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Abstract. This paper presents parametric time-frequency methods as a tool for transient vibration signal analysis. These methods 
are based on autoregressive models of the signal. A time-frequency method based on the classical Wigner-Ville Distribution is used 
for comparison purposes. The characteristics, advantages and disadvantages, of non-parametric and parametric methods are 
discussed and their performances are compared by analyzing actual data. The superiority of time-frequency resolution of the 
parametric methods is pointed out over that of the non-parametric ones. Two practical examples of transient vibration signals 
illustrate the discussion: the detection of lubricant film collapse in a journal bearing and the vibration signal issued from a 
damaged gearbox. 
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1. Introduction 

 
Non-stationary signals, are presented in many fields of mechanical engineering area, particularly in the vibrational 

behavior of machinery. Machine health condition monitoring, monitoring of machining process, non destructive testing, 
system identification are examples of areas where the spectral analysis of transient signals are common, important and 
necessary. 

Several time-frequency representation techniques (TFRs) have been developed, in the last decades, to allow access 
to the time-frequency energy behavior (amplitude and/or frequency modulations) of non-stationary signals. The most 
commonly used are those issued from the Cohen Class, particularly those based on a linear transform - the short term 
Fourier Transform (STFT) - and on a quadratic transform - the Wigner-Ville Distributions (WVD) and their relatives. 
Many authors have used this non-parametric TFR in order to analyse transient mechanical vibration signals. Of 
particular interest to this study are the works of Baydar & Ball (2001), Staszewski et all (1997), and Oehlmann et all 
(1997), where gear faults detection is discussed using non-parametric TFRs.  

Despite the WVD potentiality to reach higher time-frequency resolution than that of STFT; WVD presents a major 
drawback which is the presence of cross-interference terms among the time-frequency patterns. This side effect 
compromises the visual interpretation of the WVD image. This problem, its consequences and the ways to overcome 
these difficulties will be discussed later in this paper. 

Another different approach to access TFR is the use of parametric spectral estimations. This approach provides a 
way to overcome the major drawbacks of the linear and quadratic transform, mainly the poor time-frequency resolution 
and interference terms. Parametric methods are known by their high spectral resolution and it is possible to have a very 
good spectral estimation with very short time signal.  

Initially, this work discusses the highlights of non-parametric TFRs. Next, time-frequency methods based on 
autoregressive models are presented and their most important characteristics are analyzed. Both classes of methods, 
parametric and non-parametric, are compared and their advantages and disadvantages are discussed. Two practical 
examples of transient vibration signals are used to illustrate the discussion: the vibration signal issued from lubricant 
film collapse in a journal bearing and the vibration signal issued from a damaged helical gearbox. 

 
2. Non-Parametric Time-Frequency Representations 

 
It is possible to classify the non-parametric TFR methods in two classes. The first one is based on the short-Fourier 

transform. The second employs quadratic transforms such as the Wigner-Ville Distribution (WVD) and its relatives. 
 

2.1 The Fourier transform approach 
 
A linear TFR based on Fourier transform (FT) can be reached by pre-windowing the signal around a chosen time, 

calculating its FT, and proceeding in the same way for each instant. This transform is known as Short Time-Frequency 
Transform (STFT). A quadratic form related with the STFT can be obtained by taking the square of this transform. It is 
known as spectrogram (SPEC), and measures the spectral energy density of the signal in the time-frequency plan.  
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The STFT time resolution is determined by the length of the selected sliding window, and the frequency resolution 

is determined by the bandwidth of the window. The best frequency resolution is achieved with the natural window and 
defined as ∆f = 1/D, where D is the time duration of the window. Any other different window will degrade the 
resolution (Harris, 1978). The product ∆f x D  ≥   1 measures the joint time-frequency resolution of the STFT method. 
This resolution limitation is the most significant drawback of this TFR. As others major STFT problems, it can be cited 
(a) the implicit windowing problem that causes the �leakage� phenomenon, and (b) the impossibility, when working 
with short time data, of evaluating periodogram averaging for good power spectra estimation (Marple, 1989). 

