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Abstract. The displacement of a fluid in a capillary tube by gas injection occurs in many practical applications like enhanced oil 
recovery, coating of catalytic converters and gas-assisted injection molding. Other quite important application is the analysis of 
mucus displacement in pulmonary airways.  The gas-displacement has been extensively studied both by theory and experiments in 
the case of Newtonian fluids. However, the complete understanding of rheological effects properties of the displaced fluid in this 
type of flow is still under investigation. The flow of viscoelastic liquids has been analyzed experimentally by measuring the 
fractional coverage of the tube wall and by Particle Tracking Velocimetry.  The main conclusion was that the flow near the interface 
presents strong extensional deformation and the viscoelastic behavior of the liquid leads to a larger deposited liquid layer on the 
wall.  Flow simulations with non Newtonian liquids for this situation are rare.  The presence of free surface and non linearities of 
the constitutive model make the problem extremely complex.  In this work, the complete two dimensional solution of free surface 
flow is obtained using the Galerkin finite element method. The rheological character of the liquid is modelled by two different 
constitutive equations:  a simple Generalized Newtonian Liquid model, to analyze the effect of shear sensitive liquids; and the 
algebraic constitutive relation proposed by Thompson et al. (1999) that is capable of describing variable shear and extensional 
viscosity, first normal stress coefficient and second normal stress coefficient.  This constitutive equation is used to analyze the effect 
of the viscoelastic properties of the liquid on the flow field. 
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1. Introduction  
 

The gas displacement of a fluid in a capillary tube occurs in many practical applications like enhanced oil recovery, 
coating of catalytic converters and gas-assisted injection molding. Other quite important application is the study of 
mucus displacement in pulmonary airways by a rigid capillary approximation. As the gas pushes the liquid through the 
tube, a thin liquid layer is left attached to the wall.  The thickness of this liquid film is an important parameter in many 
of the applications mentioned before:  in the case of oil recovery, the amount of liquid left on the wall determines the 
efficiency of the recovery process; in the case of gas-assisted injection molding, the thickness of the layer will 
determine the strength of the hollow part produced; and in the case of analysis of mucus displacement in pulmonary 
airways, the fraction of  material left behind will indicate the grade of  obstruction on the airways. 

The flow of a gas penetrating a Newtonian liquid has been extensively studied both by theory and experiments.  
The goal was to understand the flow near the gas-liquid interface in order to determine the amount of liquid left on the 
tube wall as a function of the operating parameters and  liquid properties. 

However, in many of the practical applications, as those referred before, the liquid being displaced is a polymer 
melt, a solution or a dispersion that shows non Newtonian behavior. The complete understanding of the effects of the 
rheological properties of the displaced liquid in this type of flow is still under investigation.  

The thickness of the thin liquid layer attached to the wall is usually characterized in terms of the fractional 
deposited mass m , defined in Eq. (1). 0R  is the tube radius and bR  is the radius of the cylindrical portion of  the gas 

bubble, as illustrated in Fig. (1-a). The fractional mass can also be evaluated as a function of the bubble velocity bV  
and the mean velocity u  of the liquid ahead of it.   
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Figure 1. a- Sketch of gas displacement of a liquid in a capillary tube. b- Flow domain for gas displacement of liquids in 
a tube in a reference frame located on tip of the interface. The numbers 1 to 5 represent the sections where the boundary 
conditions are posed. 
 

The first experimental analysis of gas-assisted displacement was done by Fairbrother and Stubs (1935). They found 
an expression for m  valid at small capillary numbers σµ /bVCa ≡  and Newtonian liquid: 

 
2

1
Cam =                             (2) 

 
Taylor (1960) studied the same problem for a much larger range of capillary number. He found that the mass 

deposited on the tube wall asymptotically approaches 0.55 as Ca approaches 2. Taylor also suggested three possible 
streamline patterns of the liquid flow near the interface.  At high capillary number, the flow would pass completely and 
no recirculation would appear near the free surface.  The other two patterns would occur at intermediate to low capillary 
numbers, and they would be characterized by the position of the recirculation near the free surface. 

