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Abstract. This work intends to show an algorithm for instrument fault detection in inertial sensors of a satellite launcher vehicle
(SLV) control system. The study is based mainly in the aspect of fault diagnosis and in the results obtained for this type of control
system. In case of unstable systems, such as satellite launcher vehicles and high performance aircrafts, the failure of a sensor can be
catastrophic if the control system has no degree of redundancy, physical or analytical. Due to this characteristic, it is very important
for these vehicles to have a redundant flight control system with the ability to diagnose faults in sensors as quickly as possible, to
reconfigure the use of the remaining sensors or even the control law. Although many systems achieve fault tolerance by using
hardware redundancy, there are several problems associated with this approach such as: cost, space, weight and complexity of the
control system. Besides, it has been observed that redundant sensors tend to have similar life expectancies, so it is likely that when
one sensor fails the other sensors of the redundant ensemble will fail soon. There are even situations in which it is not possible to use
hardware redundancy; so, in this case, it is better to use the analytical redundancy approach to design control systems tolerant to
failures in inertial systems. The Instrument Fault Detection (IFD) scheme of this work uses the approach of analytical redundancy of
Patton (1989) for the longitudinal motion control system of a satellite launcher vehicle,  Oliva (1998), in order to present others cases
and simulation results.
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1. Introduction

In case of unstable systems, such as satellite launcher vehicles and high performance aircrafts,  the failure of a
sensor can be catastrophic if the control system has no degree of redundancy, physical or analytical. Due to this
characteristic, it is very important for these vehicles to have a redundant control system with the ability to diagnose
faults in sensors as quickly as possible, to reconfigure the use of the remaining sensors or even the control law. In fault
tolerant systems there are several problems associated to the hardware redundancy, such as: cost, space, weight and the
physical complexity of the control system. Besides, it has been observed that identical redundant sensors tend to have
similar life expectancy, so, it is likely that the event that cause one sensor to fail will probably cause faults in others
redundant sensors. There are even situations where it is not possible to use hardware redundancy, so in this case it is
necessary to use the approach of analytical redundancy.

2. Basic Concepts

2.1. Fault

Fault can be defined as a malfunction of any component of a system, causing since a loss of performance up to a
total stop of its functions.  According to Patton (1989), the faults can be divided in:

• Sudden Fault: fault that suddenly occurs and persists in a component.
• Incipient Fault: fault that develops slowly at a component.

The early detection of an incipient fault can help to avoid a total fault of the plant or even catastrophes, which could
result in loss of significant amount of material or serious personal injury.
So, it is desired to have a fault tolerant system, that is, a system that can continue to do its task, even when there are
hardware faults or software errors. But the implementation of such system is not easy to do.
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According to the generally accepted terminology (Gertler, 1988), the fault detection and diagnostic consist of the
following tasks:

• Fault Detection: detection that something is wrong in the system. Special emphasis is laid upon incipient, or
developing, faults rather than step faults because incipient faults are harder to detect.

• Fault Isolation: determination of the fault origin.
• Fault Identification: determination of the size of the fault.

2.2. Model-Based Structure

If uncertainties about the model or unmeasured inputs to the process are structured, i.e., it is known how they enter
at the system dynamics; this information can be incorporated into the model. In the linear case, if model uncertainties
are supposed structured, according to Frisk (1996), the model can be represented by:
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Where fa(t) denotes actuator faults, fc(t) is the component faults, fsa(t) is the additive measurement sensor faults,
fsm(t) is the multiplicative measurement sensors faults, d(t) is the disturbances acting upon the system, H is the
distribution matrix for components faults and E is the distribution matrix for disturbances acting upon the system.

This work is based on fault identification and how to get this type of information from a control system. It will
show a model with inclusion of an instrument fault detection (IFD) using an approach of analytical redundancy in a
flight longitudinal control system of a satellite launcher vehicle. To do it, it was adopted the work developed by Oliva
(1998), to design a simulation system to evaluate the results in the case of simple fault at one sensor.

2.3. Mathematical Model

The mathematical model used to be studied is the longitudinal motion of a satellite launcher vehicle (SLV), shown
in Oliva (1998). In order to facilitate the description of the equations, the terms that indicate function of t will be
omitted; and bold letters will identify the matrices and vectors.

