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Abstract. Displacement of a liquid in a capillary tube by gas injection occurs in many situations, like enhanced oil recovery, coating 
of catalytic converters and gas-assisted injection molding.  Generally the liquid being displaced is a polymeric solution or 
dispersion, that are not Newtonian.  Viscoelastic forces alter the force balance in various parts of the flow and consenquently 
change the amount of liquid left attached to the capillary wall.  In order to model the effect of the rheological properties in this 
important flow, the mechanical behavior of the flowing liquid has to be well described by an appropriate constitutive model.  Here, 
the Oldroyd-B differential constitutive equation that approximate viscoelastic behavior of dilute polymer solutions was used, 
together with momentum and continuity equation, to model the two-dimensional free surface flow near the gas-liquid interface.  The 
equation system was solved with the Finite Element Method.  The resulting non-linear system of algebraic equations was solved by 
Newton’s method.  The results show the effect of the viscoelastic character of the liquid on the free surface shape and the film 
thickness attached to the capillary wall.   
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1. Introduction   
  
 The displacement of a liquid inside small passages and capillary tubes by another liquid or gas occurs in many 
practical situations. The most important examples are the flow inside the porous space in enhanced oil recovery 
methods, coating process of catalytic converter and inside tubes and gas assisted injection molding. These flows belong 
to a class of flows generally referred to as free surface flows; the configuration and position of the interface between the 
two fluids is unknown a priori and is part of the solution of the problem. 
 

 
 

Figure 1. Sketch of a liquid-displacement problem. 
 
