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Abstract.The main objective of this paper is to propose a mixed Hellinger-Reissner variational formulation to
deal with problems in which viscous phenomena take place beyond the elastic range, that is, the phenomena
denoted in literature as elasto/viscoplasticity. The constitutive relation consider the von Mises yield criterion
and Perzyna-like viscoplastic model. The paper shows that the solution of the equation system, defined by the
equilibrium, kinematics and constitutive equation, are optimality conditions of an inf-sup mixed variational
principle. Based on space discretization generated by the finite element method, by adopting a triangular finite
element with quadratic and continuous interpolations for velocities and geometry and linear discontinuous
interpolations for stress rate, a discrete version for the proposed mixed principle is also proposed. A numerical
application is presented to validate the formulation.
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1. Introduction

The main objective of this paper is to propose a mixed Hellinger-Reisssner variational formulation in
which viscous phenomena take place beyond the elastic range, that is, the phenomena denoted in literature
as elasto/viscoplasticity.

Viscoplasticity in metals is an important phenomenon when the absolute temperature exceeds one third of
the absolute melting temperature. Nowadays there exists an increasing interest in that deformation process
both under high and moderate temperatures because certain important materials also exhibit rate dependent
deformation behavior at moderate temperatures. Additionally, failure processes in many engineering problems
can be approached by adopting viscoplasticity models. As examples of these processes, one can mention for
metals, propagation of Lüders bands and PortevinLe Chatelier effect, and for geo-materials shear bands and
creep. (Heeres et al., 2002).

This paper regards viscoplasticity in its own right, but it is worth remembering that it can also be used as
a regularized model for rate-independent plasticity. For example, the pure plasticity models usually fail both
in perfect plasticity materials and in strain softening situation, because of the strain localization phenomenon.
(Dı́ez et al., 1998; Sluys, 1998).

Mixed formulations are an alternative to the reduced integration techniques for facing the locking phe-
nomenon that happens in models of plastic materials complying with the Von Mises or Tresca yield criteria,
when the Finite Element is applied. If the interpolation functions are not suitably chosen, the locking charac-
teristics might lead to failure of the finite element method (Belytschko et al., 2000; Hughes, 1987). This paper
will not discuss this aspect in details, but one should observe that this is the main motivation for choosing the
mixed approach.

A triangular finite element with quadratic and continuous interpolations for velocities and geometry and
linear discontinuous interpolations for stress rate is proposed. The element, herein proposed in the elasto/visco-
plasticity context, comes from large experience with it in limit analysis applications and thermo-elasticity in
incompressible materials (Borges et al., 1995; Costa and Borges, 2002).

The outline of this paper is as follows. Section 2 presents the concepts and assumptions used in the definition
of the general principles that govern the behavior of isotropic bodies, constituted of elasto/viscoplastic material
and subject to quasi-static load rates. The variational principles to describe the infinitesimal elasto/viscoplasticity
problems are proposed in Section 3. It is shown that the solution of the equation system, defined by the equilib-
rium, kinematics and constitutive equation, are optimality conditions of an inf-sup mixed variational principle.
Finally, in Section 4, based on space discretization generated by the finite element method and on the varia-
tional formulation of Section 3, the discrete mixed principle is presented. In Section 5 a numerical application
is presented to validate the formulation.
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2. General Principles

This section contains a brief description of the continuum formulations for kinematics, equilibrium and
constitutive relations for elasto/viscoplastic bodies subjected to quasi-static load rate.

2.1. Kinematic and Equilibrium

Consider a body occupying an open bounded region B with a regular boundary Γ at instant t. Let V denote
the function space of all admissible velocity fields v, sufficiently regular, complying with boundary conditions
prescribed on a part Γv of Γ.

