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Abstract.This work concerns with a numerical investigation of particle velocity fluctuations in a blob undergoing gravity induced sed-
imentation at low Reynolds number. The simulations were performed by direct computation of the hydrodynamic interactions between
a large collection of spherical particles. We focus our attention on both monodisperse and slightly polydisperse spherical aggregates
comprised of inertialess particles whose radii have a Gaussian distribution about the mean. At vanishing particle Stokes number the
dispersed particles undergo stochastic displacements arising from the random ambient field of the fluid velocity and not from direct
solid-body collisions. As the sedimentation proceeds, a monodisperse blob persists as a cohesive entity with sporadic outward particle
crossings of the blob boundary. A scaling argument for the rate at which the particles leak away from the aggregate was developed.
When a sufficiently high degree of polydispersity is introduced the aggregate will behave differently from a monodisperse blob de-
pending on the solid volume fraction. The observed fluctuating motion of the particles leads to the definition of a particle pressure
associated with the particulate phase of the blob if it is regarded as an effective continuum. For polydisperse blobs, the tendency to
a particle spreading induced by velocity fluctuations makes clear the effect of the particle pressure on resisting the formation of solid
volume fraction inhomogeneities in suspension flows.
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1. Introduction

In recent years, considerable attention has been focused on modelling the behaviour of fluid-particle systems, and
in particular the behaviour of velocity fluctuations in a system of spherical particles sedimenting through a Newtonian
fluid. In this context, computer simulations offer a way to gain some understanding on the complex relation between the
microstructure of a suspension (i. e. the spatial arrangement of particles and their size distribution) and its macroscopic
behaviour.

A class of algorithms known as Stokesian dynamics developed by Brady and Bossis (1988) has been widely employed
in both Monte Carlo and dynamic simulations of suspension flow. This approach provides valuable results for the bulk
properties of interest, such as effective viscosities, sedimentation rates, among many others. The problem of calculating
hydrodynamic interactions among a large collection of particles and following their motion individually to determine
average properties of the suspension can be computationally intensive. In the present work, the numerical method used
to investigate particle velocity fluctuations in a sedimenting suspension is based on the Stokesian Dynamics approach and
accounts for the long-ranged hydrodynamic interactions calculated in a pairwise additive manner.

In the midst of a sedimenting suspension, regions of particle density higher than average are constantly being formed
and destroyed. These regions, to which one refers as blobs, may be studied in isolation in order to identify separately
the mechanisms involved in the desintegration or preservation of such groups of particles. In this context, Nitsche and
Batchelor (1997) investigated the consequences of the randomness of the particle trajectories on the behaviour of a cloud
of particles sedimenting in a Newtonian fluid. They have performed simple calculations considering only a monopole
representation of the hydrodynamic interactions. They reported that a group of particles clumped together in a nearly
spherical blob remain together for long times. Their analysis, however, could not provide any insight into possible effects
due to polydispersity of the particles.

Numerical simulations of the sedimentation process have been restricted mostly to monodisperse suspensions (Koch,
1994; Ladd, 1993). In this class of suspension, hydrodynamic interactions are the only source of velocity variance. One
may expect that in polydisperse suspensions differences in particle settling rate provide an additional mechanism to the
particle velocity fluctuations. This argument has attracted our interest to the role played by the polydispersity on the
stability of the blob motion. By the term stability one means the feature of an aggregate in preserving itself as a cohesive
entity during the sedimentation process.

In this work we concentrate on the density dependence of the macroscopic properties of a particle agglomerate as
well as the underlying mechanisms that give rise to the observed behaviour. Our phenomenological investigation is based
on a Lagrangian description of both particle and blob motions. One of the aims of the performed calculations is also to
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show qualitative effects of the polydispersity on the blob motion. Here, are considered those cases in which the Reynolds
number is zero and the Péclet number is infinite. The present analysis is also based on the assumption that the inertia of
all particles is negligible.