 Figure 1 shows the region close to the tip of the interface of a liquid being displaced by a gas. Since the frame of 
reference is attached to the bubble tip, all happens as if the tube wall is moving with the bubble speed U in the opposite 
direction. A certain amount of liquid remains attached to the capillary wall, as shown in the figure. The more liquid is 
left on the wall the least efficient is the displacement process. This information is one of the main goals of theoretical 
and experimental analysis of displacement flows. A dimensionless measurement of the thickness of the liquid film 
attached to the wall used in the literature is the fraction coverage m, defined as the fraction of the tube cross-sectional 
area coated with liquid after bubble penetration, i.e.  
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where R0 is the tube radius and Rb is the radius of the penetrating bubble. In some of the situations described, the liquid 
being displaced is a polymeric solution or dispersion and is non-Newtonian. Viscoelastic forces near the interface 
changes the force balance in that region and consequently the configuration of the free surface and the fractional 
coverage. The two important dimensionless groups in the displacement of viscoelastic liquids in capillary tubes, our 
case of interest, are the capillary number Ca, which is the ratio of viscous to surface tension forces, and the Deborah 
number De, which is the ratio between a relaxation time characteristic of the liquid and a characteristic time of the 
deformation process: 
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Here η0 is the solvent viscosity, U is the bubble velocity, σ is the interfacial tension between the inviscid penetrating 
gas and the displaced liquid, λ  is a relaxation time characteristic of the liquid and 0/2 RUw =γ is the (Newtonian) 
shear rate at the wall, assumed to be characteristic of the process. 
 Different analyses on displacement of liquids in capillary tubes have been performed for Newtonian as well as for 
viscoelastic liquids, and a brief summary of these results is given in the following paragraphs.   
 The first experimental study of a long gas bubble penetrating through a liquid was performed by Fairbrother and 
Stubbs (1935), who studied the penetration of an air bubble through a Newtonian liquid in a circular tube. Their most 
important result is the proposition of a direct relation between the fractional coverage m with the capillary number Ca, 
given by m = Ca1/2. 
 Another classical work on liquid displacement in capillary tubes was developed by Bretherton (1960). He studied 
the motion of long air bubbles in capillary tubes filled with Newtonian viscous liquids. Bretherton assumed zero shear 
stress at the interface, as well as small capillary numbers. Bretherton performed experimental tests with tubes of 
diameters small enough to neglect gravity effects. His theoretical analysis showed that the velocity of the interface U 
exceeds the mean flow velocity by a value of WU, where W = 1.29(3Ca)2/3. Bretherton obtained W studying only the 
frontal and transition regions of the bubble. In a first approximation, he considered a planar flow at the region far from 
the bubble ends. Later he included curvature effects in the equations, obtaining results similar to the first approximation 
with a maximum error of 10%. The author compared some of his experimental results with theoretical predictions for 
W. A good agreement is observed between both experimental e theoretical data, mainly at the high capillary number 
range studied.  
 In the same year, Taylor (1960) published a work where he developed an experimental study on removal of 
Newtonian liquids from capillary tubes through gas injection. The main objective was to determinate the amount of 
liquid deposited on the tube wall during flow. Taylor showed the dependence of the fractional coverage m, with the 
capillary number, Ca. The plot suggests a limit value for m corresponding to approximately 0.56 when Ca tends to 2. 
Fairbrother and Stubbs had already proposed a direct relation of m with the capillary number, as mentioned. Taylor 
compared his experimental results with the empirical equation proposed by Fairbrother and Stubbs (1935) and verified 
that their relation is only valid for a narrow capillary number range of 0 < Ca < 0.09. Without making any visualization 
experiment, Taylor suggested three possible patterns for the streamlines relative to a frame of reference attached to the 
bubble tip. For small capillary numbers the flow would present reversions with points and rings of stagnation. 
Increasing the capillary number would decrease the reverse flow, allowing the existence of only one stagnation point. 
 Two years later, Cox (1962) published the continuation of the experiments initiated by Taylor and concluded that 
the fraction of mass deposited at the wall reaches an asymptotic value of 0.60 when Ca tends to 10. Cox also developed 
a simplified theoretical analysis to calculate m. His analysis appears to fit in the cases where surface tension forces can 
be neglected in view of viscous forces (Ca >> 1). The investigation about the streamline patterns proposed by Taylor is 
performed by Cox (1964) through a visualization experiment. Cox confirmed the patterns for extreme values of the 
capillary number (Ca >> 1 and Ca << 1), but the transition pattern could not be confirmed. Still, the author showed the 
important conclusion that the bubble interface disturbs only the regions in its vicinity, being this disturbance 
approximately 1.5 times the tube diameter. 
 Having summarized the classical works on displacement of Newtonian liquids by gas injection, we present some 
relevant results for a similar problem, but now displacing a viscoelastic liquid. 
 Ro and Homsy (1995) presented a theoretical study about the effect of elasticity on the meniscus shape and on film 
thickness for the flow induced by a long air bubble steadily displacing a polymeric liquid confined by two parallel 
plates, i.e. Hele-Shaw flow. The authors sought asymptotic solutions by perturbation expansions to solve the problem, 
and the assumptions were that the displaced viscoelastic liquid wets the wall and that both capillary number and local 
Weissenberg number We, a measure of the elasticity of the flow, were small. The Oldroyd-B constitutive equation was 
used to model the viscoelastic liquid and the authors stressed that the transition region between the advancing meniscus 
and the entrained film is where the liquid rheology has its greatest effect. According to their analysis, as the liquid 
becomes more viscoelastic, the film thickness decreases and the pressure drop at the meniscus tip increases. A detailed 
analysis of their work allows concluding that the dominant mechanisms are the resistance to stream-wise strain, tending 
to lower the film thickness, and the buildup of shear stress, tending to raise the film thickness. 
 Huzyak and Koelling (1997) performed experimental investigations of penetration of a long bubble through a 
viscoelastic liquid in a capillary tube. The main goal was to identify the effects of liquid elasticity on the thickness of 