The strain rate tensor fields Ė are elements of the function space W and the tangent deformation operator
D maps V onto W

Ė = D v ∀v ∈ V (1)

Let W
′
be the space of stress rate fields Ṫ. The internal power for any pair Ṫ ∈ W

′
and Ė ∈ W is defined

by the duality product

〈
Ṫ , Ė

〉
=

∫

B
Ṫ · Ė dB (2)

Likewise, V
′

is the space of load rates and the external power which is dissipated by a load rate system
Ḟ ∈ V

′
on a velocity field v ∈ V is given by the duality product

〈
Ḟ , v

〉
=

∫

B
ḃ · v dB +

∫

Γτ

ȧ · v dΓ (3)

where ḃ and ȧ are body and surface load rates, respectively. Surface Γτ is the region of Γ where traction rates
are prescribed. The boundary Γ will always consists of two disjoint parts, such that, Γ = Γv ∪ Γτ and Γv ∩ Γτ

is empty.
The equilibrium condition, relating a stress rate field and a load rate system Ḟ ∈ V

′
, is imposed by the

Principle of Virtual Power
〈
Ṫ , D (v∗ − v)

〉
=

〈
Ḟ , (v∗ − v)

〉 ∀v∗ ∈ V (4)

2.2. Constitutive relations

The hardening viscoplasticity material behaviour is presented in the framework of thermodynamic with
internal variable. This approach is generally adopted because it provides the most natural way to develop
variational principles in mechanics. This theory postulates the existence of an accompanying equilibrium state
in the irreversible problem of evolution. Therefore, one assumes that evolution equations are expressed in terms
of a potencial, or at least, of a pseudo-potencial , described by means of the internal variable rates.

For viscoplastic models, in quasi-estatic and isothermal processes, the only independent variable is the total
strain E. The internal variables, which describe the current state of the material, are the viscoplastic strain Evp

and another one, denoted χ, modeling the hardening deformation. The components of the hardening variable
are the scalar isotropic variable χiso, associated with the dislocation density, and the tensorial kinematic variable
χkin associated with the incompatibility of various viscoplastic strains (Alfano et al., 2001; Angelis, 2000).

For small strains , the hypothesis of the partition of total strain into an elastic (reversible) and a viscoplastic
(irreversible) strain is adopted, that is

E = Ee + Evp (5)

Under the hypothesis of the partition of total strain, Eq. (5), the thermodynamic potential depends on the
elastic strain Ee and the internal variables χ. In this context, it is permitted to consider the uncoupled between
the specific elastic free energy and the hardening free energy (Lemaitre and Chaboche, 1994; Ulm and Coussy,
2003), or equivalently

Ψ(Ee, χ) = Ψe(Ee) + Ψvp(χ) (6)

In case linear elasticity is adopted, the specific elastic energy Ψe(Ee) is ruled by the differential potential

Ψe(Ee) =
1
2

IDEe ·Ee (7)



with

ID =
E

(1 + ν)
II +

E ν

(1 + ν)(1− 2ν)
(I⊗ I) (8)

as II and I being the fourth and second identity tensors, respectively. The elastic constants are the Young’s
modulus E and the Poisson’s ratio ν.

Under the additive strain decomposition (5), the functional in Eq. (7) can be recast in the following form

Ψe(E,Evp) =
1
2
ID (E−Evp) · (E−Evp) (9)

The hardening potential Ψvp(χ) is expressed by

Ψvp(χ) =
1
2

Hχ · χ (10)

where H is the hardening matrix defined as

H =
[
Hkin 0

0 Hiso

]
(11)

where Hiso and Hcin are defined as the isotropic and kinematic hardening module, respectively.
The stress is the generalized forces thermodynamical associated to the elastic strain Ee that is

T = ∇EeΨ = ∇EΨ = IDEe (12)

The associated thermodynamical forces, which define the estate equations for internal variables, are

T = −∇EvpΨ = IDEe (13)

Aiso = −∇χisoΨ = −Hisoχiso and Akin = −∇χkin
Ψ = −Hkinχkin (14)

The first variable of Eq. (14), Aiso, represents the size of the existing elasticity domain and the second
one, Akin, the distance center of this domain from the origin. Both variables are components of the generalized
thermodynamic force vector, noted here as A.

