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Abstract. This work addresses the problem of predicting the possible accelerations and contact forces of a set of rigid, three-
dimensional bodies in contact in the presence of Coulomb friction. Using mathematical programming algorithms, the solution of the 
contact problem is obtained either by means of a mixed nonlinear complementarity problem (original Coulomb law) or of a linear 
complementarity problem (pyramidal friction law). Sufficient conditions for obtaining equivalence with formulations as bound-
constrained minimization problems are provided. Numerical experiments are presented, using the software BOX-QUACAN, 
developed by the Optimization group of the Applied Mathematics department of the State University of Campinas. We conclude that 
the approach is effective for solving the model with friction in both variants, with the approximate pyramidal friction law and with 
the original  Coulomb cone. 
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1. Introduction  
 

Planning the motion of several rigid bodies in contact is a challenging task. Posed as a nonlinear algebraic 
differential system (see, for instance, Brenan et all (1996) p. 150), after a time discretization, it can be cast as a 
sequence of problems, one for each time frame. The papers of  Pang and Trinkle (1996) and Trinkle et all (1995, 1997) 
provide the theory and framework for the single time frame problem, concerned with the computation of contact forces 
and accelerations of a set of rigid three-dimensional bodies, in the presence of friction. The contact model is formulated 
in its most general version with the Coulomb friction law. Nevertheless, relaxations (pyramid law) or special cases give 
rise to simpler problems, namely, linear complementarity (LCP) ones. In the aforementioned papers, only the LCP 
relaxation is addressed in the numerical experiments. Recently, Tzitzouris (2001), in his thesis work, developed a fully 
implicit time-stepping  scheme for the simulation of the multi-rigid-body contact problem with Coulomb friction. A 
central feature of the algorithm presented therein is the solver employed at each time step for solving the nonlinear 
complementarity problems. 

The Newton-Euler equations governing the motion of the objects, together with the dynamic equations of the 
manipulator, the Signorini condition, the Coulomb friction law and the requirement that the contact forces be 
compressive compose a mixed nonlinear complementarity problem, shortly denoted by MNCP, in the following format: 
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The versatility of the MNCP format comprises well-known classes of problems: nonlinear equations, nonlinear 

programming, nonlinear complementarity problems, and variational inequalities, as well as new problem classes, such 
as extended linear-quadratic programming and general equilibrium models. 

Roughly speaking, complementarity problems might be addressed either in a straightforward way, by algorithms 
specifically developed for this kind of problem, or by the minimization of a merit function created to represent the 
problem, in the sense that it will be zero only at the solutions of the complementarity problem. Ferris and Pang (1996) 
and references therein provide further details regarding this classification. 

In this work we adopt the second approach, casting the MNCP as an equivalent bound-constrained minimization 
problem. The philosophy behind such a strategy is surveyed by Andreani and Friedlander (2002), with a comprehensive 
discussion of the important features involved, focusing mainly on variational inequalities and related problems.  

This paper is organized as follows: the equivalent formulation is stated in Section 2. Specific details on the 
algorithms used to solve the bound-constrained minimization problem are given in Section 3. The numerical 
experiments are presented in Section 4. First, a brief description of three study cases from MCPLIB is given, used to 
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validate our approach in other scenarios. Next, results on the multi-rigid-body contact problem are presented for both 
the pyramidal approximation and the original Coulomb friction law. Finally, Section 5 contains our comments and 
conclusions. 
 
2. An equivalent formulation of the MNCP 
 

Given the MNCP defined in Eq. (1), consider the following optimization problem: 
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The result below states sufficient conditions such that stationary points of problem (2) are also global solutions 

thereof,  with zero objective function value, and thus solutions of  problem (1). 
 
Theorem 1. If  )z,v,u( ***  is a stationary point of problem (2) and the Schur complement of )v,u(g **
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is a row sufficient S-matrix, then )v,u( ** is a solution of problem (1). 

 
Proof.  See Andreani et all (2003). 
 

The required condition of row-sufficiency is weaker than asking the Schur complement of )v,u(g **
v in the Jacobian 

)v,u(J ** to be a positive semidefinite matrix, which would be related to the monotony of the operator associated to this 
Schur complement. If the functions f and g are affine, we obtain the following stronger result: 

 
Theorem 2. Let f and g be affine functions, problem (1) be feasible and the Jacobian given in Eq. (3) be a row sufficient 
matrix. Then, if )z,v,u( *** is a  stationary point of problem (2), )v,u( ** is a solution of problem (1). 
 
Proof.  See Andreani et all (2003). 

 
3. Mathematical programming algorithms 

 
Let us consider the bound-constrained minimization problem, namely 
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where ℜ→ℜN:F is differentiable on the feasible set B { }bb

N ux|x ≤≤ℜ∈= �  and any component of the bounds bb u,
�  may 

be infinite. Friedlander et all (1994) proposed a matrix-free trust-region type algorithm, called BOX-QUACAN, to solve 
problem (4). At each iteration, BOX-QUACAN has to handle the subproblem of minimizing a (not necessarily convex) 
quadratic on a box which is the intersection of the feasible set B  with a trust region defined by the infinity norm.  