Cox (1962), continuing Taylor's study for a Newtonian viscous fluid, found experimentally that the amount of mass 
deposited on the tube wall asymptotically reaches 0.60 as the capillary number approaches 10.  Cox also predicted the 
shape of the interface using perturbation analysis.  He concluded in his experiments that the flow is sensitive to the 
presence of the interface only in a region about one and a half the tube diameter ahead the nose of the bubble. 
Furthermore, he concluded that the bubble reaches its final shape after it flows the same distance (one and a half the 
tube diameter).  In a second work, Cox (1964) investigated experimentally the streamline patterns suggested by Taylor 
and found a good agreement in the cases of high and low capillary number. 

Bretherton (1960) investigated theoretically and experimentally the motion of long gas bubbles in tubes filled with 
Newtonian viscous liquid. He found a simple theoretical relationship for the mass deposited on the tube wall m , valid 
at low capillary number, that agrees well with Fairbrother and Stubs (1935) experimental measurements: 
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The penetration of long gas bubble in a viscoelastic liquid was studied experimentally by Huzyak and Koelling 

(1997). They were interested in identifying the influence of viscoelastic behavior on the fraction of the mass deposited 
on the tube wall. The experiments were performed with highly elastic liquid with constant shear viscosity.  The results 
were presented in terms of capillary number Ca  and Deborah number De . They found that the fractional mass 
deposited on the wall begins to increase, relatively to Newtonian fluid, for 1≥De  and continues increasing over the 
entire range of De  analyzed.  Following the work of Huzyak and Koelling, Gauri and Koelling (1999) analyzed the 
kinematics of the flow near the free surface using Particle Tracking Velocimetry (PTV).  

The effect of shear thinning behavior of the displaced liquid in this type of flow was studied by Poslinski and Coyle 
(1994). They used the Finite Element Method to solve the two dimensional model of the flow.  Kamisli and Rayan 
(1999) performed experiments and showed that the thickness of the deposited layer falls with the power-law index.  
They presented a singular perturbation analysis to model this situation, but their predictions followed an opposite trend 
of the experimental results. 

Theoretical analysis of the effect of different rheological properties other than the shear dependent viscosity is rare.  
The presence of the free surface and the non-linearities of the constitutive models make the problem extremely 
complex. 

One possible approach to model gas penetration through a viscoelastic liquid is to use differential constitutive 
equations, such as Giesekus model.  However, the solution of the momentum equation coupled with this type of 
constitutive equations is a major numerical challenge and solutions can not be obtained at the range of dimensionless 
parameters that occurs in practical applications.  An alternative way is to use algebraic models that relate stress to the 
rate-of-strain and relative-rate-of-rotation. These models are perhaps the simplest and computationally most economical 
attempt at capturing the different behavior of polymer molecules in extension-dominated and shear-dominated flow 
zones.  Recent advances developed by Thompson at al (1999) in this class of models have produced a constitutive 



 

 

relation that describes shear thinning and normal stress differences in simple shear flow and extensional thickening in 
extensional flows.  This tactic is pursued here. 

In this work, the complete two dimensional solution of the free surface flow is obtained using the Galerkin finite 
element method.  The rheological character of the liquid is modelled by two different constitutive equations: a simple 
Generalized Newtonian Liquid model, to analyze the effect of shear sensitive liquids; and the algebraic constitutive 
relation proposed by Thompson et al (1999).  This equation is used to analyze the effect of the viscoelastic properties of 
the liquid on the flow field.  The theoretical predictions are compared with some of the experimental data for non 
Newtonian liquids available in the literature.   
  