This paper is organized as follows. In Section 2 the problem is described and the governing physical parameters are
discussed. In Section 3 one presents a brief description of the mathematical formulation. We will not go into the details
of the formulation, since they are covered in some depth in earlier publications (Abade and Cunha; 2001; Cunhaet at.,
2002). Sections 4 and 5 present a short description of some aspects involved in the numerical method. In Section 6 a
scaling argument for the mean sedimentation velocity of an aggregate is developed. The numerical results for static and
dynamical simulations are presented and discussed in Section 7. Section 8 contains conclusions.

2. Statement of the problem

The problem under consideration consists of an aggregate comprised of hydrodynamically interacting spheres sedi-
menting under the influence of gravity through a Newtonian fluid of viscosityµ and densityρf with low-Reynolds-number
flow about each particle. By the term aggregate is meant a finite region containing a nearly spherical dispersion of parti-
cles, with the geometric centre located atx̄. We shall denote byAR(x̄) = {x : |x− x̄| < R the blob domain and by∂AR
its imaginary boundary. The complementary toAR(x̄) with respect to the cell domainΩ, denoted byAcR(x̄), is filled by
clear fluid.

Attention is focused on monodisperse and polydisperse suspensions with equidensity particles of varyzing radius. In
Figure 1 it is shown a schematic representation of a polydisperse blob surrounded by clear fluid, under the action of a
uniform gravitational field of intensityg.
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Figure 1: Scheme of a polydisperse blob suspended in a Newtonian fluid under the action of a uniform gravitational field
of intensityg.

In order to better reproduce an actual suspension, it is considered polydispersions having a Gaussian particle-radius
distribution with a controlled variance. The degree of polydispersity is measured by the relative spreadingν, defined by
the ratio between the standard deviation in particle radii about the meanσa and the mean particle radius〈a〉, as follows

ν :=
σa
〈a〉

(1)

For a monodisperse aggregate, the relative spreadingν vanishes.
Numerically, the Gaussian size distributions were generated by using the Box-Muller (1958) algorithm in the version

of Marsaglia (1964) and Knuth (1969).

2.1. Physical parameters

The size of the particles is taken to be large enough so that the Brownian motion is no longer important in determining
the suspension microstructure. We are only interested in the role played by the long ranged hydrodynamic interactions
mediated by the suspending fluid. A measure of the relative importance of the random walk, due to the Brownian diffusion,



and the deterministic gravity induced motion is given by the Péclet numberPe, defined as

Pe=
U0〈a〉
D0

(2)

whereD0 is the ordinary Stokes-Einstein diffusivity (Einstein, 1956),U0 = 2(ρ − ρf )〈a〉2g/9µ is the Stokes velocity
andρ denotes the particles density. The present investigation is restricted to the limiting case ofPe� 1.

As we have mentioned, the assumption of paramount importance is that the particle Reynolds number Re:= ρfU0〈a〉/µ
is zero leading to drastic simplifications in the theoretical description of the suspension. The inertia of the suspending
fluid is then negligible and the governing equation for the fluid motion becomes linear.

Another essential feature of the present study is that all particles are regarded to be inertialess. At this condition, the
particle Stokes number, defined as

St :=
mU0

6πµ〈a〉2
(3)

vanishes. At the low-Stokes-number regime, the particles respond instantaneously to hydrodynamic velocity disturbances
in the interstitial fluid and fluid-mediated particle interactions play a dominant role in determining the particle velocity
distribution.

The length quantities are made nondimensional using〈a〉 as the characteristic length scale. Therefore, to each particle
α of radiusaα is associated an aspect ratioλα := aα/〈a〉. Here, the subscriptsα andβ are employed exclusively for
particle labelling. The Stokes hydrodynamic drag6πµ〈a〉U0 is taken as the characteristic reference scale for force.

3. Mathematical formulation

The mathematical formulation of the problem is based on an Eulerian-Lagrangian description of the fluid-particle
system. In such an approach the suspending fluid is treated as a continuum with no internal length scale and its motion is
governed by the Stokes field equations obeying the appropriate conditions at the boundary of the system domain and at the
surface of the particles. The discreteness of the particulate phase is fully taken into account and the motion of the particles
is thus described individually. The particles motion is governed by the Newton’s law and its description involves a set
of ordinary differential equations for the3N degrees of freedom of the particulate system. The equations are integrated
numerically by using a fourth-order Runge-Kutta scheme.