General large-scale nonlinear programming problems may be efficiently solved using augmented Lagrangian 
techniques, as long as a good method for solving problem (4) is available. This is the main idea behind the package 
LANCELOT, from Conn et all (1992). Employing a similar philosophy, the Optimization Group at the State University 
of Campinas has developed the code EASY (available at http://www.ime.unicamp.br/~martinez), a double-precision 
Fortran 77 implementation of a trust-region Augmented Lagrangian method for large-scale nonlinear programs (see 
Kreji  et all (2000) for further details). 

 
4. Numerical experiments 

 
The bound-constrained minimization problems that arise from the formulation of the complementarity problems of 

Eq. (1) by means of problem (2) were solved with the trust-region algorithm BOX-QUACAN, by performing a single 
outer iteration of the augmented Lagrangian solver EASY. Before addressing the contact problems, three preliminary 
families of problems were investigated, and the results are summarized below. 
 
 



 

4.1. Three study cases from MCPLIB 
 
Dirkse and Ferris (1995) describe the origin and structure of complementarity test problems in the MCPLIB library, 

expressed in the GAMS modeling language. The problems are formulated as mixed complementarity ones.  
In the following we provide the computational results, including a summary of the essential elements, of three 

classes of problems selected for numerical investigation using our merit function and the bound constrained 
minimization approach. The first two classes came from economics, whereas the third falls into the optimal control 
category. 

 
 Spatial price competition models 

 
Harker (1986) presents four alternative models for spatial competition, all based on the same data and coded in the 

GAMS file harkmcp.gms. The first model is the classical spatial price equilibrium one, with perfectly competitive 
producers and suppliers facing average cost pricing of transportation. Next, two monopoly models are given. In the first, 
the firm owns both means of production and distribution network (hence, marginal cost pricing prevails at both the 
factory and the railhead), whereas in the second the firm uses the distribution network with average cost pricing. Last, it 
comes a multi-producer oligopoly model, with average cost pricing of transportation links. 

For each model, two examples were addressed, differing on the transportation network topology: example 1, with 
solely regional centroids and origin-destination pairs and example 2, with inclusion of transshipment nodes, that 
represent transportation facilities such as rail yards or ports.  

The dimension of the reformulated problems varied between 27 and 129. All of them were successfully solved, 
achieving an objective function value smaller that 1010− for problem (2). Originally formulated as nonlinear programs, 
the modeling of market behavior by means of the equilibrium conditions that come from the first order optimality 
conditions seems convenient, as the objective functions include integrals, which might be difficult or expensive. In 
Harker's models, however, the integrands are simple enough, so one approach is not preferable to the other. 

 
Economic equilibria 

 
Scarf (1973), in the chapter 5 of his book, adresses the computation of equilibria in a general Walrasian model, 

among other applications. Example I, given in section 5.3, involves six commodities, five consumers and eight  
activities (sectors of production). The optimal commodity prices in this model are determined up to a positive factor. 
The price system can be normalized by fixing a numeraire, or by fixing the sum of the prices. Such normalization 
choices  are respectively coded in GAMS files scarfanum.gms and scarfasum.gms.  

The dimension of problem (2) with the model that normalizes the price system by fixing the sum of the prices is 30. 
With the normalization of the price system by fixing the numeraire, the dimension of problem (2) is 28. For each 
normalization, four runs were performed, with different initializations. Average results are summarized in Tab. (1), 
where ItBox, FE, ItQua, MVP and CPU indicate, respectively, number of trust-region iterations, number of functional 
evaluations, number of iterations of the quadratic model solver, number of matrix-vector products performed, and cpu 
time spent in seconds. 
 
Table 1. Average results of the numerical performance of  BOX-QUACAN for Scarf’s models. 

 
Type of normalization ItBox FE ItQua MVP CPU 
Fixing sum of prices 25.3 29.8 848.5 956.0 32.0 

Fixing numeraire 26.3 30.3 700.0 778.9 30.3 
 
Optimal control 
 

An application in discrete-time optimal control was analised by Bertsekas (1982). It came from the discretization of 
a continuous-time problem of minimizing an objective function expressed as an integral, and constraints that express the 
evolution of the state variables subject to the control variables (first order differential system). Discretization turns the 
problem into the minimization of a quadratic function, with linear constraints.The author formulates and solves the 
complementarity problem obtained from the first order optimality conditions. This is also the approach that underlies 
the GAMS file bert_oc.gms. Four test families were created, varying the given initial states and the initialization of the 
control trajectories. Dimension of problem (2) varied from 70 to 70000 and, although the outer iterations performed by 
BOX and the number of functional evaluations remain quite the same as dimension increases, the effort grows 
exponentially with the grid, as depicted in Fig. 1. For the largest dimension, it took an average of 8.8 hours of CPU for 
solving the problem. All the runs were successfully terminated, reaching objective function values between 

1310− and .10 4−  
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Figure 1. Log-log plot of  problem dimension against the rate CPU/ItQua for each test family of Bertseka’s control 
problems. 
 