2. Stead gas penetration model 

 
When a gas is injected at a constant rate in a capillary tube displacing a liquid, a thin layer of liquid is left on the 

wall of the tube.  The thickness of this layer is important in many of the processes described in the previous section and 
is a strong function of the operating conditions and liquid properties.The flow near the gas-liquid interface is analyzed 
using a moving reference frame placed at the tip of the bubble, as shown in Fig.(1-b).  In this figure, the interface is 
moving from right to left.  Relative to the reference frame, the capillary tube wall moves with the interface velocity bV  
and the interface is stationary. 

 
2.2. Conservation Equations and Boundary Conditions  
 

The flow near the interface is two-dimensional and axisymmetric.  The velocity and pressure fields, and the 
configuration of the gas-liquid interface are governed by the momentum, Eq. (5) and continuity, Eq. (4), together with 
the appropriate boundary conditions. 
 

0=⋅∇ u                             (4) 
 

Tuu ⋅∇=∇⋅ρ                           (5) 
 

Here u  is the velocity field  and T is  the stress tensor. 
Far enough upstream of the interface, boundary (1), the flow is taken to be fully developed and the pressure constant: 

 
0un =∇⋅   and inPp =                                                                                                                                           (6) 

                                                                                                                                   
 Far enough downstream, boundary (2), the liquid traction vanishes: 
  
       0Tn =⋅                                                                                                                                                                     (7) 
 
Along the symmetry axis (3), the shear stress and the radial velocity vanish: 
 

[ ] 0=⋅⋅ Tnt  and 0un =⋅                                                                                                                                      (8) 
 The no-slip and  no-penetration conditions are applied along the tube wall (4): 
        

xeu bV=                               (9) 
Over the gas-liquid interface (5), the traction in the liquid balances the capillary pressure and there is no mass flow 
across the interface 
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Here σ  is the liquid surface tension, n is the unit normal vector to the free surface and mR/1 is the local mean 
curvature of the interface. 
 
2.3. Constitutive Models 

 
In order to close the set of differential equations, the stress tensor has to be related with the kinematics of the flow.  

Here, two different non Newtonian models are used.  The first is a simple Generalized Newtonian Model with a Power-



 

 

 

Law viscosity function.  The second is the algebraic model proposed by Thompson et al. (1999) that takes into account 
the different behavior of polymer molecules in extension-dominated and shear-dominated flow zones. 
 
2.3.1. Generalized Newtonian Model: Power-law viscosity 

In this simple model, the stress tensor is given by 
 

DDIT 2)2(η+−= p ,                            (11)
          
where TvvD ∇+∇≡2  is the rate of strain tensor.  η  is the liquid viscosity, which is a function of the deformation 
of the flow.  In the particular case of a Power-Law viscosity function, it is given by 
 

1−= nKγη &                                (12) 
 

n is the power-law index and γ&  is the local deformation rate.   
                  

2.3.2. Algebraic Viscoelastic Model 
 

The algebraic model used here was proposed by Thompson et al. (1999).  The stress tensor is a function of both the 
rate-of-strain tensor D2  and the relative-rate-of-rotation tensor W : 

 
( )DWWDDDIT 1 ⋅−⋅+++= 4

2
30 αααα                       (13) 

The relative-rate-of-rotation tensor is defined as ΩWW −= , where TvvW ∇−∇=  is the vorticity tensor, 
and the tensor Ω is the rate of rotation of the eigenvectors of the rate of strain.  Based on the rate-of-strain and relative-
rate-of-rotation tensors, Astarita (1979) defined the flow classification index R to measure the degree to which the fluid 
particle avoids stretching.  It is defined as  
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The index takes the value of 0 in pure extension and 1 in shear flows. Moreover, as the motion approaches a rigid 

body motion, i.e. as 0→D  , it approaches infinity. 
The coefficients si 'α  depend on the material functions of the liquid: 
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The additional definitions needed before using Eq. (13) are the forms of the functions 21   and ,,, ψψηη us .  One 

of the advantages of using such class of models is that the measurements of these material functions in shear and 
extensional flows can be independently fitted.  