The numerical system consists of a unit cellΩ = [0, d)×[0, `)×[0, h) containing an aggregate withN non-overlapping
spherical particles in its interior. The simulation cell is replicated in a periodic manner filling the whole of space so that
the blob microstructure in the unit cell is repeated in each direction.

Once specified the forcesF α (α = 1, 2, . . . , N) acting on the particles and assuming all particles to be torque-free,
their translational velocitiesUα (α = 1, 2, . . . , N) are determined by the mobility relation (Kim and Karrila, 1991)

U1

U2

...
UN

 =


M11 M12 · · · M1N

M21 M22 · · · M2N

...
...

...
...

MN1 MN2 · · · MNN




F 1

F 2

...
FN

 (4)

where the square matrix is the grand mobility matrix which contains the second-rank tensorsMαβ (α, β = 1, 2, . . . , N ).
It should be noted that when carrying out the multiplication in the matrix equation (Eq. 4), the ordinary contraction
between the tensors and vectors will be made.

The matrixMαα is defined as the self-mobility associated with theαth particle and the matrixMαβ is defined
as the long-ranged two-sphere interaction mobility relative to the pair(α, β). For calculating the mobility tensors it
was implemented the Ewald summation technique employing the method derived by Beenakker (1982). The numerical
procedure to compute a far-field approximation to the grand mobility matrix has been described by Cunhaet al. (2002),
and we shall not repeat the detailed development.

Since the system is under the action of gravity and the particles are torque-free, the forceF α acting on a particleα is
given by

F α = −λ3
αe3 + fα (5)

The term−λ3
αe3 is the net weight of the particleα andfα is a pairwise short-range repulsive interaction which

mimics either lubrication or contact forces. These short-range forces are explained in more detail in the following section.

4. Sampling technique

The simulation of particulate systems involves an essential step which is the generation of particle distributions that
accurately reflects the microstructure of a real system. The scheme to generate random particle configurations in the unit



cell depends strongly on the particle volume fraction. Since this study is restricted to dilute systems (φ < 0.27), the
generation procedure is quite simple and begins by placing sequentially the required numberN of particles randomly
within the cell domainΩ under the nonoverlap condition. The hard-sphere system is then subject to an equilibration
process by employing the algorithm described in some detail in earlier publications (Abade and Cunha, 2001; Cunha
et al., 2002). As a result, the numerical procedure provides an ergodic ensemble comprised of samples consisting of
equally probable nonoverlapping particle configurations. In Monte Carlo simulations, the generated particle arrangements
constitutes the static configurations for which the transport properties of interest is calculated, and then averaged to obtain
the mean values that describe the macroscopic behaviour of the system. In dynamic simulations the independent particle
configurations constitute the initial condition of the suspension microstructure which evolves in time. In such class of
simulation the configuration dependent properties of the system is calculated for thousands of time steps and ensemble
averages are taken over several runs.

5. Pairwise interparticle forces

In the far-field representation of the hydrodynamic interactions considered here lubrication forces are not correctly
accounted for and therefore we add an explicit short-range interparticle interaction to ensure that the particles will not
overlap during the time evolution. In dynamic simulations, particle overlappings could produce large spurious effect on
both particle and fluid velocity owing to the singularities of the far-field mobility functions.

The lubrication force is artificially modelled by the following expression (Cunha, 1995)

fα` = C1ηpλ
3
pexp

[
− δαβ
λpC2

]
r̂, for 0 < δαβ < δ0 (6)

whereC1 andC2 are arbitrary numerical parameters which represent, respectively, the intensity and the range of the
repulsive force,δαβ = |xβ −xα| − (λs + λp) is the gap between the approaching particles andδ0 is the interparticle gap
for which the forcefα` is cut off.

