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Abstract. Since the decade of 1980, when HIV virus was discovered, many mathematical models have been developed. Some of 
them deal with the epidemiology of the disease, studying the interplay of the susceptible populations to HIV infection. Other models, 
approach the dynamics of the cells populations that are susceptible to infection, cells populations that become infected due to virus, 
viral load and the virus populations that suffer mutations from the antiviral therapy. Using the resources of the numerical 
simulations, our goal in this work, is to analyze the problem in distinct situations: with or without antiviral therapy in different 
stages of the process. We create a graphical interface on Microsoft Visual C++ language that implements several numerical 
methods. This interface lets, for the boarded model, change all of the parameters and initial conditions; and the numerical solution 
graphs are shown. In the model studied are included the immune response and the drug-therapy that act during the DNA 
transcription into the infected host-cell. It was possible, using the interface we made, to identify which parameters were more 
sensitive to applied variations. 
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1. Introduction 

 
In the last twenty years many mathematical models have been developed with the intention to understand 

phenomena associated to the HIV-1 infection, its impacts in the immune system and the decline of the counting of 
CD4+ T cells. Stochastic models can be used to describe initial stages of the disease, when a few virus and infected 
cells exist or in situations where the variability of individuals is relevant. On the other hand deterministic ones analyze 
the changes in the average of the cells number and are more applicable to the posterior stages of the HIV-1 infection 
process in which the populations of cells are great in number, Perelson et al (1999) 

The numerical simulations associated to the mathematical modeling allow to evaluate distinct situations such as 
initial conditions in steady state, quasi-steady state or unsteady state, to modify parameters and constants of the model, 
even those that are badly defined a priori, to introduce drug-therapy at different moments of the HIV replication cycle 
and, moreover, to analyze parameters that induce alterations during the time of the infection dynamics through the 
process of the disease. 

The biological phenomenon caused by the AIDS virus is extremely complex and still related questions exist that are 
not totally clarified. One of the basic characteristics is associated with the mechanisms of the immune system and with 
the fight against the infection by the host organism during the disease.  
 
2. Modeling 

 
Some aspects of the HIV infection can be considered at the moment we developed a mathematical model. They are: 

replication cycle, immune response and the drug-therapy effects.  
 
2.1. Replication cycle  

 
The Human Immunodeficiency Virus (HIV) is a retrovirus, a double strand RNA virus. Its main targets are the 

helper T cells, the macrophages and the dendritic cells. All these cells posses a receptor called CD4 that allow the virus 
fix on the host cell surface. After this, the viral RNA is released and then its transcription in DNA through the enzyme 
reverse transcriptase occurs. With the aid of another enzyme, called integrase, this DNA becomes then integrated to the 
host cell chromosome DNA. 

Provirus, the viral DNA, can control the production of the new viruses that burst the host cell, characterizing the 
active infection. Alternatively, this integrated DNA cannot produce new particles of HIV virus but it can remain hidden 
in the host cell chromosome as provirus, characterizing this way the latent infection, and impeding its detection by the 
immune system.  

Virus ability to remain as a provirus or latent virus is one of the reasons the antibodies anti-HIV developed by the 
infected individuals fail in inhibiting the progress of the infection. The virus also can move itself from an infected cell 
to another adjacent one not infected, through the fusing process, and then hiding itself from the immune system too. 

In particular, the RNA viruses with the stage of the reverse transcription have a high rate of genetic mutation in 
relation to the DNA viruses. As a result, the HIV genome suffers changes many times per day in an infected person 
what makes the diagnostic vaccines development and tests difficulty.   