According to Thompson et al. (2002), the extensional viscosity can be divided in two parts, one dissipative and 
other elastic, defined as 

 
( ) uuu ηββηη −+= 1                              (16) 

 

uβη  represents the dissipative portion and ( ) uηβ−1 represents the elastic portion. For the limit case, 1=β , the 

function 3α  must vanish in pure extensional flow. Hence, it can be calculated as 
 
 [ ] R 42 213 ψψα +=                              (17) 
 

For the other limit case, 0=β , 1α  reduces to the case of  Generalized Newtonian Model, and thus, independent of R . 
 

sηα 21 =                                 (18) 



 

 

Furthermore, the function 3α  makes the connection between the extensional viscosity, uη , and the normal stress 

difference coefficients 1ψ  and 2ψ .  
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Here, suRT ηη /= and ε& is the extension rate. 

In the predictions presented in this work, the shear viscosity and the normal stress difference coefficients were 
constants and the extensional viscosity was a known function of the deformation rate, i.e. 
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Here, 0η  is the viscosity in zero shear rate, un  a power index and uλ  is a characteristic time. 

 
3. Solution Method 
 

Because of the free surfaces, the flow domain for each parameter is unknown a priori.  In order to solve this free 
boundary problem by means of standard techniques for boundary value problems, the set of differential equations and 
boundary conditions posed in the unknown domain has to be transformed to an equivalent set defined in a known 
reference domain. This transformation is made by a mapping )(ξxx =  that connects the two domains, as shown in 
Fig. (2). The unknown physical domain is parameterized by the position vector x , and the reference domain by ζ . A 
functional of weighted smoothness can be used successfully to construct the sorts of maps involved here.  The inverse 
of the mapping that minimizes the functional is governed by a pair of elliptic differential equations identical with those 
encountered in diffusional transport with variable diffusion coefficients.  The coordinates ξ  and η  of the reference 
domain satisfy 

 
( ) ( ) 0   and   0 =∇⋅∇=∇⋅∇ ηξ ηξ DD                                  (21) 

ξD  and ηD  are diffusion-like coefficients used to control element spacing. Equations (3.1-a) and (3.1-b) describe 

the inverse mapping )(xξξ = . To evaluate )(ξxx = , the diffusion equations that describe the mapping also have to 
be transformed to the reference configuration. The gradient of mapping )(ξxx =  in a two dimensional domain is 

defined as Jxξ =∇ . Jdet=J is the Jacobian of the transformation. Boundary conditions are needed in order to 
solve the second-order partial differential equations, Eq. (3.1-a) and Eq.(3.1-b).  
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Figure 2. Mapping between physical and reference domain. 
 
 Along solid walls and synthetic inlet and outlet planes, the boundary is located by imposing a relation between the 
coordinates x and r  from the equation that describes the shape of the boundary and stretching functions are used to 
distribute the points along the boundaries. The free boundaries (gas-liquid interfaces) are located by imposing the 
kinematic condition, Eq. (2.7-b).  The discrete version of the mapping equations is generally referred to as mesh 
generation equations. 



 

 

 

The differential equations the that govern the problem  and the mapping (mesh generation) equations were solved 
all together by the Galerkin / finite element method.  The velocity, pressure and node position are represented in terms 
of the appropriate basis functions. 
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Biquadratic bases function ( jφ ) were used to represent the velocity and nodal coordinates and linear discontinue 

functions ( jχ ) to expand the pressure field.  Because the stress tensor depends on the second derivative of the velocity 

field (through the definition of the index R ), an additional variable L is introduced to represent the velocity gradient 
with a continuous interpolation.  It is also represented in terms of bilinear basis functions. 
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Once all the variables are represented in terms of the basis functions, the system of partial differential equations 

reduces to simultaneous algebraic equations for the coefficients of the basis functions of all fields.  This set of equations 
is non-linear and sparse.  It was solved by Newton's method, and quadratic convergence was obtained as the residual 
approached zero.  The linear system of equations at each Newton iteration was solved using a frontal solver. 