4.2. Multi-rigid-body contact problems with Coulomb friction 
 

Simple instances with two SCARA (Selective Compliant Articulated Robot for Assembly) robots grasping a cubic 
object were generated. The parameters necessary to describe the initial configuration were defined as in Murray et all 
(1994). The matrices of the test set generation were prepared using the toolbox from Corke (2002), to preserve as much 
as possible the physical meaning of the data. 

First, assuming that both contacts are of the sliding type, the complementarity model turns into an LCP and the 
equivalent nonlinear programming reformulation (2) has only four variables. Two hundred tests were run, with different 
seeds, to generate the problem data. All these problems were successfully solved, with final objective function value 
smaller than 1010−  and within a tolerance of 510− for the norm of the projected gradient. 

Assuming next that both contacts are of the rolling type, two instances were generated for each problem: tackling 
the MNCP defined by Eq. (1) via problem (2), and considering the LCP originated by the pyramidal approximation to 
the Coulomb cone. 
 
Original Coulomb friction law 

 
The number of variables of the nonlinear reformulation (2) is 16. Matrices were computed using the toolbox from 

Corke (2002), and two hundred tests were obtained by randomly generating the vector data. Out of the two hundred 
tests, 183 were successfully solved (92%). The results are visually displayed in  Fig.2, a bar chart of  	 
|f|log *

M10−  versus 

number of tests. The high frequency of tests with � � 10|f|log *
M10 =− is perhaps related with the chosen value for the 

tolerance used as stopping criterion. 
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Figure 2. Objective function value ( *
Mf ) distribution of problem (2) for contact problem with original Coulomb friction 

law. 
 

Pyramidal approximation 
 

The nonlinear reformulation of the LCP that comes from replacing the Coulomb law with the pyramidal 
approximation has 20 variables. Again, the related matrix was computed using the toolbox from Corke (2002), and two 
hundred tests were obtained by randomly generating the vector data.  The number of successfully solved problems was 



 

194, which corresponds to 97%. Figure 3 contains a bar chart of  � �|f|log *
L10−  versus number of tests. As before, the 

threshold class characterized by  � 10|f|log *
L10 =− is associated with the highest frequency of outcomes. 
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Figure 3. Objective function value ( *

Lf ) distribution of problem (2) for contact problem with pyramid law. 
 
Coulomb cone versus pyramid law 
 

Comparing the two approaches for solving the all rolling case with two contact points, the average computational 
results shown in Tables 2 and 3 indicate that, in terms of computational efforts, measured in terms of matrix-vector 
products and CPU time, the MNCP is around nine times more demanding than the LCP.  

 
Table 2. CPU time in seconds. 

 
 minimum average maximum 

Reformulation of MNCP 0.000 0.200 8.740 
Reformulation of LCP 0.000 0.030 0.170 

 
Table 3. Average results of the numerical performance of  BOX-QUACAN for contact problems. 

 
 ItBox FE ItQua MVP 

Reformulation of MNCP  57.3 76.3 984.2 1150.8 
Reformulation of LCP 7.5 8.9 90.8 126.3 

 
With respect to the quality of the solution obtained in each case, a further analysis of the results is necessary. One 

desired feature of the solution of a problem with rolling contacts is to indicate a possible transition from rolling to 
sliding in a coherent fashion, that is, ensuring that the tangential accelerations oppose the tangential contact forces. The 
Coulomb friction cone model guarantee such conditions for the MNCP. The approximate model of the pyramid law, 
however, does not enforce the colinearity of the tangential acceleration and force. Thus, such colinearity was tested at 
each contact point for the successfully solved problems. Considering the MNCP approach, colinearity was obtained in 
122 and 128 tests, for contact one (122/183 = 67%) and two (128/183 = 70%), respectively. For the pyramid model, the 
opposition holds in 97 and 153  tests, for contact one and two, respectively (97/194 = 50%, 153/194 = 79%). 

Another observation concerning the quality of results is the following: the pyramid contains the Coulomb cone, but 
with the pyramid law the contact forces might lay outside the Coulomb cone. In fact, this was the case for several 
problems: 106 out of 200 for contact one (53%)  and 53 out of 200 for contact two (27%). 

Comparing the transitions, from rolling to rolling, sliding or breaking contacts, the agreement between both 
approaches occurred as follows: out of the 178 simultaneously successfully solved tests, 98% in contact one and 96% in  
contact two pointed to the same transition. 
 
5. Final remarks 

 
In this work we have presented an equivalent bound-constrained formulation for the mixed nonlinear 

complementarity problem, and provided a theoretical sufficient condition that ensures stationary points of the equivalent 
formulation will be solutions to the original complementarity problem. We are interested in solving MNCP’s arising in 
the context of multi-rigid-body contact problems with Coulomb friction. 

Although the problems we have solved are purely ‘academic’ , we believe that the achieved results give some 
insight into the nature of our approach, mostly based on the reformulation of the original MNCP as a bound-constrained 
minimization problem, indicating its potentiality. 
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