
1. INTRODUCTION 
 

The comets are among the smallest bodies known in the Solar System, but they are also one of the most important 
and interesting topics of research in today's celestial mechanics. Comets are believed to carry material from the time the 
Solar System was formed, which means that a detailed study of that material could help us to answer many basic 
questions about this important process. There are also some speculations about connections between the impact of the 
comets and the origin of life on Earth. 

The comets are so small, that they are only detected when they are passing near their pericenter (or periapse). This 
fact makes the estimation of their quantity a very difficult and unsolved problem. The literature almost agrees that a 
good estimate for a lower limit for their population is about 1011 comets related to the Solar System, but several 
researchers believe that they are much more numerous. The actual observations show that three or four new comets are 
observed in the interior Solar System every year. 

The origin of the comets is still not explained. They can be formed in the interstellar space and then they are 
captured by the Solar System or they can be formed in the Solar System and then they are expelled to the interstellar 
space. One of the most popular ideas about the origin of the comets is the existence of a large cloud of comets around 
the Solar System, called the “Oort Cloud”, with a total of 1011 comets at distances up to 105 AU. 

The present research has the goal of giving a contribution to the problem of capture and escape of comets caused by 
a close encounter with the planet Saturn. The topics of escape and capture of comets have been discussed in the 
literature for a long time. In the majority of the papers, a close approach with a large planet is the core of the mechanism 
of capture and escape. The dynamics are explained in papers as old as Russell (1920) and Woerkom (1948), who 
derived an expression to calculate the effects of the close approach between Jupiter and one comet. 

On the basis of the number of comets detected up to now, the Solar System seems to have more short period comets 
(period less than 200 years) than it should have, based in the actual flux of near-parabolic comets coming to the Solar 
System and the mechanism of capture known. Several theories are developed to explain this fact. Hills (1981) suggests 
that we can be living in a period of a large intensity of comets coming from the Oort Cloud (Oort, 1950) to the Solar 
System, that is known as "The Comet Shower Theory". Another possible explanation is the fragmentation of an original 
large body that would generate a large number of smaller bodies. A third option is the existence of another source of 
comets in the Solar System and/or another mechanism of capture, but there is no strong evidence of any of those new 
hypotheses. A summary of orbital evolution and terminal stages of a comet is represented in the Fig. (1). 
         In the present paper, we address this problem by numerical integration of a large number of trajectories of possible 
comets. We assume that the Solar System is composed by the Sun, a planet (Saturn) and one comet. The swing-by 
maneuvers are studied under the model given by the three-dimensional circular restricted three-body problem. This 
maneuver can be identified by five independent parameters: Vp, the magnitude of the velocity of the spacecraft at 
periapsis; γ, the angle between the velocity vector at periapsis and the intersection between the horizontal plane that 

passes by the periapsis and the plane perpendicular to the periapsis that holds pV
&

; rp, the distance between the 

spacecraft and the celestial body during the closest approach; α, the angle between the projection of the periapsis line in 
the x-y plane and the line that connects the two primaries; β, the angle between the periapsis line and the x-y plane.  

With the initial conditions defined, we integrated the trajectory backward and forward in time until we can reach a 
point that can be considered far from Saturn. At those points we can consider the problem as modeled by the two-body 
(Sun and Comet) dynamics. Then we calculated the energy and the angular momentum of the comet before and after the 
encounter and we classify the orbits accordingly to the effects of the close approach. Each part of the orbit (before and 
after the close encounter) can be elliptic or hyperbolic and the close encounter can increase or decrease the energy, what 
give us several possibilities for the close encounter. We represent them with letter-plots, where each letter corresponds 
to one of the classes, describing thus the effect of the close encounter in a two-dimensional diagram. 
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2. MATHEMATICAL MODEL AND ALGORITHM 

 
The present section gives a small example that illustrates the basic principle of energy increase or decrease during a 

flyby of a moving body. It justifies the following fundamental conclusions: When a particle has a close approach with a 
receding massive body, it gains energy, while, if the massive body is approaching, the particle loses energy. It is 
assumed that Q is for a massive planet and P is the comet with negligible mass. In other words P has no effect on the 
motion of Q. The comet P has a close approach with the planet Q. A correct treatment of the problem requires the 
restricted three-body problem, that is described later. The present treatment is somewhat simplified, but it illustrates the 
idea of energy increase or decrease during a planetary flyby, and it leads to the correct conclusions. 

