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Abstract. This paper presents a mathematical formulation and a solution for the geometrical and material non-linear analysis of 
bend stiffeners employed to protect the upper terminations of flexible pipes and umbilical cables.  The governing equations result 
from considering geometrical compatibility, equilibrium of forces and moments and material constitutive relations, which can be 
linear elastic or non-linear elastic asymmetric.  In this latter case, the bending moment versus curvature is expressed by a power 
series expansion.  Hence, a set of four non-linear ordinary differential equations may be written and four boundary conditions are 
defined in both ends.  A shooting method is employed and a solution is presented for a case study where linear and non-linear 
constitutive models are compared and discussed.  It is shown that an accurate analysis of the bend stiffener depends on a precise 
assessment of the material property. 
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1. Introduction 
 

Bend stiffeners are ancillary devices employed to provide a smooth transition between very flexible and stiff 
structures such as, respectively, a flexible riser (or umbilical cable) and a platform at the upper connection.  This region 
has been long recognized as one of the most susceptible for failure from accumulation of fatigue damage or from 
excessive bending.  Usually, the main design concern has been the integrity of pipe/umbilical itself, but recent failures 
on bend stiffeners have motivated further investigation.  In addition, the intensive use of floating production ships and 
monobuoys (which present more severe motions than semi-submersibles) in deep waters (i.e., subjected to higher 
tensions) have also justified additional research on the structural integrity of those devices. 

The design, installation and operation of flexible pipes have offered diverse themes for research.  In terms of 
flexible pipe local behaviour, axisymmetric and bending models have been proposed, see Féret and Bournazel (1987), 
Saevik (1992), Witz and Tan (1992), Féret et all (1995) and Custódio and Vaz (2002).  The design of bend stiffeners is 
strongly influenced by the flexible line global dynamic analysis, once the forces (intensity and direction) at the upper 
end determine the bend stiffener response.  A local pipe cross-section analysis indicates its minimum allowable bending 
radius.  Bend stiffeners are designed to support extreme loads and cyclic excitation from the wave induced floating 
production unit motions.  The flexible pipe analysis usually considers the top end boundary condition hinged and the 
bend stiffener is excluded once its influence on the global response is small.  After the bend stiffener design is 
completed, the global analyses considering the bend stiffener could be redone, but this is not the usual practice.  Instead, 
an analysis of the bend stiffener with a small portion of the pipe is carried out. 

Bend Stiffeners are usually made from polymeric materials, such as a polyether thermoplastic polyurethane.  This 
class of material may exhibit an asymmetric behaviour in tension and compression, and this effect on the bend stiffener 
local response will be addressed in this paper.  It is usual to carefully consider the operational and environmental 
temperatures once the material elastic properties may be greatly affected.  The system stiffness, and consequently the 
geometric configuration and curvature distribution are obviously strongly dependent on the polyurethane young 
modulus.  It is also known that if the stiffness is too large the bend stiffener may fail by shear in the connection 
otherwise it may fail by excessive bending. 

The bend stiffener design is initially carried out with the aid of programs based on Boef and Out (1990) formulation 
for large deflection of slender rods.  A finite element program may be employed if stress concentration points, such as 
the interface between the stiffener and its metal support, are sought.  The material is assumed linear or sometimes non-
linear elastic but symmetric in tension and compression.  Lane et all (1995) work also address the bend stiffener design. 
 
2. Mathematical Formulation of the Problem 
 

The analysis of bend stiffeners subjected to terminal loads was proposed by Boef and Out (1990), who employed a 
slender rod model as schematically shown in Fig. 1a.  The following aspects are considered: large deflections are 
accepted, it is a pure bending problem, the cross-section is variable, the self-weight and external forces are disregarded 
and the material is assumed linear elastic.  Next, a similar methodology is developed, however the material is assumed 
elastic but non-linear asymmetric, hence exhibiting a tension-compression skew behaviour.  The moment-curvature 
non-linear characteristic is numerically calculated and expressed by a power series expansion.  The mathematical 
formulation derives from considering geometrical compatibility, equilibrium of forces and moments and constitutive 
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relations yielding a system of four first order non-linear ordinary differential equations, which describe the bend 
stiffener large displacement configuration. 
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Figure 1a. Schematic of the Bend Stiffener as a Beam Model. 
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Figure 1b. Infinitesimal Element of the Bend Stiffener. 
 