Although the lubrication forces diverges when the particles come close providing a strong hydrodynamic resistance
to particle contacts, it is considered in addition a restoring forcefαc due to eventual direct particle collisions arising from
numerical inaccuracies. For simplicity it was employed a linear force-displacement relation for the interparticle contact in
such a way that the normal elastic force is proportional to the virtual overlapεαβ = −δαβ (i. e. the relative displacement
after initial contact) of the particles

fαc = −Kεαβ r̂, for εαβ > 0 (7)

whereK is the contact stiffness, assumed to be constant, whose value depends on the elastic and geometrical properties
of the colliding particles.

It is worth noting that for suspensions of particles free of inertia, the introduction of contact forces between particles
as we have made is just a numerical contrivance. Here, we are not interested in an accurate modeling of the interparticle
contact since solid body collisions do not play a dominant role in determining the velocity distribution in a suspension
of inertialess particles. Moreover, the macroscopic properties of the system were found to be insensitive to the force-
displacement relation adopted for interactions of short-range nature.

6. Scaling arguments

If the aggregate is regarded as a continuous and a nearly spherical distribution of excess mass4/3πR3φρ, a scaling
argument for the mean sedimentation velocity〈Ua〉 of the blob can be determined by balancing the Stokes drag with the
net weight of the blob (the weight of the blob compensated for the Archimedian buoyancy force), as follows

6πµR〈Ua〉 ∼
4
3
πR3φ(ρ− ρf )g (8)

The velocity〈Ua〉 is then taken to be

〈Ua〉 ∼
2

9µ
〈a〉2(ρ− ρf )gNε (9)

whereε := 〈a〉/R and the solid volume fractionφ was approximated byφ ≈ Nε3.
In terms of the Stokes velocity,

〈Ua〉
U0
∼ Nε or

〈Ua〉
U0
∼ φε−2 (10)

Considering that〈Ua〉/U0 approaches unity for the limiting case in whichφ approaches 0

〈Ua〉
U0
∼ 1 + Saφaε

−2 (11)

whereSa is anO(1) sedimentation coefficient to be determined from the simulations.



7. Numerical results

7.1. Static simulations

In this section, results for the mean sedimentation velocity for monodisperse aggregates are presented in comparison
with the scaling argument derived in the preceding section. The numerical results were obtained from Monte Carlo
simulations for independent and random configurations of particles.

In Figure 2 the results for the mean settling velocity〈Ua〉 as a function of the parameterφε−2 are presented. The mean
values and the statistical errors were evaluated over 30 random and independent static configurations. It is found that〈Ua〉
increases monotonically withφε−2 but deviates from the linear behaviour predicted by Eq. 11 at higher concentrations.
In fact, the scaling argument is a leading order approximation and does not capture the effect of the hydrodynamic in-
teractions. In the semidilute concentration range (0 < φ < 0.15), the far-field approximation for the hydrodynamic
interactions considered here provides results for the mean settling rate as a function ofφ in good agreement with experi-
mental correlations (Cunhaet al., 2002).

In the range of the parameterφε−2 corresponding to the dilute regime, the numerical results for〈Ua〉/U0 yield good
agreement with the relation given by Eq. 11 for a sedimentation coefficientSa = 37
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Figure 2: Mean settling velocity of a monodisperse aggregate as a function of the parameterφε−2. The solid line is the
linear fit 〈Ua〉/U0 = 1 + 37

20φε
−2 +O(φ2).

7.2. Dynamical simulations

In this section, results from dynamical simulations following the detailed motion of individual particles are presented.
The simulations were carried out with aggregates comprising typically 300 particles. Different values for the solid volume
fractions in the blob were then imposed only by varying its radius. The unit cell was taken to be large enough (`/R ∼ 103)
to minimize the long-range effects of the particle images replicated periodically throughout the space.

In dynamic simulations based on a mobility formulation, the sedimenting particles does not start from rest. Owing to
the absence of particle inertia, at the initial stages of the time evolution the blob is already settling with terminal velocity
which is much faster than the sedimentation velocity of the individual particles. If the motion is observed with respect
to a frame of reference moving with the average sedimentation velocity, the particles initially placed at the periphery
of the agglomerate are convected outward by the ascending flow. This causes a stretching of the blob which exhibits a
temporary and significant deviation from the spherical shape. This initial regime seems to be intrinsic to the numerical
procedure and also to the assumption thatSt� 1. We have reported that the transient sedimentation is as short as higher
is the concentration of the blob. Such a transient regime occurring in a short period of time appears to be unrealistic, and
therefore it will not be considered in the present analysis.