 
2.2 The quadratic approach 

 
The Cohen class is a general formulation for non-parametric time-frequency distribution, which includes the 

Wigner-Ville Distribution (WVD) and relatives (Boashash & Chen, 1992; Flandrin, 1999; Cohen, 1989, Qian & Chen, 
1999). The STFT can be considered as a special case of the Cohen class.  The Wigner-Ville Distribution can be defined 
as: 
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Since the value of the WVD is determined by all the values of the signal (and therefore, not limited by a time 

window) the WVD overcomes the STFT tradeoff between time and frequency resolution (the hypothesis of short-term 
stationarity is not necessary). This improvement comes at a price of the appearance of spectral cross-terms, which come 
from WVD bilinear characteristic (Marple, 1998). This spectral interference is critical in multicomponent signals, since 
it makes difficult the distinction of weaker signal components and it masks spectral features.  

To overcome this major drawback of the WVD, several modifications have been proposed and can be found in 
literature (Boashash & Chen, 1992; Flandrin, 1999). One of them, the Smooth Pseudo Wigner Ville Distribution 
(SPWVD), is of particular interest to this work since it will be used later to analyse experimental results. The SPWVD 
can be defined as: 
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where g(t) is the time smoothing window and h(t) the frequency smoothing window.  With the introduction of these two 
windows it is possible to attenuate, to smooth the interference terms presented in the WVD, by independently choosing 
the type of window and its length (Conforto & D�Alessio, 1999b; Baydar & Ball, 2001, Staszewski et all, 1997).   

This solution for minimizing the interference terms introduces losses in time-frequency resolution. The WVD gives 
the best time-frequency resolution, but has serious interference term problems. The STFT does not have interference 
terms but, on the order hand, presents worse time and frequency resolution. The SPWVD is a compromise between 
these two extremes. The results from the SPWVD depend on the choice of the type and size of the two smoothing 
windows that can imply in some trial and error calculations. The final performance depends on the signal composition 
and noise, and how well the tradeoff between cross-terms and resolution can be managed for revealing the signal 
information. 

It is worth noticing that the signal sampling must be carefully done in order to use with the WVD or SPWVD. The 
Fourier transform of a signal, sampled at the Nyquist frequency, is periodic with the period of the sampling frequency. 
Because of the quadratic nature of the WVD the distribution is periodic, the period being half that of the Fourier 
Transform. This implies that it is necessary to increase the signal sample rate by a factor of 2 or else to use the 
analytical signal. This last option is more adequate since it brings another advantage, the elimination of part of 
interference terms, those that come from interference between positive and negative frequencies, since the analytical 
signal spectrum does not have negative frequencies (Moss et all, 1989). 

 
3 Parametric Approach 

 
3.1 The parametric model - Background 

 
Many deterministic and random signals can be well approximated by a linear prediction model: 
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This equation represents an autoregressive (AR) model of the signal x(n). It can also be seen as a discrete form of linear 
differential equation of order p that models the signal, or else as an equation of a stationary linear all-poles filter driven 
by a white noise. The parameters ak are the coefficients of prediction and w(n) is a white noise. The x(n) value is 
expressed as a predicted value )(~ nx , plus a white noise, where )(~ nx  is obtained as a weighted sum of p past values. 

Once the coefficients ak have been estimated, it can be shown that the Power Spectrum Density (PSD) of an AR 
model (PAR) can be obtained by: 
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where Pw is the power of the white noise or, in another way, the prediction error (since w(n) express the difference 
between x(n) and )(~ nx ).  Equation  (5) is also known as Maximum Entropy  Spectrum. 

