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Abstract. This paper presents different approaches for solving problems of topdogy and aientation ogimization d laminated shell
structures. The objective of the design is the minimization of volume under compliance constraints. The design variables are the
relative densities and the principa material direction aientation d each layer in an dement. A two-level strategy is used,
optimizing sequentially the orientation andthen the density, aiming reducing the computationd effort during each iteration.
Sequential Linear Programmning methodis used to solve both ogtimization problems. Mathematical algorithms were derived for the
solution d the problem. These algorithms were coded for single and multiple loadng cases. The topdogy optimization can be
considered as an extension d Cardoso (2000 and SatiAnna (2002 works for laminated shell structures. An eight node
degenerated shdl finite dement with explicit integration on the thickness direction, as in Kumar €t al., is used to solve the
equili brium equations for laminated composites. Sameill ustrative examples are presented and dscussed to show the apgi cahilit y of
the proposed optimization appoache.

Keywords. laminated shell s, topd ogy optimization, orientation ogimization, two-level strategy, compliance.
1. Introduction

Laminated shell structures are aurrently being used in many appli cations, from high technology aircraft to smple
handmade surf boards. However, design methodol ogies for such structures were developed only in the last few decades.
Nowadays, simple structural analysis is not enough to oltain a good design. For example, in aircraft, an aerodynamic
surfacestructure is not only expeded to resist to all kind of loadsit is suibjed to, but is also expeded to weight the |east
possble, increasing the aircraft power/weight ratio and thus increasing performance This and other examples $ow the
importance of optimization methods in the laminated shell design.

Structural optimization is an important tod for the enginee, becuse it involves at the same time the structural
analysis and the search for the best design under certain objedives and constraints. These ohjedives depend on the
whole projed, but the most common are the minimization of total mass or total volume of the structure, under
compliance stress strain or failure aiteria constraints, among others. In a general point of view, all objedives are
related to cost minimization.

The daracteristics and properties of laminated shells made of orthotropic layers give the enginea many design
parameters that can be used to achieve the desired operation conditions, such as displacements, compliance, stress
dtrain, etc. Some of these parameters are layer thickness layer or fiber orientation, layer material, number of plies,
stacking sequence etc. Fiber and layer orientation are important design parameters because they have influenceon the
structure behavior when in service life, and are often present in laminated composite structure optimizaion. It was
searched in this work to combine orientation optimization with topology optimization methods applied to continuum
isotropic structures, aiming volume minimizaion under compliance ®nstraints. For multi-layer shells, the design
obtained is smilar to definition of stiffeners.

Structural optimization requires the solution of static or dynamic equili brium equations. The most used method is
the Finite Element Method (FEM). Finite dements for solution of equili brium equations of laminated shells were
derived from isotropic single layer shell finite dements. One example is the degenerated shell finite dement with
explicit trough-thicknessintegration presented by Kumar and Palaninathan (1997, used in the present work.

1.1. Laminated composite material

Composite material are those made of two a more different materials or phases, with different physical and
medhanical properties. These @mmbinations are made in order to oltain a material with a resulting behavior that could
not be achieved by conventional materials (Agarwal and Broutman, 1990. Different clasdfications of composite
material can be found. Dietz (1969apud Cardoso and Fonse@, 2000, divides them in three groups: fibrous,
particul ated and laminated. Jones (1975 presented a nomenclature definiti on for the study of fiber reinforced laminated
composite material. A ply can be mnsidered as a plane arrangement of unidiredional fibers or woven. A laminated isa
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sequence of plies with different material principal diredion orientation. Laminates can be mmposed of layers made of
different material or made of different fiber reinforced plies. Fiber and matrix can be even metalli c or non-metalli c. The
most used fibers are metals sich aluminum, cooper, iron, sted and titanium or organic material such as glass carbon,
boron and graphite (Reddy, 1997). The methodol ogy here presented can be used to gptimize shell s made of any of these
materials.

