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Abstract. The use of electric motors in industry is extensive and they are exposed to a wide variety of incipient faults. These incipient
faults, if left undetected, contribute to the degradation and eventual failure of the motors. With proper monitoring and fault
detection schemes, the incipient faults can be detected; thus maintenance and down time expensive can be reduced while also
improving safety. The HY_NES, a new approach behind a novel hybrid neural/expert system technologies to solve fault detection
from mechanical and electrical sources beyond normal condition, is shown. Those excitations have been obtained through
experimental tests repeated fifty times randomly for the same conditions for each failure. The signals have been acquired in the both
sides of the motor on the radial and axial directions. It will be also employed a selective filter used to reduce the number of
parameters to represent the signals of excitations during the 72 artificial neural networks training. It has been implemented 199
rules in the expert system that can easily provide heuristics reasoning for the artificial neural network outputs. The results obtained
confirmed the efficiency of the hybrid system HY_NES and its relevance as a promising approach to diagnose faults in induction
motors on-line as well as included in maintenance programs.
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1. Introduction  

The use of electric motors in industry is extensive. These motors are exposed to a wide variety of environments and
conditions which age of the motor and make it subject to incipient faults. These incipient faults, if left undetected,
contribute to the degradation and eventual failure of the motors. With proper monitoring and fault detection schemes,
the incipient faults can be detected; thus maintenance and down time expensive can be reduced besides improving
safety, Goode and Chow (1995).

There are currently two major classes of motor fault detection techniques: model-based methods and knowledge-
based methods (Li et al., 1997 and Chow, 1997). The first one, which is based on mathematical model of the system of
interest, isn’t often robust enough in the presence of noise and other perturbations (Chow and Yee, 1990 and Trutt et al.,
1993). The goal of the second method is to teach a machine to mimic knowledge and tuition in order to make informed
decision.

The knowledge-based method, main interest of this work, is characterized by using artificial intelligence
technologies such as artificial neural networks (ANN), fuzzy logic (FL), expert systems (ES) and hybrid systems
(ANN/ES, ANN/FL and ES/ES). The application of artificial intelligent techniques on the fault detection can perform the
diagnostic with minimal engineer interaction and in a lot of cases can diagnose faults without the help of maintenance
specialists. In this way, in the last years, those technologies are replacing the conventional methodologies. The
increasing use of artificial intelligent techniques is consequence of  the great computational development, the
maintenance specialists cost and fast technologic progress.

Many technical articles have addressed the importance of artificial intelligent techniques in the motor fault
detection (Li et al., 1997; Chow, 1997; Chow and Yee, 1990; Chow and Yee, 1991; Chow et al., 1991; Goode and
Chow, 1993; Chow and Goode, 1993; Chow et al., 1993; Chow, 1994; Goode and Chow, 1995a; Goode and Chow,
1995b; Schoen et al., 1995; Chow et al., 1998; Filippetti et al., 1998 and Altug and Chow, 1999). A comprehensive list
of books, workshops, conferences and journal papers related to induction motors fault detection and diagnosis is
presented by Benbouzid et al. (1999).

Artificial neural networks have been proposed and have demonstrated the capability to solve the motor monitoring
and fault detection problem using an inexpensive, reliable, and noninvasive procedure. However, the major drawback of
conventional artificial neural networks fault detection is the inherent black box approach that can provide the correct
solution, but does not provide heuristic interpretation of the solution. Engineers prefer the accurate fault detection as
well as the heuristic knowledge behind the fault detection process. Expert System is a technology that can easily
provide heuristic reasoning while being difficult to provide exact solutions.

The goal of this work is to present the HY_NES (Hybrid Neural Expert System), a new approach behind a novel
hybrid neural/expert system technologies, to solve fault detection from mechanical (unbalance, misalignment and
mechanical looseness) and electrical (phase unbalances and broken bars) sources beyond the normal condition (motor
signature).
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2. Experimental Tests and Types of Incipient Fault Simulations

The experimental tests have been done in the energy’s laboratory of the UFSJ (Federal University of São João del
Rei). Figure (1) shows the instrumented test desk.

Figure 1. Instrumented test desk.