But, how the immune system responds to the antigen presence, or any foreign substance?  
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2.2. Immune response 

 
The immune response is basically characterized two ways: cellular immune response and the humoral immune 

response.  
As soon as the antigen enters the body, it is found by the macrophages, cells that examine the foreign particles and 

present its results to CD4 positive T lymphocytes, the CD4+ T cells. The T letter reffers to the thymus, an organ 
responsible for the maturation of this cell after it have migrated from the bone marrow where it is produced and the term 
CD4 denoted an protein that exists on the cell surface. These cells usually are called T helper cells and work as the 
center of command of the immune system. Initially, the proliferation of CD4+ T cells occurs, in order to congregate 
efforts against the pathogen. If these cells consider that an immune response must be given, then a signal is sent. This 
signal can activate as much the cellular response as the humoral response. 

Moreover, the activation of a second group of T cells, the CD8 positive T lymphocytes, CD8+ T cells, known as T 
killer cells, occurs. These cells are responsible for looking for and destroying the infected cells with that pathogeneses. 

In the humoral immune response, mediated by antibodies, the CD4+ T cells put in action a third group of cells, the 
B lymphocytes (B cells). These are the blood cells that produce the antibodies. The main function of the antibodies is to 
destroy pathogeneses and, therefore to assist in the elimination of antigens.   

Once the immune response is successful, some cells keep an antigen memory register. These cells are called 
memory cells.  If the same pathogeneses, or a like one, is reintroduced in the host organism, a more aggressive and 
much faster response is executed, and the antigen is eradicated in more efficient and quicker way. 

The classification of the progress of the HIV infection, according to the Centers for Disease Control and 
Prevention, an American Public Service of Health agency, responsible for epidemiological information, is based on the 
counting CD4+ T cells population. When the counting of these cells, that is normally around 1000 mm-3, is  lesser or 
200 mm-3 equal in a HIV infected patient, then AIDS is diagnosed. 

As we saw, T cells, in particular CD4+ T, have a central role in the immunological system equilibrium. Therefore, 
its loss provokes disastrous effect in the functioning of the immune response and allows the immunodeficiency that 
characterizes AIDS. The reason for the fall of counting CD4+ T is unknown, as well as the processes that determine its 
rate of decline, Perelson et al (1999). 

The incubation period of the disease that results from the primary infection among the patients is variable, from 3 to 
6 weeks; and the duration of the symptoms from the HIV infection primary is also variable, Coffin et al (1997). Giving 
continuity to this phase, a long or short period of the infection for non-symptoms HIV can be followed, where the cells 
and body fluids shelter the virus. The reason for this period of time still remains unknown; even so this seems to be on 
the changes in the counting of CD4+ T cells.  
  
2.3. Drug-therapy effects  

 
The drug-therapy effects are related to the different moments of the replication cycle of the HIV.   
Inhibitors that act during the process of viral transcription in the infected cell are called reverse transcriptase 

inhibitors. Inhibiting the effect of this enzyme the HIV can penetrate into the cell; however it will not infect it 
successfully: the copy of the genome of the viral DNA will not be made and, therefore the cell will not replicate itself. 
The transcriptase reverse inhibitors are classified in two groups: the nucleoside analog (as the AZT) and the 
nonnucleoside analog.  

Now, the protease inhibitors make the infected cells produce viral noninfectious particles. Nevertheless, the 
particles that have already been produced remain infectious.  

All of  these  inhibitors  used  separately  posses  the  same  problem:  the  virus  quickly develops resistance, 
Nowak et al (2000) and Coffin et al (1997). Then, the adopted strategy most common for HIV-positive patients is a 
triple-therapy administration, e.g., using a combination of drugs, one protease inhibitor with two of reverse 
transcriptase, simultaneously. Still it is in debate when the treatment must be initiated.  

Mathematically, to introduce an inhibitory effect, means to apply the parameters, which model pertinent biological 
characteristics, perturbations. It is possible to analyze the dynamics of the infection in a patient who is in steady state, or 
quasi-steady state or unsteady state, before the treatment being initiated and, furthermore, it still can be observed 
aspects of eradication of the viral population a long period with the different strategies of treatment.   
  