2. Laminated Shell Finite Element

The laminated shell finite dement used in the present work is derived from an eight node degenerated shell FE. To
consider the @ntributions of each layer of the structure, an explicit through-thicknessintegration is used. Reminding
that the ohjedive of the work is optimization of laminated shell structures, the dement formulation must all ow an easy
and fast calculation of stiffnessmatrix derivatives.

The dement kinematics are simil ar to what is presented, for example, by Hughes (1987 or Zienkiewicz and Taylor
(1997). Kumar and Palaninathan (1997) presented an expli cit i ntegration method for the thicknessdiredion, using three
models. The difference between these models is the way the inverse Jacobian matrix elements vary through the
thickness The model chosen for thiswork consider it constant. This leads to the foll owing element stiffnessmatrix:

2
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where matrices B; and B, are the strain-displacement matrices as presented by Kumar and Palaninathan (1997, t isthe
total dement thicknessand J isthe Jacobian. The mngtitutive tensors abowve are defined here as:
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In these euations, nl is the dement number of plies and z and z, are the layer top and battom coordinates. The
relative density py isinserted in thiswork becauseit is used as design variable for the topology optimization, explained
in the sedion 3.4. The layer condtitutive tensor Cy° is function of the layer orientation, and is obtained trough a plane

rotation of C,", which is the modified layer constitutive tensor acoounting for transversal shear effeds (Jones, 1979
and expressed in the layer coordinate system:

Ce=QLCiQ, ©

The rotation matrix Qp is given by:
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Figure 1. Coordinate systems for laminated shell finite dement.



Figure (1) presents these rotations and dfferent systems. The C'™ constitutive tensor is expressd in the layer
coardinate system, defined by vedors €, €' and€". The vedor €"is parale to the larger material elasticity

modulus diredion. The tensor C'° is defined in the local coordinate system, defined by €°,€f and €°. This ystem lies
on the same plane of the layer coardinate system, and they share the same perpendicular vedor (€' =€ ). Vedors vg;

and v;, are parall e to the parametric coordinate system and are clculated at each integration point, being necessary to
define the local coordinate system. To calculate the rotations degrees of freedom at each node, a nodal coordinate
system is defined by vedors vy, , v, and vy, being thislast oneavedor normal to the referencesurfaceat the node. The
global coordinate system, defined by e;, e, and &3, isthe reference one and used to expressnodal displacements.

3. Optimization Procedure

Earlier works in laminated structures optimization appeared only in the late 1960s. Foye (1968 studied minimum
weight of laminates, searching for strength and stiffnessoptimum design, for in-plane multi ple loads. Waddoups (1969
obtained minimum weight designs using strength constraints under distinct multi ple load cases, considering maximum
strain or Tsai-Hill failure aiteria. The design variable was the ply orientation, but the search for the optimum was
exhaustive. Schmit and Farshi (1973 presented a method to oltain the minimum weight optimum design of symmetric
composite laminates under multiple in-plane loads, using the layer thickness as design variables. The optimization
algorithm was an adaptation of the so call ed inscribed hyperspheres and consisted in a sequenceof linear programming
with fast convergence

An important work on fiber orientation optimization of composite material structures was made by Pedersen
(1989. He searched for the maximum and minimum energy densiti es on orthotropic material structures, working only
with fiber orientation. Solving plane dasticity problems, he mncluded that the optimum orientation depends only of the
relation between the two principal strain diredions and non-dimensional invariant material parameters. In 199Q
Pedersen returned to this subjed, considering now FEM analysis. For materials with relative low in-plane shear
gtiffness, the maximum stiffnessis obtained ali gning the biggest material easticity modulus diredion with the biggest
principal strain diredion. Cheng (1994 has discussed Pedersen’s results for the use of principal strain diredions to
update the orientation and compared methods presented by Suzuki e Kikuchi (1997 and Diaz axd Bendsge (1992, who
used principal stressdiredions. Pedersen’s method presents coupling between principal strain diredion and the design
variable 6, while using methods based on stress this coupling becomes weaker. Diaz and Bendsge could also solve
multi ple loads problems. Cheng presented then a stressbased improved method, using a formulation with generali zed
stress and not only principal stress

Conceacao Anténio et al. (1999 solved laminated plate and shell problems using a two-level strategy. Their
objedive was to oldain a minimum weight structure that could support a set of external static loads without failure. The
domain was litted in macro-elements with different stacking sequenceon each one. In thefirst level it was maximized
the structure dficiency, the ply orientation being the design variable and using mathematical programming. In the
seoond level, the weight of the structure was minimized, working with ply thicknessas design variable.