2.1. Geometrical compatibility 
 

Applying trigonometrical relations to the infinitesimal rod element  (see Fig. 1b) yields: dS
 

φcos=
dS
dX  (1a) 

φsin
dS
dY

=  (1b) 

 
Where  is the rod arc-length ( ), S LS ≤≤0 ( ) ( )SYSX ,[  are the Cartesian coordinates of the deflected rod and ] ( )Sφ  is 
the angle between the tangent and the X  - axis.  Furthermore the curvature ( )Sκ  is given by: 
 

dS
dφκ =  (1c) 

 



 
2.2. Boundary conditions 
 

A set of four boundary conditions must be specified for the encastré rod: 
 

( ) 0)()0()0(0 =−=== LLYX φφφ  (2) 
 
Where Lφ  is the angle at the rod free end. 
 
2.3. Equilibrium of forces and moments 
 

A schematic of the internal forces and moments in the rod infinitesimal element is shown in Fig. 1b.  The self-
weight and external forces are disregarded hence the equilibrium of horizontal and vertical forces and bending moments 
respectively yields: 
 

( ) 0cos =− φφ VsinT
dS
d  (3a) 

( ) 0cos =+ φφ sinVT
dS
d  (3b) 

0=− V
dS
dM  (3c) 

 
Where  is the bending moment, V  and ( )SM ( )S ( )S

(
T  are respectively the shear and axial forces.  Integrating Eqs. (3a) 

and (3b) and applying the conditions  and V0T)0(T = 0)0 V=  yields: 
 

0cos VVTsin =− φφ  (4a) 

0cos TsinVT =+ φφ  (4b) 
 

Further manipulating the Eqs. (4a) and (4b) and applying the condition ( ) ( )αsinFLV −=  yields: 
 

[ ]φαφ −+−= LsinFV  (5) 
 
2.4. Constitutive relations 
 

The stress-strain ( εσ − ) curve should be obtained experimentally.  Generally a material such as polyurethane may 
present an asymmetric behaviour in tension and compression: 
 

)(εσ f=  (6) 
 

And possibly )()( εε −−≠ ff .  Considering the Bernoulli-Euler formulation where plane cross-sections remain 
plane after bending, the strain ε  at a distance η  from the neutral axis is given by: 
 

ηκε =  (7) 
 

The neutral axis position may be obtained from the equilibrium of forces in the cross-section, i.e.: 
 

0=∫ dAσ  (8a) 
 
Where dA  is an infinitesimal element of the area cross-section.  The bending moment may be expressed by: 
 

∫= dAM ση  (8b) 
 

If the width of the infinitesimal element of area , located at a distance dA η  from the neutral axis (see Fig. 1a), is 
expressed by a function )(ηβ  then ( ) ηηβ ddA =  and substituting Eqs. (6) and (7) in (8a) and (8b) respectively results: 
 

0)()( =∫ εκεβε df  (9a) 



  

∫= ε
κ
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The neutral axis position y  is then a function of the curvature but it is usually very small (i.e., close to the circle 

center) for moderately asymmetric materials. 
 
Linear Elastic Material 
 

For linear elastic, homogeneous and isotropic materials εσ E= , and considering the state of pure bending the 
neutral axis coincides with the cross-section centroid of area ( ∫ ) and the Eq. (9b) results: 0=dAη
 

κEIM =  (10) 
 
Where E  is the modulus of Young and I  is the cross-section second moment of area.  The total bending stiffness 
distribution is then given by ( ) ( )stiffenerpipe SEIEISEI = + . 