According to McLean (1990), the matrix A, the vector B, the state vector of the longitudinal motion x and the
control vector u from Eq. (1), are represented by:
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Where Zw, Zq, Mw, Mq, Zβz and Mβz denotes the aerodynamic derivatives of the satellite launcher vehicle, obtained
from wind tunnel tests, U0 is the linear velocity of the vehicle, g is the local gravity acceleration, w is the linear velocity
along the z-body axis called normal velocity, q is the angular velocity of pitch, i.e., the angular velocity around the y-
body axis, θ is the pitch attitude and βZ is the pitch control deflection.

The parameters values used in A and B are showed in Tab. (1).

Table 1 – Parameters used for the vehicle dynamics model.

Parameter Value
Zw [s-2] -0,0968
Zq [s

-2] 0,1631
Mw [m-1s-1] 0,0096

Mq [s
-1] 0,0568

Zβz [m s-2]  19,3761
Mβz [s

-2] 7,2769
U0 [m s-1]    544,46
g [m s-2] 9,7886



2.3.1. Longitudinal Control System

The control system was designed with the purpose that the model follows the reference sign θref (reference pitch
attitude) and settle the remaining state variables. Therefore, the control system will require three sensors to operate
adequately, that is, sensors for w (normal velocity), q (pitch angular velocity) and θ (pitch attitude).

The following model represents the longitudinal control system designed:
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with C = I and D = 0.

The state variable “eθ” is the pitch attitude error integral and it was included to keep the steady state error near zero.
The control system was designed by the LQR method as described in Rinaski (1982). The control law, the new state
vector and the vector with the feedback gains are given below and the gains for this control law are given on Tab. (2).

βz = -G1 x  -  G0 θref (4)

xT = [w   q   θ   andθ] (5)

G1 = [Gw   Gq   Gθ   Geθ] (6)

Table 2 – Control law gains

Gain Value
Gw [m-1] 0,0013

Gq [s] 1,4551
Gθ [rad] 3,2581
Geθ [rad] -3,1623
G0 [rad] -3,2570

2.4. DOS Structure Observers

To design an analytical redundancy, it is necessary to include observers into the control law, to implement an
alternative control law, that is, an observer based control law.

The method used to design the observers can be found in Chen (1984). The observer dynamics and the estimated
state are given, respectively, by:

zˆˆ β++= HyGxFx& (7)

Zˆˆ β++= LyMxNy (8)

Where x̂  denotes a 2x1 vector of the state variables of the observer based on the sensor measures, y is a vector with
the sensor measures, F is a 2x2 matrix that define the observer dynamics, obtained from the design of a robust observer,
according to Doyle and Stein (1989), G is a 2x1 vector that define the contribution of the measures supplied by the
sensor, obtained to get {F, G} controllable, H is a 2x1 vector that define the contribution of the control signal that is
applied to the plant, obtained through the relation H = T B, where the matrix T is obtained through the Lyapunov
equation TA – FT = GC, ŷ  is the 2x1 vector of the estimated state based on sensor measures, M is the 2x1 vector that

weight the contribution of the sensor measures, N is the 2x2 matrix that weight the contribution of the observer state
variable and L is the 2x1 vector that weight the contribution of the input signal. In this case, L = 0.

According to this method, the composed matrix [M N] is obtained from: [M N] = P-1, where PT = [C T]. For the
model represented by Eq. (1), it is necessary to get one observer and one estimator for each state shown at Eq. (2). By
this way, it is added the following indices to identify the measures used by each observer dynamic and by each state
estimated:

w – measures supplied by the normal velocity sensor;
q – measures supplied by the pitch sensor angular velocity;
θ – measures supplied by the pitch attitude sensor, and



m/s – estimated state for the sensor “m” obtained from the measures of the sensor “s”, considering that “m ≠ s”.

From Eq. (8) it is possible to get three vectors of the estimated state, of reduced order, designed for the system,
where the observer/estimator “s” has the measure supplied by the sensor “s” and the actuation command “βz” as inputs
and the estimated state vector for the remain sensors as outputs, represented by:

[ ]s/ms ŷˆ =y (9)

The parameters values used in this case study, according to Oliva (1998), are shown at Tab. (3).

Table 3 - Parameters values for matrices and vectors of the observers/estimators models.