3. Model 

 
Kirschner et al (1996) developed the model that we will approach. In it has the inclusions of an immune response 

from the host organism, therefore, inside the T cell population is already inserted the CD8+ T cell population; and the 
monotherapy effects are modeled too. 

During the immune response, the CD8+ T cells cannot become infected, once its function is to eliminate the 
resident viruses from the infected cells. Then, 
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with the initial conditions T(0), T*(0) and V(0). 

The variables and parameters represent: 
T uninfected CD4+ T cell population 
T* infected CD4+ T cell population 
V virus population 
s(t) source of new CD4+ T cells from the external sources as thymus 
dT death rate of uninfected CD4+ T cell population 
p maximal proliferation of the uninfected CD4+ T cell population 
kV rate CD4+ T cells became infected by free virus 
δ death rate of infected CD4+ T cell population 
N number of virus particles produced by bursting infected cells 
kT rate CD8+ T cells kill virus 
gV growth rate of external virus source other than T cells 
C half-saturation constant of the proliferation process  
b half-saturation constant of the external viral source 
The initial conditions, constants and parameters values used are given in Kirschner et al (1996) and described in the 

Tab. (1). 
 
Tabel 1. Initial conditions, constants and parameters of the model 
 

Initial Conditions 
T(0) 1000 mm-3 
T*(0) 0 mm-3 
V (0) 0.001 mm-3 

Parameters and Constants 
s(t) 

V+
+

1
5

5  

p 0.01 day-1 
dT 0.02 day-1 
δ  0.24 day-1 
gV Varies 
kV 2.4 x 10-5 mm3 day-1 
kT 7.4 x 10-4 day-1 
C 100 mm-3 
b 10 mm-3 
N 1000 

 
For the first term of the Equation (1), 
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a function is chosen that decreases as the viral load increases and it is assumed that the uninfected T cells population is 
reduced by half. The term 
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, out of the treatment 
, during the period of treatment and 0 < P(t )< 1. 



 
denotes the proliferation of T cells where C  is a constant of the saturation process. The used idea in this case it is that as 
much CD4+ T cells as CD8+ T cells will be stimulated by the HIV infection, however, knows that these cells in activity 
stimulate other CD4+ T and CD8+ T cells, which can or not be specific to HIV, Kirschner et al (1996). 

The term, kVTV, symbolizes the HIV infection that depends on the encounters between the T and V populations, 
represented by kV. In order to introduce the effect of monotherapy using a reverse transcriptase inhibitor, the kV 
parameter is multiplied by a z(t) function, that acts only in the period of treatment. When the treatment is in proceeding, 
the given model is capable to imitate the effect of this inhibitor; therefore the viral infectivity is reduced.  

In the equation (3), the term, kTTV, represents a loss of viruses because of the action of pertaining T CD8+ cells to 
the immune system, where kT is the rate under which these same cells eliminate virus. Finally, the last term symbolizes 
the growth of viral population, from other infected cells, such as macrophages. The growth rate is given by gV, and the 
half-saturation constant of this process is b. This term also contains the viral natural death. During the course of 
infection before the decrease of the CD4+ T cells number, the quantity of virus is relatively small. Hence, this term is 
linearly approached for gV V and can easily enclose the virus clearance, says cV. As the disease proceeds the quantity of 
virus increases and, according to the Kirschner et al (1996), this cannot be modeled by a linear term. 

During the course of the infection, the patient passes from an initial state to an infected steady state, usually referred 
as the period of latency and from this, due to mechanisms of the suitable infection, it reaches the AIDS. In the model, 
the term that produces this effect is gV. 

The Figure (1) shows numerical simulations with the next values:  gV = 5 ( ), gV = 20 ( ) without the application of 
an inhibitor.   