Q is at the location (x1(t), y1(t)). The force is the usual inverse square attraction with potential function U = µ/r or 

with potential energy V = -µ/r. The whole system is referred to an inertial system of reference with origin O, as shown 
in Fig. (2). 

 
 

 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 
 

 
Figure 1. The comet’s orbital evolution.   

 

Ejection 

Outward 
diffusion 

Inward 
diffusion 

Ejection 

Oort – Cloud  
comet 

Ejection Long – period 
comets 

Hits Sun, planet
or satellites  

Extinction, 
becomes meteor 

swarm or asteroid ? 

Ejection 

Ejection 

Formation is dish beyond the 
giant planets 

Short –period 
comets 



x

y

P(x,y)

r

Q(x1,y1)

V1

φ

O
 

 
Figure 2 - A Close Approach between P and Q. 

 
The equations of motion of P are thus: 
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The question is now the variation of the energy of the particle at P. This is obtained with the use of the energy 

equation 
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However, we have 
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Therefore, the energy equation is:  
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In the brackets it is recognized the dot product of the relative position 
&
r PQ=  of P with the absolute velocity 

vector ( )111 y,xV ��  of the perturbing body Q. The energy equation can then be written as:   
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From the equation (7) is possible to come to an important conclusion about the increase or decrease of the energy of 

the particle P. This essentially depends only on the factor Cos(φ) in the above equation: when φ is below 90°, the energy 



decreases and when φ is above 90°, the energy increases. This result can be summarized as follows: When Q 
approaches: E decreases, When Q recedes: E increases.  

 
3. THREE-DIMENSIONAL CIRCULAR RESTRICTED PROBLEM 

 
The primary problem that is studied in this research is to find under what conditions a comet coming from outside 

the Solar System is captured. To solve this problem, it is assumed that the Solar System is formed by three bodies: the 
Sun (body M1), a planet (in the case considered here Saturn, body M2) and a third particle of negligible mass (the comet, 
called M3). The three dimensional swing-by maneuver consists of using a close encounter with a planet to change the 
velocity, energy, and angular momentum of a smaller body (comet). This maneuver can be identified by four 
independent parameters: 1) Vp is the magnitude of the velocity of the comet at periapse. For the most general case, one 
would need to give information about the direction of the velocity; 2) rp is the distance between the comet and the 
planet during the closest approach� �� . is the angle between the projection of the periapse line in the x-y plane and the 
line that connects the two primaries; �� � is the angle between the periapse line and the x-y plane. 

The Fig. (3) shows the geometry involved in the close approach and defines the basic variables used in this 
research. 

   To study the swing-by maneuver, the comet needs to be near Saturn, because when the comet is far the system is 
governed by a two-body (Sun + comet) problem dynamics that does not allow any change in energy. In particular, this 
research is looking for the energy of the comet before and after the swing-by maneuver, to detect under what conditions 
a comet is captured (change its energy from positive to negative). Since the initial conditions for the comet vary in a 
very large range, it is also possible to detect under what conditions a comet is expelled from the Solar System (change 
its energy from negative to positive) or have a modification in its energy without changing its type of orbit (a change in 
its energy that is not large enough to modify the sign of the energy).  

The standard dimensionless canonical system of units is used in the development of this research, which implies 
that the unit of distance is the distance between M1 and M2; the mean angulDU YHORFLW\ & RI WKH PRWLRQ RI M1 and M2 is 

assumed to be one, the mass of the planet M2 is given by ( )212 / mmm +=µ , where m1 and m2 are the real masses of 

M1 and M2, respectively; and the mass of M2 is (1-��� DQG WKH XQLW RI WLPH LV GHILQHG VXFK that the period of the motion 
RI WKH WZR SULPDULHV LV �� DQG WKH JUDYLWDWLRQDO FRQVWDQW LV RQH� 

In the rotational system of reference, the origin is the center of mass of the two massive primaries. The horizontal 
axis x is the line that connects the two primaries at any time. The vertical axis y is perpendicular to the x axis. In this 
research the Sun and Saturn’s positions in the x axis are x1=-�� [2=1-�� DQG \1=y2=0, respectively.  