 
the liquid film attached to the wall. Experiments were performed with four test liquids including two Newtonian and 
two Boger liquids (highly elastic liquids showing constant shear viscosities). The authors obtained results for the 
fractional coverage m, as a function of capillary number and Deborah number, De. Deborah number measures the 
deviation of elastic fluids from Newtonian behavior. The authors observed that for small Deborah number, De < 1, both 
viscoelastic liquids exhibit a fractional coverage identical to that of a Newtonian liquid at an equivalent capillary 
number. The fractional coverage for both viscoelastic liquids begins to increase relative to the Newtonian result at De ≈ 
1. Fractional coverage continues to increase with Deborah number for all De ≥ 1. At De ≈ 5 fractional coverage is 30% 
greater than the Newtonian liquid result. They also found that the fractional coverage depend on the tube diameter for 
the viscoelastic liquids. It is important to point out that the experimental results of Huzyak and Koelling (1997) showed 
the opposite trend of the theoretical analysis of Ro and Homsy (1995). 
 Another important study dealing with viscoelastic free surface flows was recently presented by Lee et al. (2002). 
They applied a finite element formulation to study the effect of viscoelasticity on free surface flows, analyzing both a 
Hele-Shaw flow and the slot coating of viscoelastic liquids. The viscoelastic liquids were modeled by means of three 
distinct differential constitutive equations: the Oldroyd-B, FENE-CR and FENE-P models. The calculation showed the 
formation of an elastic stress boundary layer in the region adjacent to the interface, and the polymeric stresses 
associated to this boundary layer is found to be responsible for changes in the meniscus shape as well as the thickness 
variation of the film of liquid attached to the solid plates. 
 The goal of this work is to analyze the effect of the viscoelastic character of the displaced liquid on the free surface 
shape and on the film thickness attached to the capillary wall, by solving the momentum and continuity equations 
coupled with the Oldroyd-B model to describe the mechanical behavior of the flowing liquid. 
  
2. Mathematical formulation   
  
 This section describes the governing equations, the constitutive model and boundary conditions for the situation 
studied here. 
 
2.1. Governing equations 
 
 The two-dimensional, steady free surface flow of the displaced liquid in a capillary tube is described by the 
equations that impose conservation of mass and momentum: 
 
 0 . =∇ u ,                            (3) 
    
 τ.-0 ∇+∇= p ,                           (4) 
 
where u is the velocity vector, p is the pressure and τ is the extra-stress tensor. It is clear from Eq. (4) that inertial 

effects are neglected in our model. The governing equations are solved by considering a coordinate system attached to 
the bubble tip. 
 
2.2. Constitutive equation 
 
 To analyze the physics of polymer stretching as well as to determine the flow field modification due to a diluted 
polymer solution in the displacement of viscoelastic liquids in capillary tubes, we choose the Oldroyd-B differential 
constitutive equation (Bird et al. (1987)), written below in tensor notation: 
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Here, the extra-stress tensor is split in a Newtonian solvent stress sτ , and a polymer stress pτ . The solvent and 

polymer contribution to the shear viscosity are denoted, respectively, by sη and pη . The rate-of-deformation tensor is 

denoted by γ  and λ  is the relaxation time of the liquid. 

 
 
 
 



  

 2.3. Boundary conditions 
 
 The boundary conditions applied on the free surface are: 
 

• kinematic condition 
 

0. =un ;                                 (6) 
 
• stress balance 
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στ =−. ;                              (7) 

 
Additional boundary conditions are stated below: 
 
• non-slip condition on the tube wall 
 

xeUu = ;                            (8) 
 
• symmetry condition at the centerline 
 

0. =un   , 0.. =nTt ;                        (9) 
 
• Fully developed flow with pressure free at the outflow 
 

0. =∇un ;                                (10)
                          

• Fully developed flow with pressure imposed at the inflow 
 

0. =∇un  , 0Pp = .                             (11)
               

In these equations, n and t are the unit vectors normal and tangent to the domain boundary, respectively. T is the total 
stress tensor, xe is the unit vector in the axial direction, U is the velocity at the tube wall, P0 is the imposed pressure at 
the inflow, σ is the surface tension and Rm is the local mean radius of curvature of the interface.  
 Boundary conditions for the Oldroyd-B constitutive equation are necessary only at the inflow. Accepting the 
suggestion of Pasquali and Scriven (2002), we preferred to neglect the polymeric stress convective term at the inflow:  
 

• neglect polymeric stress convective term at the inflow 
 
 0. =∇ pu τ .                            (12) 

 
3. Numerical approach   
  
 A finite element formulation is applied to study the displacement of viscoelastic liquids in capillary tubes. The 
solution method implemented is the DEVSS-G/SUPG formulation proposed by Guenette and Fortin (1995) and Brooks 
and Hughes (1982).  
 