The equipment UltraSpec 8000 [1] manufactured by the CSI - Computation System Incorporated, has been used for
vibration spectra acquisition. It works collecting, memorizing and analyzing signals. Although a computer is not
required to use the UltraSpec Analyze, data can be downloaded to UltraManager support software on a computer [2].
The last option offers a more comfortable working environment for detailed analysis, technical reports writing and data
bank generation.

The three phase, induction motor [3], squirrel-cage rotor, 5 HP, 220V, 60 Hp, 4 poles, 44 bars, 36 slots, 1730 rpm
nominal rotation, has been powered with faults from mechanical (unbalance, misalignment and mechanical looseness)
and electrical (phase unbalances and broken bars) sources beyond the normal condition (motor signature). Fifty random
tests  have been applied in order to analyze the motor behavior.

To simulate load, it has been use a CC generator [4] that power a resistance bench [5] linked to an electrical motor
[3] through a flexible linking [6].

The following equipment have been also used for parallel monitoring: high accuracy voltmeter ENGRO-600 [7],
current digital clipper DAWER- CM-600 [8] and Optho Tako tachometer [9]. The monitoring aim is to guarantee that
the motor is working on the nominal load condition, allowing that the simulated problems to become more visible in the
spectra. The voltmeter measures and gives the voltage level information of the three phase motor supply. The motor
load is adjusted altering the CC generator field current [10].

Through the UltraSpec 8000  specific firmware, the system (motor plus generator plus load) has been laser aligned
and precision balanced and it has been checked mechanical backlash. Dual, visible laser beams and dual built-in
inclinometers enable it to monitor the exact position of both shafts during rotation. Measurements are automatic and can
be performed with or without cables. This method can determine shaft misalignment with less than one quarter turn of
the shaft, making it ideal for application with restricted access. Thus, vibration spectra could be obtained for the system
under no  failure condition.

Vibration analysis continues to be one of the most versatile and informative tools available for on-line monitoring
and problem analysis. Vibration analysis is often required to identify faults from mechanical sources. Its deterministic
frequencies are the rotational frequency and its harmonics (1 x fr, 2 x fr, 3 x fr and 4 x fr), (Brito et al., 1999; Brito et al.,
2001a) Faults from electrical source (phase unbalances and broken bars) can also be identified by vibration analysis.
The vibration spectra has been plotted in dB. The broken rotor bars has been identified when sidebands of the slip
frequency (2 x fs) are visible about rotational frequency (1 x fr), (Brito et al., 2001b). The vibration spectra of phase
unbalance have been identified when sidebands of the rotational frequency (2 x fr) are visible about line frequency (2 x
fl), (Baccarini et al., 2001).

The accelerometer A0720GP [11], SN6714, accuracy of 0.1000 mV has been used for vibration spectra acquisition.
Hamming window of 3200 lines and 10 averages of samples have been used for a frequency width from 0 to 400 Hz
and amplitude measured in speed (mm/s). The signals have been taken from the accelerometer at vertical, horizontal
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and axial positions respectively in both sides of fan and motor linking. It has been showed the vibration spectra for
vertical position for each type of excitation plotted at the same scale in order to compare the level of amplitude.

The vibration spectrum for normal working condition (motor signature) is shown in Fig. (2). It can be seen from
this spectrum that there are no peaks at these deterministic frequencies and that the peaks showed have amplitude level
bellow 0.5 mm/s (maximal level for normal motor working condition). The instrumented test desk has been adjusted for
the normal working condition before introducing a new fault. When necessary the test desk has been laser aligned and
precision balanced. This procedure guaranteed that the faults signatures have been well defined for all tests. The
vibration spectra for mechanical faults (unbalance, misalignment and mechanical looseness) are shown in Fig. (3).
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Figure 2. Vibration spectrum for normal condition.

Figure 3. Vibration spectra for mechanical faults (unbalance, misalignment and mechanical looseness).
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The vibration spectra for broken rotor bars (BRB) are showed in Fig. (4) around 1 x fr ± 2 x fs. Unbalance voltages,
under phase unbalance DF1 (VAB = 200 V,  VBC = 220 V and  VCA = 200 V), phase unbalance DF2 (VAB = 210 V,
VBC = 220 V and VCA = 210 V) and a single phase, are showed in Fig. (5). The phase unbalance DF1 and DF2 have been
obtained by introducing a variable resistance [12] in one phase of the voltage motor supply resulting in voltage drop in
this circuit and a single phase has been obtained by taken off one motor voltage phase.
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Figure 4. Spectra for broken rotor bars (2, 3, 5 and 7BRB).