Following the theory described by Szebehely (1968), the equations of motion for the massless particle can be 
written by: 
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where r1 and r2 are the distances from M1 and M2. 
 
        A numerical algorithm to solve the problem has the following steps:  
 
1. Arbitrary values for the parameters rp, Vp, α, β and γ  are given;  
 
2. With these values the initial conditions in the rotating system are computed. The initial position is the point (Xi, Yi, 

Zi) and the initial velocity is (Vxi, Vyi, Vzi), where: 
 

( ) ( )αβµ coscosr1X pi +−=        (11) 

( ) ( )αβ sincosrY pi =          (12) 

( )βsinrZ pi =           (13) 

( ) ( ) ( )αβαγαβγ sin cosrsin )cos(V)cos( ) sin()(sin VV pppXi +−−=   (14) 

( ) ( ) ( )αβαγαβγ coscosrosc )cos(V) sin() sin()(sin VV pppYi −+−=                     (15) 

) sin()cos( VV pZi γβ=                                 (16) 



 
3. With these initial conditions, the equations of motion are integrated forward in time until the distance between M2 
and the spacecraft is larger than a specified limit d. At this point the numerical integration is stopped and the energy 
(E+) and the angular momentum (C+) after the encounter are calculated;  
 
4. Then, the particle goes back to its initial conditions at the point P, and the equations of motion are integrated 
backward in time, until the distance d is reached again. Then the energy (E-) and the angular momentum (C-) before the 
encounter are calculated. 
 
       For all of the simulations shown, a fourth-order Runge-Kutta method with step size control and a Runge-Kutta of 8-
th order were used for numerical integration. The result of this comparison is that there is no distinction in the plots 
obtained. The constant value for the Jacobian constant also is a proof that both numerical integration methods worked 
very well. The criteria to stop numerical integration is the distance between the spacecraft and M2. When this distance 
reaches the value d = 0.5 (half of the semimajor axis of the two primaries) the numerical integration is stopped. The 
value 0.5 is a lot larger than the sphere of influence of M2 for the Earth-Moon system, that is used here (which is, 
0.00077 in canonical units), which avoids any important effects of M2 at these points. Simulations using larger values 
for this distance were performed, and it increased the integration time, but did not significantly change the results. To 
study the effects of numerical accuracy, several cases were simulated using different integration methods and/or 
different values for the accuracy required with no effects in the results. All of the calculations were performed with an 
IBM-PC computer using the Microsoft Fortran Power Station 4.0 Compiler. 
 

 

Figure 3. Trajectory of the Comet during the Swing-by. 
 
 
4. CHANGES AND CLASSIFICATION OF THE ORBITS 

  
The results consist of plots that show the change of the orbit of the comet caused by the close encounter with a 

planet (Saturn). The Sun-planet system of primaries is useful to study missions using a swing-by with a planet. This 
system was used in the Voyager, Ulysses and others missions. To develop new technical methods to study the swing-by 
maneuver, it is necessary to analyze the comet’s behavior. The results consist of plots that show what happens to the 
comet after the close encounter with the planet for a large range of given initial conditions. First of all it is necessary to 
classify all the close encounters between the planet and the comet, according to the change obtained in the orbit of the 
comet. The letters A-P are used for this classification in the same way it was used in Felipe and Prado (1999) and Prado 
(1993). They are assigned to the orbits according to the rules showed in Table 1. 
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Table 1- Rules to assign letters to orbits. 
 

After 
Before Direct 

ellipse 
Retrograde 

ellipse 
Direct 

hyperbola 
Retrograde 
Hyperbola 

Direct ellipse A E I M 
Retrograde ellipse B F J N 
Direct hyperbola C G K O 

Retrograde hyperbola D H L P 
 
5. RESULTS 
 

After defining the meaning of the letters, the results consist of assigning one of those letters to a position in a two-
dimensional diagram that KDV WKH SDUDPHWHU . �LQ GHJUHHV� LQ WKH KRUL]RQWDO D[LV DQG WKH SDUDPHWHU � �LQ GHJUHHV DOVR� LQ
the vertical axis. This type of diagram is called a “letter-plot”, and it was used before in Broucke (1988). For each plot a 
total of 961 trajectories were genHUDWHG� GLYLGLQJ HDFK D[LV LQ �� VHJPHQWV� 7KH LQWHUYDO SORWWHG IRU . LV ���� � . � ����

EHFDXVH WKHUH LV D V\PPHWU\ ZLWK UHVSHFW WR WKH YHUWLFDO OLQH .  ��� �� 
Looking at the simulations, it is possible to verify the influence caused by the angles that the maneuver is realized. 