Matrix/
Vector

Normal Velocity Parameters Matrix/
Vector

Pitch Angle Velocity
Parameters

Matrix/
Vector

Pitch Attitude Parameters

Fw
-20.0000  0.00000
 0.00000 -0.12240

Fq
-20.0000  0.00000
 0.00000 -0.12240 Fθ

-20.0000  0.00000
 0.00000 -0.12240

Gw
 1
 1

Gq
 1
 1 Gθ

 1
 1

Hw
-9.08226
 7.58401e2

Hq
 3.67157e-1
-1.37869e-5 Hθ

-1.83578e-2
 1.12638e-4

Mw
 1.69922e-1
 7.39270

Mq
 2.08708e3
-2.60643e1 Mθ

 5.97643e2
 2.00824e1

Nw
-3.35822 -3.49628e-2
-1.46352e2 -1.94151

Nq
-4.13121e4 -3.84312e0
 5.16582e2  7.85226e0 Nθ

-1.05594e3 -7.64903e1
-3.96390e2 -3.68747e-2

2.5. Decision Functions

The decision functions will allow us to detect the faulty sensor, helping in deciding how to reconfigure the control
law. To design the decision functions it was adopted the method shown at Chapter 2 of Patton (1989) for a DOS
structure. For this structure, the residue is considered as been the module of the difference between the measures
supplied by the sensors and the respective estimated values. The decision function, adopted in Oliva (1998), is the
product of two residues, as showed by Eqs. (10), (11) and (12):
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The values supplied by the decision functions ηw, ηq and ηθ can be used in the decision logic to detect which sensor
has failed. According to the cases analyzed by Oliva (1998) for step input, the following thresholds were used in order
to detect the fault:

• Fault at the sensor w: wη  > 150

• Fault at the sensor q: qη  > 2

• Fault at the sensor θ: θη  > 0.5

We use these thresholds in another case study, where the system has to follow a random reference signal with
uniform distribution between -0,25rad and 0,25rad with sample time of 2,5s. This sample time value was chosen to be
smaller than the plant stabilization time for a step input. By this way, we can guarantee that the plant state variables will
always be varying and we can evaluate the performance of the system for fault detection, false alarm and alarm loss.
We limited the simulation time in 50s, and use the integration method “ODE5 – Dormand-Prince” from MATLAB,
with constant integration step of 10ms. To compare the results between the simulations, the seed of the random signal
generator for input signal was kept constant.



In Fig. (1) we can see the response of the system and the respective decision function to the case where the fault
occurs during the time interval of 4s up to 34s of the simulation. The fault type is the maximum value at pitch angle
sensor, that is, the pitch angle sensor begins to supply a constant value of 0,349rad (20o), considered the maximum
value that the sensor could supply. The system IFD proposed has a very good performance to detect the fault, but it has
a very high alarm loss rate.

 
Figure 1 – System response for fault of type maximum value at pitch angle sensor.

Figure 1b - Decision Function for fault of type maximum value at pitch angle sensor.

The transitions shown on attitude feedback signal graph are due the alarm loss, i.e., the system considers that the
sensor measure is correct when in fact it is wrong. From the vehicle attitude graph we can evaluate and compare the
vehicle attitude with the case when there is no fault (dotted line).



To get a better performance Oliva (1998) suggested adding a threshold for the derivative of the decision function to
be tested. Here we used an approach slightly different: we added the differences between the derivatives of the
measures and its respective estimated values to reduce the alarm loss rate of the decision function. By this way, adding
the differences between the first and second derivatives of the measures and their respective estimated values, the
decision functions become:

=ηw w/qŷq − w/ŷ θ−θ
w/qŷq && −+ w/ŷθ−θ &&

w/qŷq &&&& −+ w/ŷ θ−θ &&&&
(13)

=ηq q/wŷw − q/ŷ θ−θ q/wŷw && −+ q/ŷ θ−θ &&
q/wŷw &&&& −+ q/ŷ θ−θ &&&&

(14)

=ηθ θ− /wŷw θ− /qŷq θ−+ /wŷw && θ− /qŷq && θ−+ /wŷw &&&& θ− /qŷq &&&&
(15)

As the frequency bandwidth increases when we use the derivative differences and due to the fact that the system is
subject to a sudden fault, we used a low pass filter in order to smooth the signal. In this case, considering the bandwidth
of each sensor signal we included a 5 rad/s cutoff frequency low pass filter. So, we reduced the alarm loss rate in
several conditions and kept approximately the same performance to detect the fault.