Figure 5. Spectra for unbalance voltages (DF1 and single phase).

3. The Hybrid Neural/Expert System program (HY_NES)

The architecture of the HY_NES program is shown in Fig. (6). The program has been developed in C++ language
oriented by object that allows best documentation and future modifications.
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Figure 6. Architecture of the HY_NES program.

The RdataBase module is related to the interface of the program and is responsible for data reading and data
recording, type ASCII. Those archives are responsible for definition of architecture (for example: number of layers,
number of neurons by layers, activation function, weights, bias, training algorithm, learning rate, training error and
momentum rate) and data interpretation. The inputs are based on key words that the program performs and can define
the network structure. This module also have the option of training or only to perform data archives.

The Rmatrix module performs one matrix of three index when operations are processed. The index i refers to layer,
index j refers to neuron and index k  refers to late neuron or the test that is performing.

The RneuralNetwork  module is related to neural network strictly speaking. In this module has been implemented
several parameters: activation function (sigmoid, sigmoid expanded  and hyperbolic-tangent), training algorithm
(incremental and batch with and without variation of learning rate) and perform method (feedforward). In this module is
processed all mathematics operations (error, gradient and variation of learning rate). During training process it is
possible to monitoring evolution of the error allowing to stop the program anytime with best performance through
threads.

The RDiagFunrei module is related to the expert system. In this module it has been implemented 199 rules in order
to diagnose incipient faults on the six positions of the sensors.

4. Results of the program HY_NES

For each series of ten tests it has been separated randomly six series for training (total of 2.160 spectra), two series
for neural network validation (total of 666 spectra) and two series for hybrid system validation (total of 666 spectra).
Data inputs are generally compacted in order to reduce computational time and neural network’s efficiency. In this way
it has been implemented the selective filter in order to pick up only the deterministic frequencies of interest. This
procedure reduced significantly the number of information to send to neural networks removing noises, redundancies
and improving the quality of data training.

The great difficulty has been to identify those frequencies, which required an exhaustive analysis of all spectra. The
frequencies of interest to identify mechanical faults are (1 x fr, 2 x fr, 3 x fr and 4 x fr), to identify broken bars are (1 x fr
± 2 x fs and 1 x fr) and to identify phase unbalances are (2 x fl ± 1 x fr  and 2 x fl).

It has been built one artificial neural network to detect each of the twelve excitations for each six positions of the
sensors, in a total of seventy-two artificial neural networks. This procedure permits smaller architectures that are easier
to train. A lot of tests have been done during the training in order to obtain the best architecture (8x5x3 and 3x3x3).

For normal working condition it has been used the 8x5x3 architecture and nine inputs (1 x fr, 2 x fr, 3 x fr, 4 x fr, 1 x
fr ± 2 x fs, 2 x fl ± 1 x fr and 2 x fl). For mechanical faults it has been used the 8x5x3 architecture and four inputs (1 x fr,
2 x fr , 3 x fr  and 4 x fr). For electrical faults it has been used the 8x5x3 and 3x3x3 architectures and six inputs (1 x fr  ± 2
x fs, 1 x fr, 2 x fl ± 1 x fr and 2 x fl).

During the test of validation each excitation has been passed in all seventy-two artificial neural network and the
condition of detected and undetected excitation has been considered. When one excitation has been presented for a
specific artificial neural network the result has been considered detected for output values > 0,5 mm/s (1 mm/s is the
ideal value) and ≤ 0.5 mm/s for the others (0 is the ideal value).

The excitations identification is done through the third index of the matrix: for normal condition (1 - 6), mechanical
looseness (10 - 15), unbalance 35.1g (20 - 25), unbalance 21g (30 - 35), misalignment (40 - 45), single phase (50 - 55),



phase unbalance DF2 (60 - 65), phase unbalance DF1 (70 - 75), 2 broken rotor bars (80 - 85), 3 broken rotor bars (90 -
95), 5 broken rotor bars (100 - 105) and 7 broken rotor bars (110 - 115).