During the course of the infection, for gV = 5 ( ), we observe that T cells population soon suffer a fall in first days 
from the infection stabilizing itself after that. The infected cells and the viruses possess similar dynamic presenting 
changes not much relevant at the beginning and suffering increases well pronounces later. For gV = 20 ( ), we see the 
complete course of the HIV infection culminating in AIDS. The virus population increases without limits, the CD4+ T 
cells decay to a minimal value of the order of 10-1 mm-3. 

 
 

 
 
Figure 1. Numerical simulation to the model: gV = 5 ( ), gV = 20 ( ), tfinal = 600 days. 
 

We take the function z(t) = (1- ηRT)P, with 0 < P(t) = P < 1, during the period of treatment.  The term ηRT 
represents the efficiency of the inhibitor that is being applied.  In the interface this term is denoted by RT-I and can be 
taken as any value between 0 and 1.  For simplification,  in  the monotherapy  simulations  we are  considering  that  
P(t) = P = constant, for several beginnings of treatment.  One of the treatment  starting  at 100 days and the other one in 
200 days, both with a period of treatment of 250 days. The Figure (2) presents the attained results. 



 
 

 
 

Figure 2. Model simulation: periodic treatments with beginnings at 100 days ( ) and at 200 days ( ) 
 
In the Figure (2), we see initially, a rough decay in the T cells population, an increase as much viral load, V, as the 

infected cells, T*, occurs, followed by a recovery of the T cells, and a decrease for V and T* populations, if the treatment 
is initiated later ( ). 

For both cases, the viral load tends to increase unlimitedly as the time increases, reaching in tfinal = 600 days, values 
of the order of 105 mm-3.   

The treatment that would be initiated later it was capable to lead a recovery in the counting of the T cells population 
and also it was capable to lead a decrease the virus population even though for a short period of time (See Fig. 2 ( )).  
The same behavior is not kept if the treatment is initiated early (See Fig. 2 ( )).  

 
4. Simulations and results 

 
We are interested in studying the behavior of the numerical solutions when we apply effect of perturbation in the 

parameters of the model. For in such a way, it is necessary to analyze the convergence and the stability of the numerical 
results. 

A graphical interface was developed for us in Guedes et al (2001), using Microsoft Visual C++, which solves the 
system given by Eq. (1), Eq. (2) and Eq. (3), with different numerical methods.  

The convergence and the stability of each numerical method are assured, because the integration step is computed 
for each set of parameters from initial approximation attained through the local discretization error of the Euler’s 
method. With our interface it is possible, in one same graph, to show off the tests proceeding from different variations 
applied in the parameters and the interpretation of them is direct. 

For the most parameters that we analyze, we use the following conditions for the variations: of ±10%, ±20% and 
±50%. We fix different periods of treatment, and we admitted for the z(t), only the variations of -10%, -20% e -50%, 
because the others there are not sense. 

The tests have been made assuming that one parameter varies, while the others remain unchanged in relation to the 
original data given from Kirschner’s et al (1996) paper.  

The initial conditions have been taken as T(0) = 1000 mm-3, T*(0) = 0 mm-3 and V(0) = 0.001 mm-3. This means that 
we are studying a recently infected individual that is not in steady state, nor close it. The final time has been taken as 
3650 days. As the value of gV can be modified depending on the situation that desire to analyze, we choose gV = 20. The 
justification for this choice is the fact of that as bigger the value of gV is, more quickly will occur progression to AIDS 
(See Fig. (1)). 



 
 

5. Variations in the parameters 
 

The data for each parameter under variation are described in the Tab. (2).  Value 0% denotes the correspondent to 
the original value of each parameter for the model.   

As we said before, the numerical simulations have been made assuming that one parameter varies, while the others 
remain unchanged in relation to the original data given from Tab. (1).  

We decide to comment groups of different parameters, because they got similar behaviors, except for the scale of 
values. 

 
Table 2.  Variations in the parameters given in the model, with gV = 20.   

