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Abstract: The Voronoi diagram has as main application in robotics the determination of optimal trajectories for the movement of a
robot in a determined environment. By means of a program developed using concepts of vectorial calculus and analytical geometry
it becomes possible to analyze the distance between two points of the work space, considering the existing obstacles and verifying
the best route to be followed by the robot. For particular environment, the program creates a database storing the information of
the best route. The results found for the application of the program in determined layout had demonstrated the efficiency of the
program. In relation to the difficulty to trace the Voronoi diagram, the most challenging issue is to determine its vertices and the
limits of its edges, task that seems to become more difficult with the increase of the number and complexity of the obstacles. Based in
the results, we come to the conclusion that the program based on the Voronoi diagram can be used as a tool to assist the control
design of a locomotor, being this traditional control (for fixed obstacles) or adaptative control (for mobile obstacles).
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1. Introduction

The objective of the work presented here is the development of an efficient and robust program to find the best path
to be performed by a locomotor robot in determined environment. Through the Voronoi Diagram, the program
determine the faster path between two points (start and goal). Such program could be used in the control of an
autonomous robot in indoor environments, such as: offices and small plants. The main aspect to be considered in the
work is the ability of the robot in walking across the environment turning aside itself of the existing obstacles. So that
the robot can perform this task with efficiency is necessary to get a mapping of the place. According to Setalaphruk et
al. (2002), this information can to either be obtained by active exploration of the environment, or be supplied by human.

Exist many works about active exploration and environment mapping, such as: Leonard and Durrant-Whyte (1991),
Ersson and Hu (2001). These methods enable robot to gain knowledge about the environment, hopefully without need
of human intervention. Such procedure is many times complex and with difficult implementation. Alternatively, the
robot can use a map provided by human, but such map usually requires a lot of details, some of which are not easily
accessible by human. A solution in this case would be the use of floor plans found in buildings. In our work the map of
the environment is supplied to the robot previously. Such map is sufficiently simplified, contends few obstacles, since
our greater motivation is the creation of a functional program to determine the best path to be made by the robot.

In more complex works, the obstacles are mobile (or changeable) or then unknown. In these cases we have an
environment that isn’t known previously, then becomes necessary to realize a update of information that consider the
changes in the place, making a replanning of the trajectory that will be executed by the robot. An excellent work about
this subject is presented by Koenig and Likhachev (2002). Other works related to the subject studied here are presented
by Trovato (1990), Latombe (1991), and Hoff III et al. (1999).

2. Used geometric calculations

To construct the Voronoi diagram is necessary to perform a series of geometric calculations. In this section we
present some of the mathematical concepts of vectorial calculus and analytical geometry (Steinbruch and Winterle,
1987) used in the development of the program. All the other used calculations are trivial and they do not need
commentary.

2.1. Angle between two straight lines

Consider the straight lines r1, that it passes for the point A1 (x1, y1) and has the direction of a vector 1v
r

 = (a1, b1),
and r2, that it passes for the point A2 (x2, y2) and has the direction of a vector 2v

r
 = (a2, b2) (see Fig. (1)). Is called angle
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between two straight lines r1 and r2 the minor angle between a director vector of r1 and a director vector of r2. Then, if θ
is that angle, we have:
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In the Fig. (1), the angle α is the supplement of θ, therefore, cos α = −cos θ. The angle α is the angle formed by
1v
r

−  and 2v
r

 or 1v
r

 and 2v
r

− .

Figure 1. Angle between two straight lines (Steinbruch and Winterle, 1987).

2.2. Parallelism condition of two straight lines

The parallelism condition of two straight lines r1 and r2 is the same one of the vectors 1v
r

 = (a1, b1) and 2v
r

 = (a2,
b2), that define the directions of these straight lines, that is:

1v
r

 = m 2v
r

(3)

or:
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Consider a straight line r1, that it passes for a point A1 (x1, y1) and has the direction of a vector 1vr  = (a1, b1), express
for the equation:
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Any straight line r2, parallel to the straight line r1, has director parameters a2, b2, proportional to the director
parameters a1, b1, of r1. In particular, a1, b1, are director parameters of any parallel straight line to the straight line r1. In
these conditions, if A2 (x2, y2) is a any point of the space, the equation of the parallel to the straight line r1, that it passes
for A2, is:
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If the straight lines r1 and r2 will be express, respectively, for the reduced equations:

r1: 11 n x m y += (7)

and

r2: , n x m y 22 += (8)

whose directions are given, respectively for the vectors 1v
r

 = (1, m1) and 2v
r

 = (1, m2), the parallelism condition allows
to write:
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or:

m1 = m2 (10)

2.3. Perpendicular condition of two straight lines

Perpendicular condition of two straight lines r1 and r2 is the same one of the vectors 1v
r

 = (a1, b1) and 2v
r

 = (a2, b2),
that define the directions of these straight lines, that is:

1v
r

 . 2v
r

 = 0 (11)

or:

2121 bb  aa + = 0 (12)

2.4. Distance between two points

The distance d between the points P1 (x1, y1) and P2 (x2, y2) is the modulus of vector 21PP , that is:

d(P1, P2) = | 21PP | (13)

and, therefore:

d(P1, P2) = 2
12

2
12 )y  (y  ) x (x −+− (14)

2.5. Distance of a point to a straight line

Consider the straight line r defined for a point P1 (x1, y1) and by director vector v
r

 = (a, b) and consider P0 (x0, y0) a

any point of the space. The vectors v
r

 and 01PP  determine a parallelogram whose height corresponds a distance d of
the P0 to r that we intend to calculate (see Fig. (2)).