2.6. Decision Logic

Based on the nonlinear functions given by Eqs. (10), (11) and (12), it is possible design a decision logic. If, for
instance, the pitch attitude sensor fails, the functions θ/ŵf  and θ/q̂f  will increase fast, so ηθ will increase much faster.

This fact allows us to diagnose that the pitch attitude sensor has failed.
This consideration can also be applied on Eqs. (13), (14) and (15). Therefore, it is necessary to find an appropriate

threshold value to define a fault condition, but we must consider that this value has also to prevent false alarm or alarm
loss. The boundary value for the decision function is not easy to get because: it involves the entire vehicle flight
conditions, which is very wide; the vehicle dynamic parameters are inaccurate and vary with time; the vehicle is
subjected to unknown external disturbances; and can realize several kinds of maneuvers. We analyzed the following
cases for a fault in one single sensor during the time range from 4s up to 15s: maximum value fault, zero value fault and
last value fault. In Tab. (4) we can evaluate the boundary values of the decision functions, when we use and don’t use
the derivative differences to avoid the false alarm and the alarm loss.

Table 4 – Boundary values got for decision functions with use of derivatives.

Noise Level Due to Sensor Fault
Derivative

Sensor Noise Levels
without Fault w q θ

Boundary Values for the
Decision Function

w 0,0019 3,1 0,50 0,0045 0,50 a 3,1
q 0,000057 0,20 1,8 0,42 0,42 a 1,8No
θ 0,00000023 0,0074 0,014 0,00018 - x -
w 0,0019 2.500 0,56 0,20 0,56 a 2500
q 0,00024 0,48 22 0,074 0,48 a 221st Order
θ 0,00000031 0,018 0,016 0,0064 - x -
w 0,0025 9300 1,3 5,1 5,1 a 9300
q 0,0011 2,5 22 0,52 2,5 a 221st Order and

2nd Order
θ 0,00000073 0,093 0,035 0,097 0,093 a 0,097

Note: - the bold values correspond to minimum value for the decision functions to indicate that the sensor is good.
Thresholds below this value will cause the system to generate false alarm; and

- italic values correspond to maximum values for the decision functions. Thresholds greater than this value
will cause the system to generate alarm loss.

At Tab. (4) it is easy to see that only by adding the second derivative in the decision function we can meet the
condition that the upper limit will be greater than the lower limit for all sensors. To define the threshold to detect a fault
it was assumed approximately the average value of the range for each sensor. Therefore, the following thresholds were
adopted to detect the faults:

• Fault of the sensor w: wη  > 4650

• Fault of the sensor q: qη  > 12

• Fault of the sensor θ: θη  > 0.095



2.7. Control Laws

When the system is operating at normal mode, i.e., without fault, it will use the designed control law, given below:

βz = -Gw * w  -  Gq * q  -  Gθ * θ  -  Geθ * andθ  -  G0 * θref (16)

After a fault in one of the sensors: w, q or θ, this control law shall be changed, respectively, to one of the following
alternatives control laws, in accordance to the sensor that failed:

βzw = -Gw * ŵ /θ  -  Gq * q  -  Gθ * θ  -  Geθ * andθ  -  G0 * θref (17)

βzq = -Gw * w  -  Gq * q̂ /θ  -  Gθ * θ  -  Geθ * andθ  -  G0 * θref (18)

βzθ = -Gw * w  -  Gq * q  -  Gθ * θ̂ /q  -  Geθ * 
q/ˆe

θ
 -  G0 * θref (19)

Where, 
q/ˆe

θ
 is obtained from the estimated state given by: q/ˆe refq/ˆ θ−θ=

θ
&

The control law can also operate with double fault, but this method is only applied for one single fault at a time. So,
it is possible to define a logic of selection of what measure should be substituted, as shown in Tab. (5).

Table 5 – Logic of selection of the redundant signal.