By applying the Legendre-Fenchel transformation to the potential Ψ, it is possible to define a dual potential
Ψc(Lemaitre and Chaboche, 1994; Panagiotopoulos, 1985). This potential is dependent on the stress T, the
viscoplastic strain Evp and the thermodynamic force A. Because of the conditions adopted in the free energy
definition, the uncoupled between elastic and hardening part of the specific dual free energy is also accepted,
that is

Ψc(T,Evp,A) = Ψc
e(T,Evp) + Ψc

vp(A) (15)

For linear elasticity, the dual elastic energy Ψc
e(T,Evp) reduced to the positive definite quadratic form

(Costa and Borges, 2002)

Ψc
e(T,Evp) =

1
2

T · ID−1T + T ·Evp (16)

with

ID−1 =
(1 + ν)

E
II− ν

E
(I⊗ I), (17)

The dual hardening potential is expressed by

Ψc
vp(A) =

1
2

H−1A ·A (18)

here H−1 is the inverse of the hardening matrix H.



The constitutive relations, inverse forms of (12)1 and (14), are

E = ∇TΨc = Evp + ID−1T (19)

χiso = −∇AisoΨ
c = −H−1

isoAiso and χkin = −∇Akin
Ψc = −H−1

kinAkin (20)

The potential for rates is defined by

J (Ė, Ėvp, χ̇) =
1
2
ID(Ė− Ėvp) · (Ė− Ėvp) +

1
2

H χ̇ · χ̇ (21)

such that the constitutive relations for the rates are

Ṫ = ∇ĖJ = −∇Ėvp
J = IDĖe − Ȧ = −∇χ̇J = −Hχ̇ (22)

The dual of the potential for rates is also obtained by the Legendre-Fenchel transformation, leading to

J c(Ṫ, Θ̇, Ėvp, Ȧ) =
1
2

ID−1Ṫ · Ṫ + Ṫ · Ėvp +
1
2
H−1Ȧ · Ȧ (23)

and

Ė = ∇ṪJ c = Ėvp + ID−1Ṫ + χ̇ = −∇ȦJ c = −H−1Ȧ (24)

The same rate constitutive relations (22) and (24) can be obtained by deriving (12) , (14),(19) and (20)
with respect to time.

2.2.1. Evolution Equation for Viscoplasticity

Viscoplasticity may be viewed as resulting from the optimality condition of the unconstrained function
which appears as a regularized version of the Principle of Maximum Plastic Dissipation. (Angelis, 2000). In
plasticity, the Principle of Maximum Plastic Dissipation is given by

Dp(Ėp, χ̇) = sup
(T,A)∈P

{T · Ėp + A · χ̇} (25)

where Ėp is the plastic strain rate and the set P defines the space of plastically admissible stress by

P ≡ {(T, A) | f(T,A) ≤ 0} (26)

where f(T,A) is the yield function.
In viscoplasticity when the deformation process is elastic then f(T,A) ≤ 0, but if there is plastic loading ,

to the contrary of rate independent plasticity, f(T, A) may be positive. Therefore, to describe the viscoplastic
constitutive equation, the constrained maximum problem, Eq. (25), is transformed into an unconstrained one,
by adding to the objective function a penalty function Φ+

n : IR → IR+ of the constrained f(T,A) ≤ 0 amplified
by a penalty parameter η. In this way, the dissipation function is expressed as

Dvp(Ėvp, χ̇) = sup
(T,A)

{
T · Ėvp + A · χ̇− η Φ+

n (f(T,A)
}

(27)

where the parameter η ∈ (0, +∞) represents a viscosity coefficient. The notation ( )+ refers to (y)+ = y H(y),
where H is the Heaviside step function and n is a material constant(Alfano et al., 2001). It is worth observing
that Φ+

n , in such way defined, satisfies the condition Φ+
n (x) = 0 if and only if x ≤ 0 and is non-negative in IR .