Mota Soares et al. (1995 presented an model for the optimization of thin composite laminated plates, using also a
two-level approach. In thefirst level it was minimized the maximum displacement or maximized certain vibration mode
frequency, using as design variables the orientation angles of certain ply, under boundary constraints. The objedive of
the second level was the volume minimization under displacement, stress and/or Tsai-Hill failure aiteria, spedfic
vibration mode frequency or boundary constraints.

Maute and Ramm (1997 presented a work in adaptive topology optimization of shell structures. They made
topology optimization to find the basic configuration, inserting or removing holes in the ground structure, and then
made a shape optimization. Maximum stiffnessproblemswith massconstrai nts were discussed, using optimally criteria.
It was verified that, for thin shells, the transversal shear energy caused chedkerboards when shear locking ocaur.

Considering the works cited abowve, the approaches to be used in this work were defined. The option for a two-level
strategy is obvious. The idea is to find a structure with the minimum volume for a certain compliance spedfied a
priori. For laminated structures made of orthotropic layers, it is posshble to gptimize the orientation, minimizing the
compliancein afirst level. In a second level, each layer can have itstopol ogy optimized, reducing the structure volume.
The use of two levels leads a so to the number of design variables reduction during each iteration, and gves an easier
and more robust way to oltain each of the objedive functions and all sensitivities. The topology optimizaion level is
based on the work of Cardoso (2000 and Sant’ Anna (2002. When optimizing the topology of only some layers of the
structure, this approach is Smilar to the design of shell stiffeners. The dhosen methods and optimization formulas are
described below.

3.1. Two level approach

In thiswork atwo-level approach is used, each one being:

- 1% level - compliance minimization, with the ply orientation on each element as design variable, without
congtraints (size optimization);

- 2" level - volume minimization, with relative densities of the plies of each dement as design variable, and
considering the aompliance as constraint (topology optimization).



On Fig. (2) it can be seen a flow chart for the strategy used. Asit is presented here, the processpasses through each
level just once Another strategy would be to come back to first level after each step of the second level, but tests
showed no improvement in this grategy.
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Figure 2. Two-level strategy procedure.

After the mnvergenceof thefirst level, the flag convd isturned on, what deviates the algorithm to the second level.
At thislevd it is diown the passage through the Continuation Method (CM) steps (seeTopol ogy Optimization sedion).
The algorithm verifies the mnvergence of the ojedive function s, and in the positive @ase, verify to which CM step it
must go. Tests sowed that there is practically no difference between threeor more steps, and in the most cases only
two are enough.

Sequential Linear Progranming (SLP) is used in bath levels. This method requires the linearization of each
objedive function and congtraints. First order Taylor series are used, what leads to differentiation of the related
functions with resped to each level design variable. A first order approximation, however, is good only in the
neighborhoad of the optimum point and then it is necessary to use move limits. A similar strategy used by Sant’ Anna
(2002, based on the iteration history and on design variable behavior, was applied in bath levels to update the move
limits. Theory and detail s about SLP and Mathematical Programming in general can be found in Haftka and Girdal
(1992 and Cheng (1992. The mathematical algorithms derived below were mded using MATLAB, what all owed the
use of some of its functions. One exampleisthe “linprog”, used to solve the Linear Programming step.