The value of Pw depends on the method chosen to estimate the prediction coefficients. Several methods can be 
found in the literature to estimated the p coefficients ak. Among them, two are of special interest in this work, because 
of their characteristics: the covariance and Burg methods. The covariance method is understood, in this work, as the 
unconstrained least-square method, with minimization of the forward and backward prediction error power. The Burg 
method minimizes the forward and backward prediction errors in the least square sense, with the constraint that the AR 
coefficients need to satisfy the Levinson-Durbin recursion. More details can be found in Proakis & Manolakis, (1996). 
The Burg method has three major disadvantages: it presents spectral peak locations highly dependent on the initial 
phase, mainly for short signals; it suffers from spectral line splitting, mainly at high signal to noise ratio and it 
introduces spurious peaks for high order models. The covariance method does not suffer, or is only slightly affected, by 
these drawbacks. The only major advantage of the Burg method to the Covariance one is that the model obtained with 
Burg is always stable, and for the covariance, there is no guaranty of stability. However, for spectral analysis the 
stability of the model is not a problem (Proakis & Manolakis, 1996).  

The parametric approach for calculating the signal spectrum has a major advantage, which is its high frequency 
resolution (Proakis & Manolakis, 1996; Marple, 1989). Since the AR model allows extrapolating the known values of 
the signal (over the analyzing time window), it avoids the periodicity hypothesis inherent of traditional methods. As a 
consequence, the PAR does not present side lobe effects, and offers better frequency resolution. 

An AR model implies in a priori knowledge (or assumption) about the process from which the signal is taken. This 
a priori information is expressed by the selection of the model order p. A good choice of this parameter is essential for a 
good spectral estimation. A too high order will introduce spurious frequencies and too low will smooth the spectra. 
Several ways can be envisage to overcome this problem. The first and intuitive approach is to calculate different spectra 
with increasing order, and to seek for a minimum in the prediction error power. However, the prediction error power for 
the least-square method (in which the Burg and covariance methods are based) decreases monotonically with increasing 
order p, which makes this approach unsuitable. The second approach is based on the use of two well known criteria, 
proposed by Akaike, for selecting the model order. They are the final prediction error criterion (FPE) and the Akaike 
information criterion (AIC) (Proakis & Manolakis, 1996). The third approach comes from the fact that the AR order is 
related with the number of system degrees of freedom that are presented in the signal. In this way, the order can be 
estimated by analyzing a traditional signal spectrum by observing the number of the main frequencies. This procedure 
will depend on the signal to noise ratio and on the nature of the non stationarity presented in the signal. In the present 
work, these last two approaches were used in a complementary way 

 
3.2 The time moving window parametric time-frequency methods 

 
The fact that it is possible to obtain high spectral resolution with short time windows can be used in order to 

construct a parametric TFR with high time-frequency resolution. This TFR can be reached by using a time moving 
window across the signal and then calculating the AR spectra for each time window, with Eq. 5, in a similar procedure 
of that for STFT TFR (Lesniak & Niitsuma,1996, Conforto & D�Alessio, 1999b, Fargetton et all, 1980; Nadine,1986 ). 
This approach assumes signal stationarity over the time window and therefore is appropriated to analyze weakly 
nonstationary signals.  

This time-frequency representation is constructed by plotting the PAR (calculated by eq. 5) at each time instant tw, 
corresponding to the center of the moving time window. Hence, PAR [tw,f] is a matrix of size (Ntw x p), where Ntw is 
the number of time windows across the signal and p is the model order. If time calculation is important, the estimation 
of the covariance matrix can be implemented with a recursive algorithm (Fargetton et all, 1980; Nadine, 1986). 

The tradeoff between time and frequency resolution, inherent to the STFT, and that between interference terms and 
time-frequency resolution, inherent to the WVD, does not exist in the case of the parametric TFR, and its final time-
frequency resolution is higher than in the STFT and WVD cases. 



Two different methods for AR coefficient calculations can be used, as previously discussed, to build the parametric 
time-frequency methods: the Burg and the Covariance. Each of these parametric TFRs has its own properties, inherited 
from the properties of the Burg and Covariance methods.  

