navier-Stokes solver. This is so because the reduced frequency in NASTRAN is defined
as UcK r 21 ω= , whereas in the Navier-Stokes code this value is defined as ∞= ack ω . The values presented in
Table 2 are the reduced frequencies values in which flutter occurs. These values were taken from the experimental data
available (Yates, 1988).

Figure 1: DLM paneling of the AGARD wing.

Table 2: Reduced frequencies for AGARD wing 445.6 aeroelastic analysis.

Mach k K1

0,678 0,3311 0,1364
0,901 0,3070 0,0952
0,960 0,2713 0,0789



In Figs. 2 and 3, it is possible to see that the values of the pressure coefficient difference distribution along the
chord length for two cases of reduced frequencies associated to the corresponding Mach number.
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Figure 2 : Comparison between complex unsteady pressure difference distribution along chord for wing span
station 23,1 %, Mach  0,96.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.2 0.4 0.6 0.8 1

x/c

R
ea

l( ∆∆
C

p)

Doublet
Lattice
Navier-
Stokes

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.002

0 0.2 0.4 0.6 0.8 1

x/c

Im
ag

( ∆∆
C

p)

Doublet
Lattice

Navier-
Stokes

 
Figure 3: Comparison between complex unsteady pressure difference distribution along chord for wing span station

23,1 %, Mach 0,901.

One can observe in Figs. 2 and 3 that the chosen spanwise station presented here (23,10 %), where there is a
formation of a shock wave, easily noted for the Mach number 0,96. The transonic effects are more pronounced for the
value of  the highest Mach number value principally concerning the imaginary part of the pressures..  It is interesting to
note that the difference in phase in more pronounced than the difference in amplitude. The explanation for this feature is
associated to the profile maximum thickness. The 65A004 airfoil has the thickness ratio (t/c) equals to 4 %. Hence, the
shock wave formation will only occur at higher Mach numbers. As the pressure phases are more sensitive to the shock
movement than the pressure amplitudes, the main differences when comparing the potential and the Navier-Stokes
results are in the phase plots.

As previously described, the correction method here proposed uses the pressure coefficients differences to compute
downwash correction factors to the Doublet Lattice formulation. Hence, when the correction factors are introduced in
the aeroelastic analysis, this yields the results shown in Tables 3 and 4, which concern the stability of the aeroelastic
system. The Tables include comparisons with some well known analysis codes (Chen et al, 2000) and with
experimental results (Yates, 1988). In Table 3,  the results related to steady correction (Silva et al., 2001) are presented
as a basis of comparison of the correction procedure employing steady data and unsteady data, as they are presented
here. The ZTAIC method is a form of correction procedure based on a transonic AIC matrix reduced from a set of
reference pressure differences from known downwash modes (Chen et al.,2000). The CAPTSD method is a finite
difference solution in the time domain of the Transonic Small Disturbance Equation (Chen et al.,2000).  The results
shown in this tables are also presented in graphical form in Figs. 4  and 5.



Table2: Flutter speeds and frequencies for AGARD wing 445.6.

Experimental Linear Steady Correction
(Silva et al., 2001)

Unsteady Correction
Mach

Number VF

[m/s]
ωF

[Hz]
VF

[m/s]
ωF

[Hz]
VF

[m/s]
ωF

[Hz]
VF

[m/s]
ωF

[Hz]
0.678 231,37 17,98 239,89 17,542 213,82 21,250 218,95 21,591
0.901 296,69 16,09 299,30 15,282 275,65 17,352 290,85 16,729
0.960 309,01 13,89 329,18 14,346 315,97 15,652 323,61 14,781

Table3: Flutter speeds and frequencies for AGARD wing 445.6.

Unsteady Correction CAPTSD –(non-linear)
 (Chen et al., 2000)

ZTAIC
 (Chen et al., 2000)Mach

Number VF

[m/s]
ωF

[Hz]
VF

[m/s]
ωF

[Hz]
VF

[m/s]
ωF

[Hz]
0.678 218,95 21,591 234,09 19,2 231,95 19,30
0.901 290,85 16,729 290,17 15,8 294,19 16,38
0.960 323,61 14,781 N/A N/A N/A N/A
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Figure 4: Flutter speed  versus Mach number (wing 445.6 weakened model no.3).