3.2. Orientation Optimization

The orientation optimization problem, in the first level, can be written as:
minW (6). ©)

This is an unconstrained optimization, since the stiffest structure is sarched in this optimizaion level, all owing
more volume reduction in the second level. The structure cmplianceis given by:

W=q'Kq, (6)

where q is the global displacement vedor and K is the global stiffness matrix. The differentiation of Eqg. (6) with
resped to the design variable 6 is given by:

ow _ ;0K ., 0q
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The design variable 9 is defined on each element layer, and thus the stiffnessmatrix derivative must be alculated
at each layer. So, W00 is a vedor with dimension Ngessr (NUMber of design variables, equal to element number
multi pli ed by the number of layersto be optimized). The derivative of K with resped to 8 isthen given by:
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In the expresdgon abowe, p,isthe relative density of the dement layer being optimized, z,andz are the baitom and
top coardinate of the layer in the thicknessdiredion. .
For the differentiation of g with resped to 6, it should be used the expresson Kq =f . Sincethe derivative of f with

resped to @isnull, this equation leads to:
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Finally, inserting Eq. (10) into Eq. (7):
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This means that the differentiation of W with resped to 6 is actually given only by the differentiation of the
congtitutive tensor on Eg. (8) and Eq. (9).

To extend this problem to multi ple load cases, a strategy suggest by Krog and Olhoff (1997 isused. Theideaisto
consider a weighted sum of the compliance assciated to each load case. This approach maintains the formulation
obtained abowe, kegping all advantages of the use of a SLP method, its robustnessand simpli city, not being necessary to
reformulate the problem for different type of structures. The optimization problem on Eq. (5) is smply modified to:

minwW, (6), j=1ln__, (12)

where w, and W are the weight and compliance associated to each j load case, and Neases IS the number of load cases
applied to the structure. To oltain all weightsw;, each compliance W, is calculated after the first FEM step, as

= (qTf )j . (13

Each weight is then calculated in the foll owing way:

WJ=|w|/n§|w| (19

3.3. Topology optimization

For continuum structures, the topology optimization introduces an universe of posdble structural elements, in a
certain design domain, called ground structure, and search for the best material distribution inside this universe
(Fonsea, 1997). Bendsge (1995 presented a revision of the exrlier works, including works of Bendsge and Kikuchi
(1988, Suzuki and Kikuchi (1997) and Diaz and Bendsge (1992, for example. The use of microstructures has been
introduced, leading to gptimal solutions for many cases and problems. Microstructure, however, brings the problem of
structures with intermediate densities, what may be very difficult to huild, if not impossble. To solve this problem,
different procedures have been developed (for example, Suzuki and Kikuchi, 1991, Haber et al., 1996 Beders, 1997,
among others). Here a cost function penalization (Rozvany, 1997 has been chosen, as in Sant’ Anna (2002, and the
optimization problem is defined as:

lesvar

min s(p) = Z or +ap, (1- p, ) BV,

st W (p)-W,, <0, j=1ln (15)

lim

O<p<1l



where §(p) is the objedive function, p isthe relative density of the cdl material (Bendsge, 1995, defined on each layer
being optimized, p and a are the penalizaion parameters, W, is the limit compliance spedfied for the final solution
and V, is the volume of each layer to be optimized inside each element. This formulation includes multiple load cases
through the mnstraints, with Wi(p) being the linearized compli ance associated to each load case.

The use of this penali zed formulation brings a new problem: the optimization problem beames non-convex, what
leads to the non-uniqueness of the discrete problem solution. To overcome it, a Continuation Method (CM) is used
(Cardoso, 2000: the optimization probem is slved in two a more steps. The problem isinitially solved with alinear
approach for p, usingp=1and a =0. Thisisaconvex probem, what guarantees the solution unicity, even obtaining
many intermediate densities. The solution obtained is then used to start new optimization steps, withp< 1 and a > 0,
what changes the problem to a non-convex one. Intermediate densities beame more “expensive’, and the algorithm
searches for solution containing only minimum or maximum densiti es areas. The behavior of the penalized functionis
seen on Fig. (3).
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Figure 3. Penalization of §( p) asin Eq. (15) for a =0 at left, and for p = 1/8 and various values of a. at right.