The artificial neural network output matrix for the seven broken rotor bars, 7_BRB_8.txt, is shown on Tab. (1). The
answer showed values greater than 0,5 mm/s for index from 110 to 115 that means the artificial neural network has been
capable to identify seven broken rotor bars correctly.

Table 1. The neural network output matrix for 7_BRB_8.txt

Matrix =[
Mt ( 1 , 1 , 1 ) = 0.221;
Mt ( 1 , 1 , 2 ) = 0.191;
Mt ( 1 , 1 , 3 ) = 0.333;
Mt ( 1 , 1 , 4 ) = 0.332;
Mt ( 1 , 1 , 5 ) = 0.376;
Mt ( 1 , 1 , 6 ) = 0.012;
Mt ( 1 , 1 , 10 ) = 0.072;
Mt ( 1 , 1 , 11 ) = 0.095;
Mt ( 1 , 1 , 12 ) = -0.060;
Mt ( 1 , 1 , 13 ) = 0.029;
Mt ( 1 , 1 , 14 ) = 0.294;
Mt ( 1 , 1 , 15 ) = -0.698;
Mt ( 1 , 1 , 20 ) = 0.001;
Mt ( 1 , 1 , 21 ) = -0.000;
Mt ( 1 , 1 , 22 ) = 0.023;
Mt ( 1 , 1 , 23 ) = -0.001;
Mt ( 1 , 1 , 24 ) = 0.001;
Mt ( 1 , 1 , 25 ) = -0.003;
Mt ( 1 , 1 , 30 ) = -0.028;
Mt ( 1 , 1 , 31 ) = -0.013;
Mt ( 1 , 1 , 32 ) = 0.001;
Mt ( 1 , 1 , 33 ) = 0.039;
Mt ( 1 , 1 , 34 ) = 0.044;
Mt ( 1 , 1 , 35 ) = 0.035;

Mt ( 1 , 1 , 40 ) = -0.008;
Mt ( 1 , 1 , 41 ) = 0.033;
Mt ( 1 , 1 , 42 ) = -0.073;
Mt ( 1 , 1 , 43 ) = 0.013;
Mt ( 1 , 1 , 44 ) = 0.021;
Mt ( 1 , 1 , 45 ) = 0.001;
Mt ( 1 , 1 , 50 ) = -0.081;
Mt ( 1 , 1 , 51 ) = -0.053;
Mt ( 1 , 1 , 52 ) = -0.069;
Mt ( 1 , 1 , 53 ) = -0.104;
Mt ( 1 , 1 , 54 ) = -0.112;
Mt ( 1 , 1 , 55 ) = -0.053;
Mt ( 1 , 1 , 60 ) = 0.017;
Mt ( 1 , 1 , 61 ) = 0.004;
Mt ( 1 , 1 , 62 ) = -0.007;
Mt ( 1 , 1 , 63 ) = -0.019;
Mt ( 1 , 1 , 64 ) = 0.019;
Mt ( 1 , 1 , 65 ) = -0.074;
Mt ( 1 , 1 , 70 ) = 0.008;
Mt ( 1 , 1 , 71 ) = 0.019;
Mt ( 1 , 1 , 72 ) = -0.006;
Mt ( 1 , 1 , 73 ) = -0.037;
Mt ( 1 , 1 , 74 ) = 0.010;
Mt ( 1 , 1 , 75 ) = -0.006;

Mt ( 1 , 1 , 80 ) = -0.076;
Mt ( 1 , 1 , 81 ) = 0.027;
Mt ( 1 , 1 , 82 ) = 0.035;
Mt ( 1 , 1 , 83 ) = 0.079;
Mt ( 1 , 1 , 84 ) = 0.331;
Mt ( 1 , 1 , 85 ) = 0.086;
Mt ( 1 , 1 , 90 ) = 0.770;
Mt ( 1 , 1 , 91 ) = 0.263;
Mt ( 1 , 1 , 92 ) = -0.035;
Mt ( 1 , 1 , 93 ) = 0.179;
Mt ( 1 , 1 , 94 ) = -0.048;
Mt ( 1 , 1 , 95 ) = -0.219;
Mt ( 1 , 1 , 100 ) = 0.380;
Mt ( 1 , 1 , 101 ) = 0.120;
Mt ( 1 , 1 , 102 ) = 0.148;
Mt ( 1 , 1 , 103 ) = -0.021;
Mt ( 1 , 1 , 104 ) = 0.027;
Mt ( 1 , 1 , 105 ) = 0.230;
Mt ( 1 , 1 , 110 ) = 1.010;
Mt ( 1 , 1 , 111 ) = 0.892;
Mt ( 1 , 1 , 112 ) = 1.000;
Mt ( 1 , 1 , 113 ) = 0.819;
Mt ( 1 , 1 , 114 ) = 0.688;
Mt ( 1 , 1 , 115 ) = 0.513;]