One can observe in Fig. 4 that the correction here presented indicates the presence of the transonic dip which is
characterized by a decrease of the slope of the flutter speed plot as a function of the Mach number, when comparing
with the linear predicted one.  Actually, the results in Fig 4 presents a similar behavior concerning the dip phenomenon,
when comparing with the experimental data. However, at subsonic the Mach number the correction does not play
effect. As the non linear an linear pressures distributions at subsonic Mach numbers presents a nearly coincident
behavior for the case of the AGARD wing, the generated correction factor will not modify downwash vector as in the
case of  transonic flow condition. Observing Figs.  2 and 3, is possible to note the differences in pressure from the linear
and non-linear calculations. Considering this, the resulting correction factors for the transonic flow conditions will
properly introduce the necessary changes in the downwash vector to take into account the out of phase component
concerning the non-linear behavior.
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Figure 5:  Flutter speed versus Mach number (wing 445.6 weakened model no.3).
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Figure 6: Flutter frequency versus Mach number. (wing 445.6 weakened model no.3).

The results presented in the work of Chen et al. (2000), as indicted in Fig. 5 show that the transonic dip
phenomenon is well characterized in the solution with the ZTAIC method. Clearly, as already discussed, these results
presents also good agreement with the experimental data. One can see also in Fig. 5 the CAPTSD calculations (Chen et



al., 2000) are expected to yield better results because they are based on the nonlinear solution of the transonic small
disturbance equations, and the comparison in Fig. 5 indeed shows such behavior. Moreover, the ZTAIC results are
based in a more comprehensive method of AIC matrix correction because such procedure employs a set of different
downwash modes. If one considers that the method presented here is based on a single pitch mode, it is clear that one
should expect the ZTAIC method to yield a more conservative correlation with the experimental data, as also seen in
Fig. 5. Moreover, the ZTAIC and CAPTSD methods presents an increase in the flutter dip phenomenon, which in this
case is a desirable feature in transonic flutter calculations.

The flutter frequencies are also shown in Figure 6 and compared with the experimental data and the other methods.
It is clear that a larger change in the flutter frequency expected since the unsteady correction procedure introduces an
important variation in the imaginary part of the complex eigenvalue problem involved in the flutter solution. Hence,
eigensolutions would tend to be more sensitive to the introduced complex coefficients. However, the present results
concerning the flutter frequency does not agree with the experimental and the other methods.

4. Conclusions

The results presented in the paper indicate that the correction method here proposed, using unsteady downwash
corrections in the AIC matrix, is capable of capturing the transonic dip phenomenon. This fact represents an
improvement when comparing this procedure with the one based on steady pressure data. Previous work (Silva et
al.,2001) has shown that aeroelastic analyses based on the steady data based correction method yield flutter speeds
which are more conservative than those calculated by the linear method, which is a desirable characteristic of such
procedure. The same characteristic is preserved when considering the present method. The results of Chen et al.(2000)
also indicates the presence of transonic dip which can be identified as a decrease of the flutter speed slope as a function
of the freestream Mach number, as observed in the experimental data

The flutter frequency behavior as a function of the Mach number does not present a good agreement with the
experimental and the other computed results. In order to repair this discrepancies, as a next step in the continuation of
the present effort would be to use a correction matrix which is constructed from a set of downwash modes. However,
this is also going to increase the computational cost of the aeroelastic analysis since more unsteady CFD simulations
would need to be performed in order to create the correction factors. As the the transonic dip phenomenon is predicted
and the computed flutter speeds are conservative, the important aspect which remains to be analyzed, hence, is whether
the additional costs of such an approach are indeed worthwhile or one should seek an altogether different form of
including nonlinear aerodynamic information into the aeroelastic calculations
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