 
Parameters 

  -50% -20% -10% 0% 10% 20% 50% 

p 0.005 0.008 0.009 0.01 0.011 0.012 0.015 

dT 0.01 0.016 0.018 0.02 0.022 0.024 0.03 

δδ  0.12 0.192 0.216 0.24 0.264 0.288 0.36 

gv 10 16 18 20 22 24 30 

kV 1.20E-05 1.92E-05 2.16E-05 2.40E-05 2.64E-05 2.88E-05 3.60E-05 

kT 3.70E-04 5.92E-04 6.66E-04 7.40E-04 8.14E-04 8.88E-04 1.11E-03 

C 50 80 90 100 110 120 150 

b 5 8 9 10 11 12 15 

N 500 800 900 1000 1100 1200 1500 

z(t) 0.5 0.8 0.2 1 - - - 

 
5.1. Variations in the parameters p, kV  and N 

 
The Figure (3), presents the results of the numerical simulations when variations as  the  described  ones for the 

Tab. (2) are applied to parameters p, kV and N.  
 

 
     -50%   -20%  -10%   0%   +10%   +20%  +50% -50%   -20%  -10%   0%   +10%   +20%  +50%      -50%   -20%  -10%   0%   +10%   +20%  +50% 

 
Figure 3.  Variations in the parameters p, kV and N, respectively. 

 
We observe that the behavior of the solution will be modified as lesser the value of any one of these parameters is.  
The T cells population, T, tends to diminish quickly, however stabilizing in a 200 mm-3 superior value, in the early 

years.  The viral load and the infected cells, V and T* respectively, increase considerably soon in the initial years, but 
after they reach a stability in a value above of 102 mm-3 for V and of the order of 100 for T*. 

On the other hand, as bigger the variation is applied in any one of the parameters, p, kV and N, more quickly the 
decline in the counting of T cells will occur reaching a value of the order of 10-1 and, therefore, 200 mm-3 inferior.  The 
virus population, V, will increase reaching in tfinal = 3650 days a value of the order of 105.  The infected cells, T*, 
increase quickly arriving at a value of order 102 (t ≈ 70 days) and diminishing until reaching a stability. 

   



 
5.2. Variations in the parameters δδ  and  kT 

 
Applying to the parameters δ and kT variations as the described ones for the Tab. (2), we got the results shown in 

the Fig. (4).   
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Figure 4. Variations in the parameters δ  and kT, respectively. 

 
We notice that the resultant behaviors in this case are inverse to the gotten ones in the previous case.  Or either, as 

bigger the value of any one of these parameters is, the T cells, T, tend to diminish quickly and soon reaching stability in 
a superior 200 mm-3 value. The populations of virus and infected cells, V and T* respectively, increase considerably in 
early years, reaching after that a stability in a value above the 102 mm-3 for V and of 100 mm-3 for T*.  

On the other hand, how lesser the variation applied in any one of the parameters, δ and kT, more quickly the viral 
load, V, will increase reaching in tfinal = 3650 days a value of the order of 105 and will still occur the decline in the T 
cells population reaching a value of the 10-1 order.  The infected cells, T*, will increase quickly and soon they will decay 
(t ≈ 48 days) reaching a stability lesser than 102 mm-3.   

 
5.3. Variations in the parameters dT and gV 

 
In the Figure (5), we present the results of the variations applied to the parameters dT and gV, respectively.   
For the parameter dT, we observe that the behavior of the solution will be modified as lesser the value of the 

variation is applied in it.  
The T cells population will suffer two declines:  first of them the slowest one in the first years in relation to the 

second one. The virus population, V, will not suffer relevant modifications in the early years, following an unlimited 
increase from this point up.  For the infected cells population, T*, we see an enormous increase before the first year, 
decaying quickly and reaching a stability around the 100 mm-3.  

Variations that increase the original value of the parameter dT, provoke only alterations in the infected cells 
population, T*. The bigger the variation the fast increase of this population, followed by a stability (t ≈ 128 days) of the 
order of 101. 