Additionally, the penalty function Φ+
n of the constraint f(T, A) needs to be of class C1(Angelis, 2000; Alfano

et al., 2001).
When these conditions are fulfilled the dissipation potential is convex, is minimum at (Ėvp, χ̇) = 0 and the

optimality conditions for the unconstrained problem will be



T ∈ ∂Ėvp
Dvp(Ėvp, χ̇) A ∈ ∂χ̇Dvp(Ėvp, χ̇) (28)

and there will be a dual potential Dc
vp(T,A) such that

Ėvp ∈ ∂TDc
vp(T, A) χ̇ ∈ ∂ADc

vp(T,A) (29)

where

Dc
vp(T,A) := sup

E∗vp,χ̇∗
[T ·Evp

∗ + A · χ̇∗ −Dvp(Ėvp∗, χ̇∗)] (30)

Equations (28) and (29) define the internal variables evolutive law for the viscoplastic constitutive model
and they have been known in literature as the Normality Law.

Since then the penalty function Φ+
n is of class C1, it is sufficient the yield function f(T,A) to be differentiable

to assure the dissipation Dvp differentiability. In this case, the dual dissipation Dc
vp also is differentiable and

equal to the penalty function, that is

Dc
vp(T,A) = η Φ+

n [f(T, A)] (31)

and the flux law (29) can be recast in the form

Ėvp = η
dΦ+

n

df
(f) ∇Tf(T,A) χ̇ = η

dΦ+
n

df
(f) ∇Af(T, A) (32)

3. Mixed variational principle for infinitesimal elasto/viscoplasticity

The objective of this chapter is to propose a variational principle to describe elasto/viscoplasticity problems.
One can see that the field solution of the equation system, defined by equilibrium, kinematics and constitutive
equations, are optimality conditions of an inf − sup mixed variational principle.

The elasto/viscoplasticity problem consists in determining paths of displacement u(t), stress T(t) and
strain E(t), developed in an elasto/viscoplasticity body during a load program. If, at a moment t of the process,
one considers all state variable (E,Evp, χ) as known, then, from the constitutive relations (12) and (14), the
dual variables (T,A) might be able to be determined. Therefore, the next step will be obtaining the stress
and strain rate fields that occur in the body when it is submitted to variation in force system F or/and in the
displacement constraints u, during a time interval dt.

In turn, at each moment, this problem consists in finding a stress rate field Ṫ ∈ W ′, a kinematic hardening
rate field χ̇kin ∈ IRn x IRn, a isotropic hardening rate field χ̇iso ∈ IR, a strain rate field Ė ∈ W , a viscoplastic
strain rate field Ėvp ∈ W and a velocity field v ∈ V , such as the following equation system holds

(Ėvp, χ̇) ∈ ∂(T,A)D
c
vp(T,A) (33)

Ė = D v ∀ v ∈ V (34)
〈
Ṫ , D (v∗ − v)

〉
=

〈
Ḟ , (v∗ − v)

〉 ∀v∗ ∈ V (35)

(Ṫ,−Ȧ) = ∇(Ė,χ̇)J (Ė, Ėvp, χ̇) ⇐⇒ (Ė,−χ̇) = ∇(Ṫ,Ȧ)J c(Ṫ, Ėvp, Ȧ) (36)

For a tridimensional continuum, under infinitesimal strain assumption, the tangent deformation operator
D, matches the symmetric part of the gradient ∇s. The potentials J and J c are defined by Eqs. (21) and
(23), respectively. The dual dissipated function that defines the internal variable evolutive laws, Eq. (33), can
be expressed by Eq. (31).

In the following part, one can see that a solution for this system is also the solution for a mixed variational
principle, defined in function of velocity, stress rate and hardening rate fields.