As the sedimentation proceeds, the blob motion evolves to a steady state regime when the aggregate recovers its
roughly spherical shape. The aggregate remains cohesive while some particles escape from its interior very slowly.
The quantitative analysis and the determination of the collective properties of the aggregate are restricted to the steady
sedimentation.

Figure 3 shows the snapshots of a typical time evolution of a monodisperse aggregate. Figure 3a illustrates the
initial regime, characterized by a strong particle flux across the blob boundary. The second regime is shown in Fig.



3b, and the long time coherence of the blob reported by Nitsche and Batchelor (1997) can be observed. Figure 3b also
demonstrates that at the steady sedimentation the particles leak away from blob sporadically forming a wake of particles
aligned vertically.
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Figure 3: Typical time evolution of a sedimenting monodisperse aggregate withφ = 0.07. The dashed circles represent
the blob boundary. (a) Snapshots for the transient regime; (b) snapshots for the steady sedimentation.

7.3. Particle leakage from the blob

In order to determine the rate at which particles leak away from the blob, the number of particles leaving the aggregate
was monitored. During the time evolution, a particleα with centre atxα is classified as belonging to the blob domain
AR(x̄) if |xα − x̄| < 5

4R. This criterion, based on a cut off radius greater thanR, ensures that small deviations of the
blob geometry from the initial spherical shape will not mask the results for the particle leakage from the blob.

Before presenting the numerical results, an estimate of the rate at which the particles are shed may be derived by means
of a simple physical argument. Such an argument is based on the idea that the particle flux across the blob boundary is
induced by the velocity fluctuationsV ′ about the mean.

The rate of particle crossings of a surface of areaπε−2 is given by

dN
dt
∼ −nV ′πε−2 (12)

wheren is the number density andV ′ denotes the velocity of the particles relative to the surface.
The magnitude ofV ′, for the dilute limit, is given by (Cunha, 1995)

V ′ ∼ 〈Ua〉√
N

(13)



where
√
N is a typical fluctuation onN for a suspension of uniformly distributed particles. Invoking the Eq. 10,V ′ can

be written as

V ′ ∼ ε
√
N (14)

Substituting this result into Eq. 12 and using the definition of number densityn(= 3N/4πε3), we obtain

dN
dt
∼ −3

4
N3/2ε2 (15)

Assuming that the blob radius remains constant with time, which seems to be reasonable for the steady regime, the
integration of the Eq. 15 becomes straightforward. Carrying out the integration and after some algebraic manipulations,
one obtains the following expression for the number of particles∆N(t) := N0 −N(t) that have leaked from the blob as
a function of timet

∆N(t) ∼ N0

[
1− 1

(1 + κt)2

]
(16)

where

κ ∼ 3
8

√
N0ε

2 (17)

Figure 4 shows the number of particles that have leaked away from the blob as a function of the nondimensional time in
comparison with the relation predicted by the Eq.16. The presented results are for monodisperse aggregates withφ = 0.03
(Fig. 4a) andφ = 0.05 (Fig. 4b). The numerical results plotted in Fig. 4 are in good agreement with the functional relation
given by Eq. 16. To fit the curve to the computed points, we have adjusted the numerical constants involved in the Eqs.
16 and 17. Similar agreement has been verified for solid volume fractions in the range0.07 < φ < 0.15.
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Figure 4: Numerical results for the number of particles that have shed from the blob as a function of the dimensionless
time in comparison with the prediction given by Eq. 16. (a)φ = 0.03; (b) φ = 0.05.