3.1. Free surface parametrization 
 
 The relevant differential equations are posed in an unknown domain; the position of the liquid free surface is part of 
the solution. A simple way of solving this type of problem is to use a Picard iteration, i.e. solve the flow and the domain 
position separately. This procedure is not very efficient and in most cases the iteration does not converge. To compute a 
free boundary problem in a more efficient way, the set of differential equations posed in the unknown physical domain 
has to be transformed to an equivalent set defined in a known reference domain, usually called computational domain. 
This transformation is made by a mapping ( )ξxx =  that connects the two domains. The inverse of the mapping that 
minimizes the functional is governed by elliptic differential equations identical to those encountered in diffusion 
transport with variable diffusion coefficients. The coordinates of the reference domain satisfy 
 



 
 ( ) 0 . =∇∇ ξD ,                         (13) 
 
where D  is the diffusion coefficient tensor and ξ  are the coordinates of the reference domain. 
 Boundary conditions are needed to solve the second-order partial differential equations (13). Along solid walls and 
synthetic inlet and outlet planes, the boundary is located by imposing a relation between the physical coordinates x and 
r from the equation that describes the shape of the boundary, and stretching functions are used to distribute the points 
along the boundaries. The free boundary (gas-liquid interface) is located by imposing the kinematic condition (Eq. (6)). 
The discrete versions of the mapping equations are generally referred to as mesh generation equations. 
 
3.2. Interpolation functions 
 
 The unknown fields are written as a linear combination of Lagrange polynomial basis functions. Thus, the velocity 
vector u , pressure p, nodal position vector x , interpolated velocity gradient tensor g  and polymeric stress tensor pτ  

are approximated by, respectively: 
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Here, pjjjjj GXPU Ι,,,,  are the basis functions coefficients, and represent the unknowns of the discretized problem. 

The basis functions ( )ηξφ ,j  are biquadratic, ( )ηξχ ,j  are linear discontinuous and ( )ηξψ ,j  are bilinear, all chosen to 
satisfy the Babüska-Brezzi condition.  
 
3.3. Weak formulation of the governing equations in the reference domain 
 
 The conservation of mass, conservation of linear momentum, interpolated velocity gradient and mesh generation 
equations are solved using the Galerkin method. For its hyperbolic nature, the Oldroyd-B differential constitutive 
equation is solved using the Petrov-Galerkin streamline upwinding method (SUPG). The weak forms of the governing 
equations are, in tensor notation: 
 

• Conservation of mass 
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Ω∇= JduRc χ.                         (15) 

 
• Conservation of linear momentum 
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• Interpolated velocity gradient   
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• Mesh generation 
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• Oldroyd-B constitutive model 
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Here, Ω  and Γ  denote the reference domain and its boundary, respectively. J is the Jacobian of the mapping between 
the physical and reference domain, χ  is the scalar weighting function for the conservation of mass equation, w  is the 



  

vector weighting function for the conservation of momentum and mesh generation equations, ψ  is the tensor weighting 

function for the interpolated velocity gradient, ϕ  is the tensor weighting function for the Oldroyd-B constitutive 

equation and I  is the unit tensor. 
 
3.4. Solution of the problem via Newton iterations 
 
 The resulting nonlinear system of equations is solved by the Newton’s method: 
 
 ( )cRcJ −=δ. ,                         (20) 

 ccc kk δ+=+1 .                         (21) 
 
J  is the Jacobian matrix containing the derivatives of all equations with respect to all unknowns, c  is the solution 

vector containing all the unknowns of the problem, cδ  is the increment in the solution vector, R  is a vector of 
weighted residuals and k indicates the present iteration.  
 