Therefore, substituting the Eq. (10) in (3c) and using (5) yields: 
 

( )





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d 1  (11) 

 
Non-Linear Elastic Material 
 

If the material is non-linear elastic the neutral axis and the bending moment need to be numerically calculated by 
Eqs. (9a) and (9b), respectively.  However, if the material is symmetric the neutral axis coincides with the centroid of 
the area (i.e., 0=η ).  The bending moment may be also written by an adjusted power series: 
 

L+++= 32 κκκ CBAM  (12) 
 
Where  are interpolated coefficients.  Considering a third order approximation for the bending 
moment power series expansion and substituting Eq. (12) in (3c) and using (5) yields: 

( ) ( ) ( ) etcSCSBSA ,,,
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2.5. Numerical solution 
 

The two-point boundary value problem is set by the governing Eqs. (1a) - (1c) and (11) or (13) if the material is 
respectively assumed linear or non-linear elastic.  The boundary conditions are given by Eq. (2). 

An explicit analytical approach for this boundary value problem is not possible even for linear elastic materials 
(except for constant bending stiffness or constant curvature), and consequently it is necessary to pursue a numerical 
solution for this problem.  The mathematical package Matlab has been employed in the solutions.  Bend stiffeners 
often present geometrical discontinuities, such as in the transitions cylindrical to conical shapes and stiffener-pipe, so 
the Rosembrock robust method, recommended for stiff functions, was adopted.  A one parameter shooting method 
based on an incremental-iterative user supported scheme was employed for the solution. 
 
3. Case Study 
 

In this example, it is studied the structural behaviour of a 4 inch flexible pipe, 3.2 m long, protected by a 1.9 m bend 
stiffener as schematically shown in Fig. 2.  The pipe bending stiffness and minimum bending radius are respectively 10 
kNm2 and 2.0 m.  Furthermore the angles α  and Lφ  are respectively defined as zero and 45o. 
 
3.1. Linear symmetric material 
 

The polyurethane Young Modulus at 10% strain is 45 MPa.  Hence the boundary value problem is solved and 
results of curvature as a function of the arclength were compared with Boef and Out (1990), which showed good 
agreement. 
 



 
 1.3 m 1.7 m 0.2 m 

3.2 m 

0.
32

5 
m

 

 
 
Figure 2. Schematic of the Bend Stiffener. 
 
3.2. Non-Linear asymmetric material 
 

When the material is non-linear elastic asymmetric, the solution of the boundary value problem is not so simple.  In 
the following example a third order power series approximation for the bending moment distribution was employed.  
Furthermore the coefficients ,  and  were also expanded by a power series of the type: )(sA )(sB )(sC
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If the Eq. (12) is solved for several sections an interpolation for the coefficients ,  and C  may be 

found and consequently the boundary value problem may be solved.  A similar approach is carried out for the 
determination of the neutral axis, which is also a function of the curvature for different cross-sections (see Eq. (9a)). 

)(SA )(SB )(S

The polyurethane stress-strain asymmetric curve obtained from Meniconi (1999), presented in Fig. 3, is employed 
in this case study.  It is now necessary to calculate the neutral axis position and the bending moment for several cross 
sections as a function of the curvature.  The coefficients ,  and C  are then calculated and the boundary 
value problem may be incremental-iteratively solved. 

)(sA )(sB )(s
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Figure 3. Stress-Strain Curve for a Polyurethane 
 

The results ( )Sκ  for linear elastic and non-linear elastic asymmetric and applied forces F  = 62.5, 125 and 250 kN 
can be seen in Fig. 4.  Results evidence the significant potential influence of the material non-linearity on the stiffener 
behaviour. 

It should be emphasized that the neutral axis eccentricity originates from the material asymmetry in tension – 
compression and this behaviour is not featured in the bend stiffener commercial tools analysis. 
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Figure 4. Curvature Distribution. L
 
4. Conclusions 
 

A formulation and a solution 
in this paper.  Large displaceme
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