Looking at the trajectories of the particles with respect to a frame of reference which moves with the average settling
velocity of the blob, the ambient flow within the aggregate is very similar to the toroidal circulation observed in a sedi-
menting fluid drop (Batchelor, 1967). Owing to the hydrodynamic interactions, the particles exhibit stochastic motions
superimposed to the deterministic gravity induced sedimentation. Figure 5a shows typical pathlines of some individual
particles relative to the blob centre of mass located atx̄. Figure 5b illustrates the trajectory of a particle which performed
a circulatory motion in the interior of the blob and then reached its periphery being swept by the surrounding flow.

A close look at the pattern of particle trajectories presented in Fig. 5 allows us to speculate that the velocity fluctuations
may depend on the size of the blob. This size dependence of the velocity fluctuations was verified from the present
simulations for both monodisperse and polydisperse aggregates for different values of the parameterν. In view of this, we
cannot provide the concentration dependence for those effective properties arising from the particle velocity fluctuations
in the microscale, such as particle pressure. Therefore, we will concentrate on a qualitative discussion concerning the
effects of both solid volume fraction and polydispersity.
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Figure 5: Typical pathlines of particles in the interior of the aggregate (a) and the trajectory of a particle which has leaked
from the blob (b). The coordinates̃x andz̃ are relative to the blob centre of massx̄.

7.4. Effects of the polydispersity

In this section some effects of the polydispersity on the blob evolution are discussed qualitatively. In particular, we
have focused on how polydispersity affects the particle velocity variance and the consequences on the global behaviour of
a sedimenting blob.

As we have mentioned, differences in particle settling rates due to the polydispersity constitutes an alternative source
of velocity fluctuations. Thus, one may expect that increasing the parameterν, the velocity variance will increase as well
as the rate of particle leakage.

Figure 6a shows the numerical results for∆N as a function of time for an aggregate withφ = 0.09 for three different
values of the parameterν. It can be seen that greater values of the rate of particle leakage are connected with greater
values of the parameterν. Such a result is in accordance with an intuitive argument that polydispersity intensifies the
hydrodynamic interactions supplying energy to the particle velocity fluctuations. Thus, the lifetime of an aggregate with
a polydispersity parameter sufficiently high tends to be smaller.

Figure 6b illustrates typical snapshots of sedimenting blobs (φ = 0.09) with different values of the polydispersity
parameterν. It may be noticed from these pictures that forν ≤ 0.30 there is no significant differences in the particle
configurations at each instant of the time evolution. For this range of the parameterν, the particles at the rear of the blob
lie along a nearly vertical line. However, forν = 0.4, the blob performs observable deviations from its roughly spherical
shape and the wake of particles emanating from the rear becomes thicker and unstable.

8. Conclusions

Numerical simulations of the microstructure of a sedimenting blob containing non-Brownian particles were performed
in a scenario in which both particle and fluid inertia are negligible. From static simulations, results for the mean settling
velocity of a monodisperse aggregate as a function of the parameterφε−2 were obtained and found to be in agreement
with scaling arguments at dilute conditions. Dynamic simulations of the blob flow showed that monodisperse and slightly
polydisperse aggregates persists as cohesive entities with sporadic particle crossings of the blob boundary. The rate of
particle shedding was determined for different solid volume fractions and compared with the prediction of simple scaling
analysis.

At dilute conditions, we have reported that slightly polydisperse aggregates do not sediment differently from monodis-
perse ones. Aggregates with higher solid volume fractions seem to be more sensitive to the effects of polydispersity. When
the degree of polydispersity is increased, the particles tend to spread out owing to their velocity variance. The intensifi-
cation of particle velocity fluctuation decreases the time coherence of the blob. The observed fluctuating motion of the
particles leads to the definition of a particle pressure associated with the particulate phase of the blob if it is regarded as
an effective continuum. This tendency to a particle spreading makes clear the effect of the particle pressure on resisting
the formation of solid volume fraction inhomogeneities in suspension flows.
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Figure 6: Illustration of the polydispersity effects on the time evolution of a blob withφ = 0.09. (a) Numerical results for
the number of particles that have shed from the blob as a function of the dimensionless time.•: ν = 0; ◦: ν = 0.30; 2:
ν = 0.40. (b) Representative snapshots at 25tU0/〈a〉 for three different values ofν.
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