4. Results   
  
4.1. Newtonian results 
   
 Before presenting the analysis of the displacement of viscoelastic liquids in capillary tubes, some classical results 
for Newtonian liquids are presented in order to test the solution procedure, provide basic information on the subject and 
gain insight for more complex analysis later.   

Figure (2) shows the dependence of the liquid film thickness deposited at the tube wall on the capillary number. 
Simulations cover a capillary number range of 0.01 ≤ Ca ≤ 10. Besides theoretical predictions obtained in the present 
work, we reproduce the experimental data obtained by Taylor (1960). The agreement between both results is excellent. 
The result obtained by Cox (1962), which suggest a constant value of 0.6 to the fractional coverage for capillary number 
above 10, is also confirmed. The experimental results obtained by Taylor, as well as the theoretical predictions of the 
present work, show that for a given viscosity and a given surface tension the film thickness deposited at the wall is 
controlled by the velocity of the interface. Therefore, processes whose objective is to obtain a thin film thickness must 
be performed at low flow rates. 
 

 
 

Figure 2. Newtonian liquid film thickness as a function of Ca. 
 
 Taylor (1960) suggested three different streamline patterns for a viscous liquid displaced by an inviscid fluid. For m 
> 0.5 there would be no flow reversion ahead of the bubble; for m < 0.5 one flow reversion ahead of the bubble would 
occur, with a stagnation point at the tip of the bubble and a stagnation ring right above it; and for m = 0.5 there would be 
flow reversion ahead of the bubble, but now showing two stagnation points: one at the tip of the bubble and the other a 
little far from the bubble, at the symmetry line. 
 In order to confirm Taylor’s affirmatives, Goldsmith and Mason (1963) and Cox (1964) investigated 
experimentally the streamlines in front of the interface, and confirmed only two of the patterns predicted by Taylor: the 
ones for m < 0.5 and m > 0.5. According to the last two authors’ observations, these same streamline patterns are 
recovered in the present work simulations. Figures (3a) and (3b) show the streamlines ahead of the interface 
corresponding to the results obtained by Goldsmith and Mason and Cox.  
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Figure 3. Newtonian flow field as a function of Ca. Figure (3a) shows the streamlines for Ca = 0.02 (m < 0.5) and Fig. 
(3b) shows the streamlines for Ca = 1.00 (m > 0.5). 
 
4.2. Viscoelastic results 
 
 The evolution of the polymeric stress for the Oldroyd-B model as Deborah number rises is shown in Fig. (4). The 
flow states shown are at Ca = 0.10, but at all capillary numbers analyzed, a stress boundary layer appears attached to 
the free surface at high values of De (Fig. (4c)). Similar plots with the other components of the polymeric stress tensor 
were produced in order to study their contributions, but we have observed that the maximum stretch of the polymer 
molecules occurs downstream from the stagnation ring, i.e. the component of the stress tensor in the flow direction 
(shown here) is the most dominant in the flow. According to Lee et al. (2002), as shown in Fig. (4c), the maximum 
polymeric stress is located downstream from the stagnation ring. Right after this point, a highly convergent flow is set 
in the region adjacent to the interface, and it appears that the stress boundary layer occurs due to the extension 
experienced by fluid elements in this region. An examination of the flow streamlines reveals that the contraction nature 
of the flow only affects fluid elements in the vicinity of the interface, while most of the streamlines remain rectilinear 
and parallel to the wall of the tube. This supports a mechanism proposed by Lee et al. (2002) that the extensional flow 
along the interface is responsible for the stress boundary layer formation.  
  

 
 

(a) Ca = 0.10 , De = 0.50 
 

 
 

(b) Ca = 0.10 , De = 1.00 
 

 
 

(c) Ca = 0.10 , De = 3.00 
 
Figure 4. Polymer stress evolution as a function of De. The axial component of polymeric stress tensor field is shown in 
the background of figures (a), (b) and (c). Front lines represent streamlines.  
 