The area of the parallelogram is given by the product of the base for the height:

A = | v
r

| d (15)

or, in accordance with the geometric interpretation of the modulus of the vectorial product, for:
A = | v

r
 × 01PP | (16)

Equaling the Eq. (15) and (16), we have:
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Figure 2. Distance of a point to a straight line (Steinbruch and Winterle, 1987).

3. Development of the program

The program was developed using the Delphi language (Borland Delphi 4.0, Copyright 1983, 1998, Inprise
Corporation). In relation to the structure of data, all the data of the Voronoi diagram are stored in text format thus that
they are calculated. These data can recorded and be consulted in any text editor.

By means of the program developed using concepts of vectorial calculus and analytical geometry it becomes
possible to analyze the distance between two points of the work space, considering the existing obstacles and verifying
the best route to be followed by the robot. For particular environment, the program creates a database storing the
information of the best route.

To specify the called “edges of Voronoi”, the program uses geometric calculations of mediatrix and bisectrix. In
principle, the edges of Voronoi are calculated between the external limits of the environment. To follow, for each edge
of each one of the obstacles located in the environment, the existing edges of Voronoi between the edges of the obstacle
and the limits of the environment are calculated, as well as it between the edges of each obstacle and the visible edges
of the other obstacles. In certain points, the program uses parabolas to conclude the construction of the Voronoi
diagram. This is necessary so that in any point of the path, the distances between the edges of Voronoi and the limits of
the environment and/or visible obstacles are equal. The vertices of Voronoi are characterized by the intersection of two
or more edges of Voronoi. Table (1) presents the algorithm to compute an edge of Voronoi. Table (2) presents the
algorithm to determine the Voronoi diagram.

Table 1. Algorithm to compute an edge of Voronoi.

Input: Two segments
Output: An edge of Voronoi

procedure ComputeEdgeVoronoi(segment1, segment2);
begin
  // Compute the boundaries of the bisectrix
  // that will be part of the edge
  Bisectrix(segment1, segment2);

  // Compute the boundaries of the parabolas
  // traced at each end of the bisectrix
  Parabola(segment1, segment2);

  // Compute the boundaries of the mediatrices
  // traced at the end of the parabolas
  Mediatrix(segment1, segment2);

  Report edge of Voronoi;
end;



Table 2. Algorithm to determine the Voronoi diagram.

Input: A set of obstacles and the definitions of the
       environment´s borders (upper, lower, left and right)
Output: A Voronoi diagram

procedure Voronoi(obstacles, borders);
begin
  // Compute the edges of Voronoi between the borders of the
  // environment
  for each pair of borders B1 and B2 do
    ComputeEdgeVoronoi(B1, B2);

  for each obstacle Obst do
  begin
    for each edge E of Obst do
    begin
      // Compute the edges of Voronoi between the obstacle´s
      // edge and the borders of the environment
      for each border B do
        ComputeEdgeVoronoi(E, B);

      // Compute the edges of Voronoi between the obstacle´s
      // edge and the edges of the other obstacles
      for each obstacle Obst2 do
        for each edge E2 of Obst2 do
          ComputeEdgeVoronoi(E, E2);
    end;
  end;

  Report Voronoi diagram;
end;

4. Application Example

The program for determination of the movement trajectory of the robot needs in principle of the two-dimensional
mapping of the region where the robot will go to operate. Such mapping must include the existing obstacles in the
place, which are represented by polygons of diverse forms. We define an environment as shown in the Fig. (3).

Figure 3. Environment where the robot will go to operate.

After to define the environment, the program supplies the Voronoi diagram, that is characterized by lines that
denote the best paths to be traversed, avoiding the obstacles and keeping a determined distance between the limits and
edges (see Fig. (4)).



Figure 4. Voronoi diagram.

With the Voronoi diagram we can define two points in the environment, being one start and another goal (see Fig.
(5)), evaluating the best path to be made by the robot (Fig. (6)).

Figure 5. Environment with the start and goal points of the path.

(a) (b)

Figure 6. Voronoi diagram with the start and goal points (a) and better path to be made by the robot (b).

Figure (6-b) was constructed from the Fig. (6-a), supplied by the program, to emphasize the best path to be
performed by the robot. The points without continuity are vertices of Voronoi, that are characterized by the intersection
of two or more edges of Voronoi.

It is interesting to notice that a small change in the localization of one of the points can modify the choice of the
path. We present in the Fig. (7) the environment with the same start point, but with the goal point a little displaced for
right. In this case the best path to be made by the robot finishes if modifying (see Fig. (8)).



Figure 7. Environment with the goal point a little displaced for right.

(a) (b)

Figure 8. Voronoi diagram with the start and goal points (a) and better path to be made by the robot (b).

Similarly to Fig. (6), Fig. (8-b) was constructed from the Fig. (8-a), supplied by the program, to emphasize the best
path to be performed by the robot. The movement trajectories can be executed by the most of the mobile robots.

5. Conclusion

In this work, we create a program that can be used in robot navigation, from a given simplified map of a determined
environment. The simplified map of the environment, which can be easily created, is obviously useful as an easy way to
give information to the robot, enable it to navigate efficiently across the environment without having to spend time
wandering around learning the map. In the application example we use a simple environment, but it is possible to define
a more complex environment with walls, corridors, rooms, doors and other obstacles, characterizing offices or small
plants.

The results found for the application of the program in determined layout had demonstrated the efficiency of the
program. In relation to the difficulty to trace the Voronoi diagram, the most challenging issue is to determine its vertices
and the limits of its edges, task that seems to become more difficult with the increase of the number and complexity of
the obstacles. Based in the results, we come to the conclusion that the program based on the Voronoi diagram can be
used as a tool to assist the control design of a locomotor, being this traditional control (for fixed obstacles) or adaptative
control (for mobile obstacles).
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