Fault Detected Selection of the Redundant Signal

wη qη θη ŵ /q ŵ /θ q̂ /w q̂ /θ θ̂ /w θ̂ /q

0 0 0
0 0 1 1
0 1 0 1
0 1 1 1 1
1 0 0 1
1 0 1 1 1
1 1 0 1 1
1 1 1 * * * * * *

Note:  the cells with “*” are reserved when all sensors fail. In this case the system will need to use the redundant signal
generated from an analytical model of the plant.

2.8. Fault Case Studies

In this study we will only consider faults in sensors, therefore, the faults fa(t) and fc(t) and the disturbance d(t),
presented in Eq. (1), will be considered null.

One sensor can have several types of fault. The following types of fault were considered:
• Zero: when the sensor begins to supply only the value zero, that is, the sensor has an abrupt variation for the

value zero;
• Maximum Value: when the sensor begins to supply only the maximum value in module, that is, the sensor has

an abrupt variation for its maximum or minimum value;
• Constant: when the sensor begins to supply the last measure made before the fault occurs;
• Offset Drift: when the value of the offset alters the measure in function of the time; and
• Scale Factor Drift: when the scale factor of the sensor alters the measure in function of the time.

2.8.1.  Response of the System without Fault

The complete model of the system with implementation of the IFD and fault simulator is presented in Fig. (2). The
response of the system without activation of the fault mode is presented at Fig. (3a), where we have the input reference,
the attitude measured, the attitude feedback and the vehicle attitude.

The graphs of ηw, ηq and ηθ are shown in Fig. (3b). It can be verified that their values are very small compared with
the threshold adopted to detect a sensor fault, according to Tab. (4).

2.8.2. Fault of Type “Maximum Value”

This fault is simulated setting the maximum value adopted for the pitch attitude sensor (0,349066rad = 20o). The
fault was programmed to occur 4s after the beginning of the simulation and with duration of 30s. In Fig. (4a) we have



the response of the system with IFD and reconfiguration of feedback signals for the control system. It can be noticed
that the response with IFD was identical to the response of the system without fault. In the graph of measure we can
compare the values supplied by the sensor (solid line) with the values that should be supplied in case of no fault (dotted
line). In the graph of attitude of the vehicle we can see that we can not distinguish the dotted line, what indicates that the
IFD system presented a good performance.

In Fig. (4b) we have the response of the decision function for the indication of the fault. The system detected the
fault at the moment that it occurred and didn’t presented fault loss. But it delays too much in leaving the fault state for
the normal state. During this period we have an indication of false alarm, so it’s necessary to design the
observer/estimator, to have a faster response to its input signals, and the decision function, selecting the residues that
have better performance to detect the respective sensor fault.

Figure 2 – Complete block model of the system.

2.9. Comments and Conclusion

The method presented here, with inclusion of the residue of the derivative differences between the real and
estimated measures, presented a great improvement in the reduction of the alarm loss. But there still is the problem that
the decision function delays too much to disable the fault indication. This problem probably can be solved through the
improvement of the observers/estimators response time design, the selection the residues that have better performance
to detect the respective sensor fault and the quality of the redundant signals.

It should also be taken into account in the observers/estimators design that they should operate in a plant where the
initial conditions are not null, otherwise, it will cause a false alarm indication for all sensors.

This method of determination of the fault based on the product of two residues presents the advantage of being able
to detect the beginning of abrupt faults quickly, but with the disadvantage that it doesn’t have strong fault detectability
(Frisk, 1996); so it is difficult to get the appropriate decision threshold along the fault time. As we have the
multiplication of two sensor residues in the decision function, the influence of the faulty sensor also affects the decision
function of good sensors, see Tab. (4); so it easily can cause false alarm or alarm loss indications. Another disadvantage
of this method is that we have the product of two signals, generating a very wide frequency spectrum.

In the presented cases it is noticed that the system has a quick response to the faults of the type transition; it is slow
to detect incipient faults; and it delays too much to leave the indication of fault state in cases of intermittent fault. The
decision logic was elaborated to work with multiple faults, but this situation only will be able to be used after designing
decision functions with strong detectability capacity, such that they allow detecting and isolating more than one fault
simultaneously, and after designing an analytical model, when all sensors fail.
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Figure 3a – Response of the system without fault.

Figure 3b – Decision functions without fault.



Figure 4a - Response of the system for the maximum value at pitch angle sensor.

Figure 4b – Decision function for the maximum value at pitch angle sensor.