The rate of accuracy of artificial neural network outputs to validation tests for the six sensors for all excitations is
shown in Tab. (2).

Table 2. Rate of accuracy of artificial neural networks outputs - test of validation

Excitations P-1 [%] P-2 [%] P-3 [%] P-4 [%] P-5 [%] P-6 [%]

normal working condition 88,89 87,50 70,14 71,53 70,14 97,22
mechanical looseness 94,44 93,06 91,67 95,83 95,14 95,83

unbalance 35,1g 98,61 98,61 97,92 98,61 97,92 98,61
unbalance 21g 99,31 97,92 97,92 97,22 94,44 81,94
misalignment 96,53 94,44 100 97,22 98,61 95,83
single phase 98,61 99,31 99,31 100 100 100

phase unbalance DF2 84,72 92,36 95,83 94,44 95,14 94,44
phase unbalance DF1 95,83 95,14 96,53 97,22 92,36 96,53

2 broken bars 94,44 94,44 97,92 91,67 80,56 94,44
3 broken bars 93,75 93,06 97,22 93,06 95,14 96,53
5 broken bars 97,92 97,92 97,22 96,53 96,53 95,83
7 broken bars 96,53 99,31 97,22 87,50 98,61 93,75

As some faults have levels of amplitudes close to 0.5 mm/s (maximal level for normal working condition), when
these faults have been presented to the normal working condition artificial neural network, they haven’t been detected
correctly. For this reason, the results for normal working condition showed results in the range 70,14 - 97,22.

Even though any new training hasn’t been performed for the seventy-two artificial neural networks, the sensors
showed high level of accuracy.

On the expert system subroutine it has been implemented one hundred ninety nine rules to interpretation the outputs
of artificial neural networks, that have been built based on artificial neural networks output.

The expert system outputs for the seven broken rotor bars, 7_BRB_8.txt, is shown on Tab. (3). The rate of accuracy
of expert system to validate tests for the six sensors is shown in Tab. (4).



Table 3. Artificial neural networks outputs - test of validation

Position of the sensor P-1 (vertical direction, side of the fan)
Rule 35
Diagnostic: Broken rotor bars (Accuracy percentage = 100%).

Position of the sensor P-2 (axial direction, side of the fan)
Rule 67
Diagnostic: 7 Broken rotor bars (Accuracy percentage = 100%).

Position of the sensor P-3 (horizontal direction, side of the fan)
Rule 100
Diagnostic: 7 Broken rotor bars (Accuracy percentage = 100%).

Position of the sensor P-4 (vertical direction, side of the motor linking)
Rule 131
Diagnostic: 7 Broken rotor bars (Accuracy percentage = 100%).

Position of the sensor P-5 (axial direction, side of the motor linking)
Rule 168
Diagnostic: 7 Broken rotor bars (Accuracy percentage = 100%).

Position of the sensor P-6 (horizontal direction, side of the motor linking)
Rule 199
Diagnostic: 7 Broken rotor bars (Accuracy percentage = 85%).

Diagnostic: Unbalance 21g (Accuracy percentage = 15%).