Despite the fact that a shorter time window does not imply in a degradation of frequency resolution, it remains to 
solve the problem of establishing how shorter the time window length can be. A too short window can not have enough 
information for a good spectral estimation. There are no specific rules to orient the taking of this decision and some 
tests need to be done. By experience, it was adopted as a start value the triple of the order as a minimum value for the 
window length (in number of points). 

Two different methods for AR coefficient calculations are used in this work, the Burg and the Covariance, to build 
two parametric time-frequency methods: the ARBTF and the ARCTF, respectively. Each of these parametric TFRs has 
its own properties, inherited from the properties of the Burg and Covariance methods, previously discussed.  

 
3.3 The time–varying parametric time-frequency methods 

 
A more complex parametric TFR approach, known as time-varying parametric method, is obtained by adapting the 

model coefficients to the time-varying behavior of the signal (Lesniak & Niitsuma, 1996; Qian & Chen, 1999; Girault et 
all, 2000; Gustafsson, et all, 1994; Conforto & D�Alessio, 1999a, Conforto & D�Alessio, 1999b). These coefficiens are 
considered as a linear combination of time-varying deterministic basis functions fi(tn), and become function of time: 
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where d is the basis dimension, tn the time instant where ak are calculate and ak,i are constant coefficients of the 
expansion. Several basis functions can be used such as Taylor series, Legendre polynomials, prolate spheroidal 
functions, etc..(Conforto & D�Alessio, 1999a, Conforto & D�Alessio, 199b; Gustafsson et all, 1994; Girault et all, 
2000). This improvement makes possible to follow rapidly varying spectra, but it comes at a price of introducing two 
more a priori assumptions from the signal: the basis function set and the basis dimension d. The time-varying time-
frequency PSD equation becomes: 
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4. Case Studies and Discussion 

 
The aim of this section is to evaluate the performance of the described time-frequency methods, by analyzing actual 

transient signals. The performance aspects, like frequency and time resolution, and frequency bias, will be compared 
and discussed. The signals represent two failure problems in rotating machinery and contain time transient events.  

The TFRs that will be compared are the SPWVD , ARCTF and ARBTF. These TFRs are presented in hot color, 
where the highest amplitudes are represented as red and the lowest as blue.  

 
4.1 Detection of lubricant film collapse in journal bearing 

 
This case study use vibration transient signal carrying information about the collapse of the lubricant film in a radial 

journal bearing, caused by a radial overload on the shaft. The measurement was done at a nominal constant shaft speed 
of 3400 rpm (57 Hz), and using a sample frequency of 1050 Hz. At the initial time the shaft was unload, and further the 
radial load was increased until twice the maximum nominal load allowed for the journal bearing be reached. It is 
expected that, during the loading process, the hydrodynamic flow in the bearing collapses into the boundary lubrication 
regime, changing the vibration behavior of the system bearing/shaft. Figure 1 (a) shows the signal in the time domain. 

Figure 1 also presents three time-frequency representations (SPWVD, ARCTF and ARBTF) in which it is possible 
to observe the spectral modulation caused by the shaft speed. This modulation is represented by an equal frequency 
spacing (57 Hz) among the spectral lines. Each of these spectral lines represents shaft speeds harmonics (from the 2nd 
till the 6th ).  

All the TFR panels in Figure 1 allow recognizing the instant when the lubricant film collapse (≈ 1.5 s), and show 
the influence of the lubrication regime change (hydrodynamic to boundary) in the system dynamic. Some spectral lines 
are amplitude modulated after the transition.  The energy of the 4th and 5th harmonic increases after the collapse, while 
that of the 2nd and 3rd decreases, what represents the beginning of the boundary lubrication regime.  



Comparing the performance of the three time-frequency methods, all of them present enough information to allow 
studying the problem. It seems that the dynamic range between strongest and weakest signal components is greater for 
the parametric methods than for the quadratic TFR. At least, the detection of small signal levels is degraded by the 
interference terms, which can be seen in the SPWVD panel at high frequencies. 

Regarding the computational time consumption, it is worth noticing that the parametric methods are far faster than 
the quadratic one.  