To perform the simulations the Microsoft Fortran was used, where a integration routine was created to execute all the 
FDOFXODWLRQV� 7KH UHVXOWV REWDLQHG DUH UHSUHVHQWHG LQ WKH )LJ� ���� ZKHUH WKH YDOXHV IRU WKH DQJOH . DUH EHWZHHQ �80 and 
��� GHJUHHV DQG � LV EHWZHHQ -90 and 90 degrees. The values to rp and Vp were chosen to represent the most significant 
results, after a large number of simulations were realized. 

By examining Fig. (4), it is possible to identify the following families of orbits: a) Orbits that result in an escape 
(transfer from elliptic to hyperbolic), that are represented by the letters I, J, M, N and that appear in horizontal stripes 
close to the bottom of the plots; b) Orbits that result in a capture (transfer from hyperbolic to elliptic), that are 
represented by the letters C, D, G, H that does not appear in plots shown, but that exist in the symmetric parts not 
shown; c) Elliptic orbits (transfer from elliptic to elliptic), that are represented by the letters A, B, E, F and are at the 
bottom of plots; d) Hyperbolic orbits (transfer from hyperbolic to hyperbolic), that are represented by the letters K, L, 
O, P that are at the upper part of the plots; e) Orbits that change the direction of motion from retrograde to direct, that 
are represented by the letters B, D, J, L, that appear in the center of the plots; f) Retrograde orbits that are represented 
by the letters F, H, N, P, that appear in the lower parts of  the plots; g) Direct orbits that are represented by the letters A, 
C, I, K that appear in the upper part of the plots. 

The border lines between those families are also interesting families of orbits. The borders that separate elliptic 
from hyperbolic orbits are made by parabolic orbits. An example of a border that has parabolic orbits after the close 
approach is F-N. An example of a border that have parabolic orbits before the close approach is N-L. The borders that 
separate direct from retrograde orbits represent orbits with zero angular momentum. In this case, position and velocity 
are parallel (rectilinear orbits). An example of a border that has zero angular momentum after the close approach is L-P. 
An example of a border that has zero momentum before the close approach is K-L.  
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Figure 4. Some results of a swing-by maneuver. 
 

It is easy to see those families of orbits by examining the figures. In a general way, a typical plot can be divided in 
three regions with respect to the energy (elliptic to elliptic, elliptic to hyperbolic, hyperbolic to hyperbolic) and in three 
regions with respect to the angular momentum (retrograde to retrograde, direct to retrograde, direct to direct). The final 
format is a result of the intersections of those regions. 

In the literature, there are not many papers producing similar results to compare with ours. One of them is Broucke 
(1988) that generated similar results for the planar case.  Another one is Felipe and Prado (1999), which studied 
simulations and the solution of optimal problems using the three-dimensional case. Considering the study of comets, 
there is also Prado (1993) that studied the close approach between a comet and the planet Jupiter, in the planar case, 
including statistics about the orbital distribution of the orbits after the passage. The results found in the present paper 
are complementary to the ones found in the literature, but they are consistent, which allow us to believe that the 
numerical algorithm is working very well. 
   
5. CONCLUSIONS 
 

In this paper the circular three-dimensional restricted three-body problem is described and used to study the swing-
by maneuver. Several letter-plot type of graphics are made to represent the effect of a close approach in the orbit of a 
comet. 

$ ODUJH QXPEHU RI VLPXODWLRQV ZHUH UHDOL]HG� DOORZLQJ XV WR YHULI\ WKH UHODWLRQV EHWZHHQ WKH SDUDPHWHUV .� �� Up, Vp 
and their influences in the orbital trajectory of a comet. The gravitational captures happens when the comet pass from a 
hyperbolic orbit to an elliptic orbit. Those cases are represented for the letters C-D-G-H. The results showed that the 
captures usually happens for lower values of rp (distance between Saturn and the Comet), because the orbits tend to be 
elliptic after the passage. 
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