Table 4. Accuracy of expert system outputs - test of validation

Sensors Diagnosed fault [%] Not diagnosed fault [%] Undefined fault [%]
P-1 83,33 4,17 12,5
P-2 65,63 15,,63 18,75
P-3 89,58 3,13 7,29
P-4 66,67 10,42 22,92
P-5 78,13 3,13 18,75
P-6 70,83 13,54 15,63

The rules have been classified in diagnosed fault , not diagnosed fault and undefined fault. The classification
diagnosed fault means excitation has been diagnosed correctly. The classification not diagnosed fault means excitation
has been diagnosed wrongly. Finally the classification undefined fault means that there aren’t capable rules to identify
the excitation. Due to the relative spread of the data and artificial neural networks classifications errors for crossed data,
the expert system outputs showed the percentage of accuracy less then to the artificial neural networks outputs, even
though these results can be considered goods.

It has been also presented to the HY_NES the final test of validation. Those ninety-six tests haven’t been used
during training and intermediate validation and qualification. The goal of the final test is the identification of excitation
through the HY_NES, simulating one really application. The data have been used without a new training of the
artificial neural networks or even new rule implementation. The main objective of this stage isn’t to present optimized
final results but to present one methodology that can be used to diagnose faults in induction motors. The global
accuracy percentage of HY_NES output according to the user’s interpretation for each excitation is shown in Tab. (5).

Table 5. Accuracy percentage of the HY_NES output according user’s interpretation for each excitation

Excitations Right [%] Wrong [%] Undefined [%]
Normal working condition 74 13 13

mechanical looseness 100 - -
unbalance 35,1g 100 - -
unbalance 21g 100 - -
misalignment 75 25 -
single phase 87 13 -

phase unbalance DF2 49 13 38
phase unbalance DF1 75 25 -

2 broken bars 87 - 38
3 broken bars 62 38 -
5 broken bars 100 - -
7 broken bars 100 - -



The user has the option to see the results for the six sensors through the rules implemented on the expert system
subroutine. For the same excitation, e.g. misalignment results from Tab. (2) and Tab. (5) have been showed different
accuracy percentage. This is due to the necessity to build and to improve new rules.

Finally, the global accuracy percentage of the HY_NES output according to the user’s interpretation is shown in
Fig. (7).

80%
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Figure 7. Global accuracy percentage of the HY_NES output according to the user’s interpretation

5. Conclusions

The hybrid neural expert system HY_NES is an approach based on artificial intelligence (artificial neural networks
and expert system) developed to diagnose faults from mechanical sources (unbalance, misalignment and mechanical
looseness) and electrical sources (phase unbalances and broken bars) beyond normal condition (motor signature).

The inputs are one of the most important topics and have strongly influence on data convergence. If the base of data
isn’t well constructed the artificial neural network can present convergence problems. The tests procedures have been
planned in detail in order to minimize ambiguity and mistakes during data acquisition. The data have been acquired
randomly on the vertical, axial and horizontal directions, side of the fan and side of the motor linking. The vibration
analysis has been chosen because it is a non invasive technology and has more information on the spectra belonging
fault identification from mechanical and electrical sources. The domain of frequency has been chosen because it is
easier to diagnose faults.

Normally the data have been separated in two categories: training data and validation data. In this work the data
have been separated in three categories: training data, intermediate validation data and final validation data. The
HY_NES module related to artificial neural networks is a shell that can be used to work with any base of data generated
by Analyze Report from UltraManager. The HY_NES module related to expert system attends only the simulated
excitations and need to be improved in order to become the rules more flexible.

The modular architecture of the hybrid system HY_NES allows the inclusion of new sensors, incipient faults,
training methods, among others.

It has been introduced some spectra of multiple faults, without a specific artificial neural network training, and the
results of the HY_NES haven’t been good, not indicating clearly the possibilities associated to the introduced combined
faults. Also the neural network trained, e.g. unbalance 21g, hasn’t been able to detect the case of  unbalance 35,1g as a
similar fault. The method is based on the pattern recognition and the spread of the data for artificial neural network
training are very important in this way. The determination of the spread of the data used for training is a very difficult
task and it implies in the capacity of the system to differ from faults and the size of them.

In this work the tests have been controlled in order to verify the viability of the method applied. Even though the
results obtained have been very significant, exist strong restrictions related to the identification of the faults that involve
patterns not trained. New studies must be done in order to minimize this problem and become the approach more robust
to the training patterns variations and its application in a group of different machines. Doing this the hybrid system
HY_NES  could be a promising approach to diagnose faults in induction motors on-line as well as included in
Reliability Based Maintenance programs.
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