The fields (Ṫ, Ȧ), solutions for this system, are associated with the total and viscoplastic strain rate fields
and with the kinematic and isotropic hardening rate fields by the constitutive relation (36). Then by the
gradient definition

〈J (Ė∗, Ėvp, χ̇)
〉−〈

Ṫ , Ė∗
〉 ≥ 〈J (Ė, Ėvp, χ̇)

〉−〈
Ṫ , Ė

〉 ∀E∗ (37)



where
〈J 〉

is the global energy for the rates, defined by
〈J 〉

=
∫
B J dB . Moreover, by substituting Eqs.(34)

and (35) in Eq. (37) it is shown that

〈J (Dv∗, Ėvp, χ̇)
〉− 〈

Ḟ , (v∗ − v)
〉 ≥ 〈J (Dv, Ėvp, χ̇)

〉 ∀v∗ ∈ V (38)

Let Π(v) be defined as

Π(v) =
〈J (Dv, Ėvp, χ̇)

〉−〈
Ḟ,v

〉
=

〈1
2
ID(Dv − Ėvp) · (Dv − Ėvp)

〉
+

〈1
2

H χ̇ · χ̇〉− 〈
Ḟ,v

〉
(39)

for (Ėvp, χ̇) complying with the flux law (33). Thus, from (37) and from the Π(v) definition (39) the Principle
of Minimum Energy is stated (Feijóo and Taroco, 1980; Angelis, 2000):

Find v ∈ V , such that

Π̂(v) = inf
v∗∈V

Π(v∗) (40)

The mixed principle is derived from (40) by applying the Legendre-Fenchel transformation

〈J (Ė, Ėvp, χ̇)
〉

= sup
Ṫ∗ , Ȧ

[〈
Ṫ∗, Ė

〉−〈Ȧ∗
, χ̇

〉 − 〈J c(Ṫ∗, Ėvp, Ȧ∗
)
〉]

(41)

The consideration of (23) in (41), followed by the substitution of the result in (40), leads to a mixed principle,
which is denoted as the Hellinger-Reissner Principle.

For (Ėvp, χ̇) complying with the flux law (33), find v ∈ V , Ṫ ∈ W ′ such that

Π̂HR(v, Ṫ) = inf
v∗∈V 0

sup
Ṫ∗∈W ′

[
−1

2
〈
Ṫ∗, ID−1Ṫ∗

〉
+

〈
Ṫ∗,Dv∗

〉− 〈
Ṫ∗, Ėvp

〉
+

1
2
〈
Hχ̇, χ̇

〉−
〈
Ṫ∗n,v∗ − v̄

〉
Γv
−〈

Ḟ,v∗
〉] (42)

where
〈
., .

〉
Γv

denotes the integral over Γv and the vector n is the outward unit normal to Γ.

4. Finite element models for mixed formulation

In this section a brief description of the discretization procedure is presented for the purpose of characterizing
the structure of the discrete viscoplastic problem arising from the mixed principle which was presented in Section
3. Finite element models are considered for plane stress and plane strain conditions in bodies composed by
materials obeying the von Mises yield criterion and Perzyna-like viscoplastic model. For the sake of brevity,
only no hardening materials are considered.

4.1. Two-dimensional models

In two-dimensional models the deformation process can be described by means of the velocity field:

v = [ vx vy ]T (43)

For no hardening materials, under plane stress condition the other comprised fields are

Ṫ = [ Ṫx Ṫy

√
2 Ṫxy ]T Ė = [ Ėx Ėy

√
2 Ėxy ]T Ėvp = [ Ėvpx Ėvpy

√
2Ėvpxy ]T (44)

and for the plane strain are

Ṫ = [ Ṫx Ṫy Ṫz

√
2 Ṫxy ]T Ė = [ Ėx Ėy 0

√
2 Ėxy ]T Ėvp = [ Ėvpx Ėvpy Ėvpz

√
2Ėvpxy ]T (45)

where Ṫ, Ė and Ėvp are vectors which represent velocity, stress rate, total strain rate and viscoplastic strain
rate fields, respectively.