The volume Vn is calcul ated as:

1 1
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The differentiation of s(p ) with resped to p on each “n” element layer isthen given by:

0 _
asp” = Bpp!™ +a(1- 2pn)9/n. (17)

Asit isused SLP, it is necessary also to oltain a linear expresson for the mnstraint. To oltain the compliance
derivative for each “j” load casg, it is used the Eq. (13), leading to:
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Thestiffneﬁsmatrix derivative for each n design variable is given by:
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The derivatives of the onstitutive tensors are @lculated from (2) as:
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4. Numerical Results

The two-level optimization strategy was applied in 2D eagticity, plates, cylindrical and spherical shells problems.
Isotropic problems were also tested, to compare results, and stacking sequenceis varied, to compare orientation and
topology solutions. In this paper, some of the obtained results are presented, including multi ple loads cases, using bath
orientation and topology optimization. The structure limit compliance (W) has always been defined as a factor of the
original structure empliance (W), which is calculated after the first FEM step. Volume reduction results are expressed
as function of the original volume (Vj). In the tests made, it was used a homogeneous density distribution, always equal
to ane, and it was not investigated the influence of different initial distributions. The material propertiesused are given
by Reddy (1997).



Problems of 2D eadticity are ommon in the literature. Due to its smplicity, they were used to evaluate the
algorithm during its implementation. The fixed beam probem is useful to show the advantage of the orientation
optimizaion before the topological one. On Fig. (4), results are presented for beams made of one Graphite — Epoxy
layer, with the principal material diredion parall e to the x; diredion, using an W;,, of 2W,.
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Figure 4. Final topology and orientation of a fixed boundary beam: (a) only topology optimization (V; = 0,45V,) and (b)
optimizing also the orientation with PD-SLP (Vs = 0,27V;). Material: Graphite-Epoxy.

Figure (5) shows the graphics of the obedive function, structure volume and compliance behavior during the
iteration history for bath cases cited abowve. At left, thereis only topol ogy optimization, in two steps. In the first step, the
structure total volume is equal to the objedive function s(p). After its convergence, the penali zation factor is changed to
1/8, what is noticed by the modification in the obedive function behavior. The structure cmpliance reaches its
maximum values (W, ) in few iterations, and the final volume obtained when applying only topology optimization is
0.45V,. The vertical dashed line divides the two CM steps. At right, there are two gptimizaion levels. First, the
orientation one, with minimizaion of structure compliance, and s(p) and V remaining constant. The second level has
two CM steps also, with similar behavior of all curves. It may be noticed that the structure mmpliance now starts with
lessthan 50% of its original value, what al ows more volume reduction: as the algorithm tries to oltain a structure
complianceof 2W, it can remove more material, and the final volume deaeasesto 0.27V,.
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Figure 5. Final topology and orientation of a fixed boundary beam: (a) only topology optimization (V; = 0,45V,) and (b)
optimizing also the orientation with PD-SLP (Vs = 0,27V;). Material: Graphite-Epoxy.

The solution of a single layer orthotropic shell problem is iown on Fig. (6). The original layer orientation was 45°
on the quadrant, and W;,, = 0.5, what leads to a final volume of 0.75V,. Comparing with the previous result, it can be
seen the importance of the definition of this limit compliance The first optimization level can reduce excessvely the
compliance what may lead to an excessve volume reduction in the topology optimization level, sometimes obtaining a
statically underterminated structure. In this problem, threestepswereused intheCM: p=1anda=0,p=18and a =
0.3 and finally p = 1/12 and a = 0.5. Even with threesteps, instead of only two used in the most cases tested, not all
intermediate densiti es were diminated. The remaining, meanwhil e, are low, near minimum, and could be diminated in
atopology interpreting post-processng step (not performed here).



(b)
Figure 6. On (a), a 3D topology representation of the single orthotropic layer optimized shell with initial orientation at
4%° on each quadrant and Wj;,,= 0.5 W, (b) topology and orientation solution. Here, R = 10, L = 5, thicknessO0.1.