  

 Huzyak and Koelling (1997) performed experiments to investigate the penetration of a long bubble through a 
viscoelastic liquid in a capillary tube. In their work, the results were presented in terms of capillary number and 
Deborah number for four test fluids with rheological properties designed such that the effects of liquid elasticity could 
be isolated from shear thinning phenomena (Boger’s fluids). In order to perform a comparison between their 
experimental data with our theoretical predictions, Fig. (5) shows an evolution of the ratio between the liquid film 
thickness obtained with a viscoelastic liquid (m) and that obtained with a Newtonian liquid at the same capillary 
number (mN) plotted against Deborah number. The experimental data corresponding to one of the viscoelastic liquids 
developed by Huzyak and Koelling (B-35), is compared with the theoretical predictions for an Oldroyd-B liquid for Ca 
= 0.10. A value of reduced fractional coverage, m/mN = 1.0 implies that the amount of liquid attached to the wall when a 
viscoelastic liquid is displaced is the same as when a Newtonian liquid is displaced. 
 

 
  
Figure 5. Reduced fractional coverage m/mN as a function of Deborah number. The circles correspond to experimental 
viscoelastic data obtained by Huzyak and Koelling, while the squares correspond to the present work numerical 
simulation data of an Oldroyd-B fluid for Ca = 0.10. 
 
 The agreement between the experimental results of Huzyak and Koelling’s and the theoretical predictions reported 
here is good. At small Deborah number, De < 0.3, the reduced fractional coverage varies between 0.98 < m/mN < 1.02, 
indicating a Newtonian-like behavior. For 0.3 < De < 1, the film thickness at the wall when viscoelastic liquid is 
displaced is slightly thinner than the Newtonian case. At high Deborah numbers, De > 1, the amount of liquid left on the 
capillary wall rises as the liquid becomes more viscoelastic. At De = 3.5, it is 10% thicker than the Newtonian case. 
 The evolution of the stress field presented in Fig. (4) explains the thickening of the liquid film as Deborah number 
rises. As the liquid becomes more viscoelastic, the polymeric stress at the interface just downstream of the stagnation 
ring becomes higher. This high normal stress pulls the liquid and consequently moves the stagnation ring towards the 
bubble tip. This effect is clearly shown in Fig. (4c), where the streamline closest to the free surface is sharply bended 
towards the high normal stress region. As the stagnation rings moves upstream, the amount of liquid that turns around in 
the recirculation flow falls and consequently the deposited film thickness rises.  
 Figure (6) presents the predicted liquid film thickness at the capillary wall as a function of Deborah number at 
different capillary numbers. At small capillary numbers (Ca = 0.05 and Ca = 0.10) the behavior discussed in Figs. (4) 
and (5) is reproduced. At higher capillary numbers, the ratio m/mN remains constant and equal to 1 up to De ≈ 1. As 
Deborah number rises, the deposited film thickness increases. At a given Deborah number, the amount of film 
thickening falls as capillary number rises. An interesting observation that needs a more detailed analysis is that the film 
thickening due to elastic effects follows a logarithmic dependence on Deborah number. 
 

 
 

Figure 6. Evolution of reduced fractional coverage m/mN as a function of Deborah number for different capillary 
numbers. 



 
5. Final comments   
  
 A two dimensional viscoelastic flow near the gas-liquid interface of a long bubble displacing a liquid in a capillary 
tube was presented. The presence of the free surface, that makes the domain of integration unknown a priori, and the 
differential constitutive model needed to describe the behavior of dilute polymeric solutions make the solution of the 
problem extremely complex. A fully coupled formulation was used and the differential equations were solved by the 
Finite Element Method. 
 The results show that viscoelastic forces tend to increase the amount of liquid left attached to the tube wall, a trend 
observed experimentally by other researchers. This work describes the mechanism responsible for this behavior. 
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