Because of the vector representation of the tensorial fields the deformation operators for plane stress and
plane strain states are set as

D =




∂
∂x 0

0 ∂
∂y

1√
2

∂
∂y

1√
2

∂
∂x




and D =




∂
∂x 0

0 ∂
∂y

0 0

1√
2

∂
∂y

1√
2

∂
∂x




(46)



In the notation of these two-dimensional models, the Von Mises yield function f(T) is written as

f(T) =

√
3
2
‖S‖ − σY ‖S‖ =

√
1
2
CT ·T (47)

where σY is the material yield limit in pure traction and S is the deviatoric part of the tensor T.
For plane stress and plane strain state the matrix C is set, respectively, as

C =




4/3 −2/3 0
−2/3 4/3 0

0 0 2


 C =




4/3 −2/3 −2/3 0
−2/3 4/3 −2/3 0
−2/3 −2/3 4/3 0

0 0 0 2


 (48)

Since for Mises criterion the yield function is regular the flow rule can be expressed as in Eq (32). If,
additionally, an exponential law for the Perzyna model is adopted(Perzyna, 1998; Angelis, 2000; Alfano et al.,
2001), the evolution relation (32) can be written as

Ėvp = λ̇(T)∇Tf(T) (49)

where

λ̇(T) = η

(
f+(T)

σY

)n

and ∇Tf(T) =
1
2

√
3
2
CT
‖S‖ (50)

in which n is a material property.

4.2. Mixed discretization

Here a general procedure for the discretization of the mixed formulation (42) is discussed and some the
particular features of proposed mixed triangular are emphasized. A curved triangular mixed element, denoted
V2T1, is proposed(Borges et al., 1995; Costa and Borges, 2002), having six nodes intended for the C0-quadratic
interpolation of geometry and velocities and three nodes, at vertices, for the discontinuous linear interpolation
of viscoplastic strain rates, stress rates and stresses.

Hereinafter, the following notation is adopted: a superimposed hat is used to distinguish variables or
parameters of the continuum model from their discrete counterparts.

The mixed formulation assumes independent interpolations for the stress rates and the velocities. Therefore,
for each element T i in a triangulation T over the domain B, the interpolations for velocities and stress rates
are defined as

v̂(x) = Nv(x) vi ,
̂̇T(x) = NT (x) Ṫi (51)

where the vectors vi, Ṫi are the interpolation parameters for the element i. In this case vi ∈ IR12 and Ti ∈ IR3bq,
with q̂ = 3 for plane stress and q̂ = 4 for plane strain. The functions Nv(x) and NT (x) are, respectively, the
matrices of quadratic and linear shape functions. The same way, viscoplastic strain rate is defined as

̂̇Evp(x) = NT (x) Ėi
vp (52)

with the parameters Ėi
vp determined by considering a discrete form for the flow rule (49). The adopted in-

terpolation for viscoplastic strain rate is chosen equal to stress because they are closed linked by the flow
rule.

A discrete version for the flow rule is obtained by the collocation method, that is, a set of points are chosen
in each element to enforce this rule. The points selection is addressed by the yield function behaviour. It
is because the convexity of the yield function f(T̂(x)) and the piecewise linear interpolation assumed for the
stress field T̂(x) assure that the vertices of the triangles are the points in which the Mises yield function may be
maximum. Therefore, the vertices are the natural chosen points to impose the flow rule. As a consequence, the
vector Ėi

vp is assembled from three disjoint vectors Ėik
vp, which represents the viscoplastic strain rate at each

vertex, and are determined by

Ėik
vp = λ̇(T̂(xk))∇Tf(T̂(xk)) = λ̇(Tik)∇Tf(Tik) k = 1, 2, 3 (53)

where Tik represents the stress parameters at each vertex. Notice that because one can regard inter-element
stress discontinuities and the coordinates xk as coinciding with the vertices coordinates, the vector Ėik

vp ∈ IRq̂

is only dependent on a separate set, Tik, elementary vector Ti components.



Finally, the substitution of the assumed interpolations (51) and (52) in the continuum mixed principle (42)
leads to its discrete version.