The dynamics of the solution will be modified as lesser the value of the variation is applied in the parameter gV. The 
T cells population will suffer two declines:  the first of them in the early years is the faster one in relation to the second 
one.  

The infected cells population, T*, show a slower increase in the beginning, then decaying and reaching a stability 
around the 101 mm-3. The virus population, V, will not suffer relevant modifications in the first year, followed by an 
unlimited increase from this point on.   
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Figure 5. Variations in the parameters dT and gV, respectively 
 
5.4. Variations in the parameters C and b 

 
The results of the applications of variations in parameters C and b are represented in the Fig. (6).   
For parameter b no relevant alteration in the dynamics of populations T, T * and V was observed.  For parameter C, 

we notice that populations T and V do not show modifications in its original behaviors.   
The population of infected cells, T *, on the other hand presents some alterations in relation to the reached stability.  

However, all they are of the order of 101.   
 

 
 -50%   -20%  -10%   0%   +10%   +20%  +50%    -50%   -20%  ν -10%   0%   +10%   +20%  +50% 

 
Figure 6. Variations in the parameters C and b, respectively 
 
5.4. Variations in the parameter z(t) 
 

In the Figure (7), we can see the variations applied in the parameter z(t) at two different periods of treatment: one of 
them from 100 to 350 days and the other one from 200 to 450 days, respectively. 
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Figure 7. Variation in the parameter z(t) for treatments with beginnings and ends from 100 to 350 days; and from 200 

to 450 days, respectively. 
 

We observed in the Figure (7) that the bigger value of z(t), the faster the population of virus, V, will grown. For 
treatments begun later (Fig. (7), right ( )), the population of T cells, T, will decay at the beginning followed by an 
increase diminishing again. With the infected cells population, T*, we observed a decaying when inhibitor is applied 
that is followed by an increase and a later decay until reaching stability. When treatment is begun later it provokes a 
recuperation of the T cells population but, on the other hand for both the cases, the population of virus, V, tends to 
grown unlimitedly. 

We simulated the same variations applied to the parameter z(t) with the period of treatment begin in 100 days and 
finished in 3650 days, which corresponds to final time of all the simulations. For this case, we obtained the Fig. (8).    

 

 
-50%   -20%  -10%   0% 

         
 

Figure 8. Variation in the parameter z(t) for treatment with beginning and end in 100 and 3650 days. 
 

Observing the Figure (8), we noted that the more significant variation in the behavior of the solution for T and V, is 
associated to –50%( ). The population of cells T, T, suffers an initial decay until reaching a stability of  102 mm-3 order. 
The population of virus, V, and the population of infected cells, T*,  will show the same behavior: will grown in the first 
months, then decaying and stabilizing. 



 
6. Conclusions 

 
All the results, we reached after studying the parameters sensibility and relation to the variations applied to them 

resulted of the interface we created. In it the interpretation of the numerical values is immediate and as we have said 
before the convergence and stability of the numerical methods are guaranteed. 

Using the numerical simulations it was possible to study the problem with unsteady state initial conditions and 
identify which parameters were more sensitive to the applied variations in their original values. 

Analyzing the final results we have: 
 the great part of the parameters shows sensibility to the applications variations sometimes in those that 

augmented and sometimes in those that diminished their original values; 
 we got similar behaviors for different parameters like p, kV and N; δ  and kT;  dT and gV; C and b; 
 alterations in the groups of parameters p, kV and N, and δ   and kT modified in an inverse way their behaviors; 
 none of the variations applied in the parameters was capable to present the virus population erradicated; 
 long periods of treatments did not imply a totally reduction virus population (See Fig. (8)). 

So, we can model functions that vary in time for the analyzed parameters in a way to refine the given model. The 
results of combination of drugs may be introduced using the parameters, for example, N and p. Treatment strategies 
may also be suggested in respect to the treatment beginning, and the way which the treatment will be applied, 
continuously or periodically. 
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