The domain was divided into 240 elements that correspond to 1035 nodes and  4860 degrees of freedom.  A 
representative mesh is shown in Fig.(2), where is also shown the mapping between the physical and the reference frame. 

 
4. Results 
 
 The amount of displaced liquid that remains on the capillary walls are usually reported in terms of mass fraction of 
liquid that is not displaced m , as defined in Eq. (1). The main goal of the present study is to analyze m  and the the 
flow near the gas-liquid interface for some relevant dimensionless parameters as: Reynolds Number cb DV ηρ /Re ≡ ; 

Capillary Number ση /bcVCa ≡ ;  Power-law index  n and the Deborah Number ob RVDe /λ≡ . 
In order to validate the theoretical model and the solution algorithm, the experimental results of Taylor (1960) for 

Newtonian liquid flowing slowly were recovered. This validation is shown in Fig. (4) that compares the fraction of 
mass deposited on the tube wall m predicted by the numerical simulation presented here with the measurements of 
Taylor (1960).  The agreement is quite good over the entire range of capillary number.   

 

 
 

Figure 4.  Fractional mass coverage as a function of capillary number for Newtonian Liquids with 0Re = . 
 
The streamlines of a Newtonian liquid at different capillary numbers are shown in Fig. (5).  At high capillary 

number, the viscous force is stronger then the surface tension force and the adverse pressure gradient at the meniscus is 
small. There is no recirculation near the free surface and the film thickness left on the wall is relatively thick.  As the 
capillary number decreases, the film thickness on the wall also decreases and a recirculation near the free surface 
appears. The three different patterns of streamlines suggested by Taylor (1960) do occur:  One with no recirculation, at 
high capillary numbers; a second pattern with two stagnation points on the axis of the tube, obtained at moderate 
capillary numbers; and the third with a stagnation point at the tip of the bubble and a stagnation ring on the free surface.   

The predicted interface configuration is also in good agreement with flow visualization reported by Cox (1964) and 
Huzyak and Koelling (1997), as illustrated in Fig. (6). 

 
 



 

 

 
 

Figure 5. Streamline pattern near the free surface: (a) 10=Ca ; (b) 1=Ca ; (c) 6.0=Ca and (d) 2.0=Ca  
 

 
 

Figure 6.  Comparison between predicted free surface profiles and experimental measurements. 
 

 The effect of Reynolds number for the gas-displacement of a Newtonian liquid is showed in Fig. (7). This figure 
shows the ratio between  the liquid film deposited on tube wall relative to that predicted for slow displacement, 

0Re = . The simulations were done for a quite large range of Reynolds number, 450Re0 ≤≤ , and for two values 
of capillary numbers, 6.0and10=Ca . Figure (7) shows that in very small Reynolds number, 1Re ≤  the gas-liquid 
displacement is dominated by the capillarity and no deviations from the case of 0Re =  are observed. Furthermore, the 
maximum deviation  is smaller than 20%, for high Reynolds numbers.  
 

 
 

Figure 7.  Fractional mass coverage as a function of Reynolds number for Newtonian Liquids with 6.0and10=Ca . 
 

The effect of the Power Law index on the film thickness left on the wall is summarized in Fig. (8).  It shows the 
predicted fractional mass coverage m  as a function of capillary number obtained from gas penetration through a 
power-law liquid.  The shear thinning behavior leads to thinner film deposited on the wall over the entire range of 
capillary number.  This trend agrees qualitatively with the experimental data presented by Kamisli and Rayan (1999), 
however the measured thickness of the liquid film left on the wall is lower than the theoretical predictions.  The 
perturbation method presented by Kamisli and Rayan (1999) could not correctly predict the variation of the residual 
liquid film as a function of the Power-Law index.  A complete two-dimensional model of the flow, as the one presented 



 

 

 

here is necessary to describe the non Newtonian flow near the free surface.  One possible reason for the discrepancy 
between the theoretical results and the experiments is that viscosity dependence on shear rate of the two polymeric 
solutions used in the experiments, e.g. 1 % HEC and 1 % CMC, are not well described by a Power-Law function at the 
low deformation rate range.  The Power-Law viscosity function can lead to unrealistic high viscosity at regions of the 
flow where the deformation rate is small.   