Find v ∈ IRN e Ṫ ∈ IRq such that

ΠHR(v, Ṫ) = min
v∗∈ IRN

max
Ṫ∗∈ IRq

[
− 1

2
ID−1 Ṫ∗ · Ṫ∗ + Ṫ∗ ·Bv∗ − Ḟ · v∗ + Ṫ∗ ·Bv̄ − Ṫ∗ ·MĖvp

]
(54)

where N is the number of degrees of freedom in velocities, assuming that all rigid motions are ruled out by
prescribed kinematic constraints. Additionally, the continuity for velocities and the inter-element discontinuity
for stress rates and viscoplastic strain rates are imposed by properly collecting the element vectors vi, Ṫi

and Ėi
vp in global vectors v ,Ṫ and Ėvp. Again, because of inter-element stress rate discontinuity, the rate

parameters, vectores Ṫ and Ėvp, are made up of disjoint sets corresponding to each element. Consequently,
q = 3nel q̂, where nel is the total number of elements in the mesh.

The matrices ID−1, B, M and the vector Ḟ are assembled from elementary contributions of

ID−1i
=

∫

T i

NT
T ÎD

−1
NT dT Bi =

∫

T i

NT
T DNv dT (55)

Mi =
∫

T i

NT
T NT dT Ḟi =

∫

T i

NT
v ḃ dT +

∫

Γi
τ

NT
v ȧ dΓτ (56)

with ÎD
−1

given by (17).

The matrices ID−1i
and Mi are written as

ID−1i
=




A−1
11 ÎD

−1
A−1

12 ÎD
−1

A−1
13 ÎD

−1

A−1
12 ÎD

−1
A−1

22 ÎD
−1

A−1
23 ÎD

−1

A−1
13 ÎD

−1
A−1

23 ÎD
−1

A−1
33 ÎD

−1




Mi =




A−1
11 I A−1

12 I A−1
13 I

A−1
12 I A−1

22 I A−1
23 I

A−1
13 I A−1

23 I A−1
33 I




(57)

where I is the identity matrix [3 x 3] and A−1
ij =

∫
T e hihj dT (i, j = 1, 3), with hi being the lagrangean linear

shape functions. The structure of these matrices and the elementary uncoupling of stress rate and viscoplastic
strain rate parameters have important consequences on the computational feasibility of the discrete algorithm
developed to solve this problem.

For Ḟ ∈ IRN , v = v̄ ∈ Γv, let Ėvp related to the dual sate variable T through (53), it is easy to show that
the min−max principle, Eq. (54), is equivalent to the solution of the following system:

Find Ṫ ∈ IRq and v ∈ IRN , such that:

ID−1 Ṫ−Bv −Bv̄ + MĖvp = 0

BT Ṫ − Ḟ = 0
(58)

The system above can be seen as a discrete version of continuum system (34-36) for no hardening materials
applications. The algorithm solution for the discrete problem is based on Newton-Raphson formula for the
global iteration (58) and an one-step Euler scheme for integration of viscoplastic constitutive equations (53)
(Sluys, 1998).

5. Numerical application

The formulation is tested in a simple uniaxial stress problem, simulated by a two-dimensional plane stress
model. It considers a bar with transversal section A composed by a material that has yield limite σY and Young
modulus E = 1000σY . The load program, shown in Fig. 1, considers a maximum load equal to 2P/AσY . In
Figure 2 the stress versus strain graphs is presented by having two different viscosity coefficients in a linear
Perzyna model. The results are compared with analytical solutions.



Figure 1: Uniaxial Test - Load Program
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Figure 2: Stress x strain - (a) High viscosity (b) Low viscosity

6. Conclusions

A Hellinger-Reisssner variational formulation to deal with elasto/viscoplasticity problems was proposed.
This mixed (min-max)-principle is written as function of stress rates and velocities. The viscoplastic strain rate
is obtained from the flow rule and appears in the functional only as a parameter.

A mixed discretization process, based on a triangular mixed element is proposed. The element holds C0-
quadratic interpolation for geometry and velocities and a piecewise linear interpolation for viscoplastic strain
rates, stress rates and stresses.

The results in a preliminary uniaxial test indicate the viability of the presented mixed methodology. More
advanced applications need to be carried out in order to consolidate the formulation as an effective procedure
for elasto/viscoplasticity. These advanced model must include more complex geometry, hardening or softening
materials and other cycle load programs.

Such advanced features are now being preformed and will be subject of a future report.
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