For two layers and same boundary and load conditi ons of the previous problem, the solution obtained is iown on
Fig. (7). The battom layer had a orientation perpendicular to the upper one, and bath were made by the same material
(Gr-Ep). The limit compliance was 0.5W, with two stepsin the CM: p=1and p = 1/8, for a = 0. These two steps
were enough to elimi nate almost all i ntermediate densiti es, and the final volume obtained was 0.55 V. The mnstruction
of such structures is not trivial, however, since some areas of the upper layer is not in contact with the lower. When
optimizing al layers of multi-layer structures, holes can appear inside the structures, or a layer can even disappear.
This avoid this, the optimization should be applied to anly the external layers, asin the foll owing problem.

Figure 7. Topology and orientation solution for a two layer laminated shell, with W,;,,= 0.5 W, and a central load. At
left, lower layer and at right the upper one.

The solution of a multiple load and threelayers problem is presented on Fig. (8). One applied load (Load 1) is
composed by a central force (F;) and the other load (Load 2) is composed by equal forces (0.7 F;) applied in themiddie
of the alges. Only the lower and upper layers were optimized, what is equivalent to the determination of stiffeners for
the midde structure. After solving the FEM problem in the first iteration, the weight of the acmpliance associated to
each load case was calculated, being w; = 0.642and w, = 0.357. In this problem, the compliancewith bigger weight
was chosen as W, but isnot arule. In this example, the limit compliancewas 0.4W,, what resulted in afinal volume of
48% of theinitial one for the two layers. Only two steps of the CM were used, with p = 1/8 and a = 0.3 on the second
one.

The iteration history in Fig. (8b) shows the two gptimization levels and the two CM steps. In thefirst level, before
the vertical dashed line, it can be seen the minimizaion of the cmpliance associated to each load case. In the second
level, bath compliance values reach their constraint. In the first step of the topology optimization level, the objedive
function and the volume of the optimized layers are the same, since the penalization factor p is equal to ane. In the



second CM step, the volume practically does not change, but s increases suddenly in the beginning to deaease later,
when reaching the mnvergence Thisisthetypical behavior of al casestested.
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Figure 8. In (a), topology solution for athreelayer optimized shell, with W;,,= 0.4 W, and multi ple applied load. In (b),
iteration history for this probem..

In the problem abowe, a variation on the weight of each load case (w ) is possble only if the |oads were modified,
or new load cases were taken into acocount. Thus, when including new load cases in the analysis, new weights for all
loads have to be defined. As can be seen in the optimal design obtained, on Fig. (8a), the upper layer resisting mostly to
Load 1 and the battom one to Load 2. Sincethe compliance asociated to Load 2 was lower, and consequently itsw, <
wy , it allowed more volume reduction on the battom layer. Thisindicates the influenceof each weight w; on the optimal
design.

4, Conclusion

A two-level strategy for the optimization of laminated shells has been presented. The two levels consisted in
optimizaion of principal material orientation on each ply, minimizing the structure cmpliance and topology
optimizaion, minimizing each ply volume In bah levels Sequential Linear Programming (SLP) was used.
Mathematical algorithms were derived, all owing solution of multiple load cases probems. For the equili brium solution
an eight-node degenerated laminated shell element with exact through thicknessintegration was implemented.

In the tests made, the method showed efficiency to solve many kinds of problems, from 2D elasticity and plates to
spherical and cylindrical shells problems. The example of 2D elasticity presented here showed the advantage of a
orientation optimization before the topology one: a larger volume reduction was obtained in comparison to only
topology optimization for orthotropic structures. With the shell optimization examples, this advantage was emphasi zed.
It could be seen that the orientation optimization leads to a large ampliance reduction in the first optimization level,
all owing an efficient volume reduction in the second level, even for low prescribed limit compliance (W;.,). Care should
be taken to avoid the appearance of holes between layers, and good results were achieved when optimizing the external
layers of the structure. The algorithm could solve also efficiently the multiple load problems, using a weighted
compli ance sum approach.

The methods presented here represent a contribution for the knowledge of laminated shell s design methodol ogies.
The use of thiskind of structure is greading from the aerospaceindustry to aher sedors, as the dforts towards weight
and cost reduction are universal. Therefore, the research in optimization isimportant for the development of the whole
Brazli an industry.
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