The ARBTF representation shows some spectral fluctuation when compared with the ARCTF. This behavior is the 
effect of the phase influence on the spectral estimation (as discussed previously).  
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(c)      (d) 

Figure 1 Time-frequency representations of the journal bearing signal. (a) time signal; (b) SPWVD (time and frequency 
smoothing: Hamming window = 120 samples), (c) ARCTF (p = 14, time window = 80), (d) ARBTF (p = 14, 
time window = 80); 

 
4.2 Detection of tooth defect in a gearbox 

 
In this second case, the transient signal represents the vibration behavior of a double reduction helical gearbox 

whose first pinion (31 teeth) has a missing tooth. The signal was sampled at 5.12 kHz, and lasts for 0.4 s. The shaft 
speed of the defected pinion is1400 rpm (23,3 Hz).  

Figure 2 (a) and (b) show the time signal for the cases of toothless and normal gearbox conditions. Figure 2 (c) to 
(g) present their TFRs, where it is possible to observe the gearmesh frequency (722 Hz) and its 2nd and 3rd harmonics 
as straight frequency lines. These gearmesh harmonics are particularly noticeable in the normal gear case. The toothless 
failure introduces new spectral patterns to the normal time-frequency behavior, by affecting the meshing characteristics 
on mating gears. These patterns, a kind of dashed spectral lines, repeat itself at a certain time interval, which is equal to 
one shaft turn (almost 43 ms), and they are related with the missing contact of the faulty tooth. 

It is worth observing that only the parametric TFRs (e) and (g) have enough time-frequency resolution to clearly 
evidence the one shaft turn time transient. In the SPWVD panel, Figure 2(c), it is possible to observe that some spectral 
patterns, associated with the failure, are presented, although not with the amount of details that the parametric TFRs 
allow. Both ARCTF and ARBTF present very close results. 
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Figure 2 Time-frequency representations of the thoothless and normal condition gearbox. (a) toothless signal; (b) 
normal signal; (c) toothless gear SPWVD (time and frequency smoothing Hamming window = 250 samples), 
(d) normal gear SPWVD (time and frequency smoothing Hamming window = 250 samples); (e) toothless 
gear ARCTF (p = 30, time window = 200 samples), (f) normal gear ARCTF (p=30, time window = 200 
samples); (g) toothless gear ARBTF (p = 30, time window = 200 samples) 

 
 



5. Conclusions 
 
In this paper parametric time-frequency techniques were proposed as a tool for analyzing transient vibration. These 

techniques are based on an autoregressive model approach to calculate the PSD of a moving time window signal. Two 
methods were used to estimate the AR coefficients: one based on the Burg method and the other, based on the 
Covariance one. For comparison purpose a well known quadratic time-frequency method, the Smooth Pseudo Wigner-
Ville based on the Wigner-Ville Distribution, was employed 

To analyze the performance of these methods, two examples of actual transient vibration signal were used.  
By analyzing the actual data, it was possible to observe that the parametric methods have a performance equal or 

superior to that of the quadratic one. The time-frequency resolution and amplitude representation capability of the 
parametric techniques are superior to that of SPWVD, with a computational time consumption far lower. The 
parametric methods do not present the �time-frequency resolution � interference terms� tradeoff, typical of the Wigner-
Ville Distributions. On the other hand, the parametric TFRs need a priori information (or assumption) about the signal, 
represented by the model order specification. 

This paper shows that parametric time-frequency methods here presented offer a satisfactory and an alternative tool 
for time-frequency analysis of transient vibration signals. 

Several improvements can be considered for the parametric time-frequency methods. One of them is the use of a 
variable time window length, adaptable to the stationarity changes of the signal. In this way, another improvement can 
be made by using time varying AR coefficients, what would allow the AR model to adapt to the time-varying 
characteristics of the signal. In this paper, a fixed AR order was used for all the moving time windows. Since the 
frequency pattern of the signal changes on time, the optimization of the order value for each time window would  
improve the methods.  
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