 

 
 

Figure 8.  Fractional mass coverage as a function of capillary number for power-law liquids. 
 
 It is well known that the behavior of microstructured liquids in complex flows is very sensitive to the local 

kinematics. Polymer molecules behave quite differently in flow regions where the liquid is persistently stretched along 
the orientation of the molecules and in flow zones where the straining is oblique to molecular orientation. Thus, it is 
important to characterize the type of deformation suffered by liquid particles in different regions of the flow.  The field 
of flow classification index R , defined in Eq. (13), for the gas displacement flow is shown in Fig. (9).  Far from the gas 
liquid interface 1≈R , indicating a shear dominated flow, as expected.  The liquid layer left on the tube moves as a 
rigid body. i.e. plug flow, and the value of R  is high in that region.  Near the free surface, 0≈R , indicating an 
extensional dominated flow.   

According to Thompson et al. (2002), the extensional viscosity can be divided in two parts: one dissipative and 
other elastic as defined in Eq. (16). uβη  represents the dissipative portion and ( ) uηβ−1 represents the elastic portion. 
Analyzing the fractional mass deposited on the tube wall, it was  illustrated the qualitative difference between the 
dissipative and elastic effect of the extensional viscosity predicted by the algebraic model proposed by Thompson et al. 
(1999).  The dissipative effect, 1=β , shown in Fig. (10), is obtained by vanishing 3α   and considering 

R
u

R
s

−= 1
1 2 ηηα . The elastic effect, 0=β , is obtained by considering sηα 21 =  and vanishing 1ψ and 2ψ . Thus, 3α  

is calculated as ( )[ ]( )RT sR −−= 1/14 3 εηα & . 
 The effect of the dissipative portion of the extensional viscosity on the ratio between the fractional mass deposited 

on the wall with a viscoelastic liquid to that of a Newtonian liquid as a function of the Deborah number is shown in Fig. 
(10). In that figure, the Deborah number is defined as RUDe u /λ= , where uλ is a characteristic time as presented in 

Eq. (20). The Capillary number was fixed at 10=Ca .  The change in the amount of liquid left on the wall is very 
small and the film thickness falls with Deborah number.  This prediction does not agree with the experimental 
measurements of deposited film thickness with PEO solutions in water made by Huzyak and Koelling (1997).  In their 
experiments, the fractional coverage m  for the viscoelastic fluids begins to increase relative to the Newtonian results at 

1≈De , and it continues to rise with Deborah number for all 1>De . However, the predictions confirm the 
experimental results of Bonn and Meunier (1997).  They compared the flow configuration and the film thickness left on 
the wall when gas is displacing two different polymeric solutions:  PEO in water and Xanthan gum in water.  The shear 
viscosity of the two solutions tested was matched by controlling the molecular weight and concentration of each 
solution.  Both liquids presented non Newtonian extensional viscosity, with Trouton ratio larger than 3, however only 
the PEO solution showed an increase in the film thickness deposited on the wall when compared to the Newtonian case.  
The deposited film thickness of Xantham gum solution was very close to the one obtained when a Newtonian liquid is 
used.  Because Xantham Gum is a rigid, rod-like polymer, the first normal stress coefficient is approximately zero.  The 
theoretical predictions presented in Fig. (10) were obtained with 021 ==ψψ  and therefore the model, considering 
only the dissipative portion of the extensional viscosity, is more suitable to describe rigid rod-like polymer solutions, 
such as Xantham gum. 

 The effect of the elastic portion of the extensional viscosity on the ratio between the fractional mass deposited 
on the wall with a viscoelastic liquid to that of a Newtonian liquid as a function of the Deborah number is presented in 
Fig. (11-a). The capillary number was fixed at 10=Ca . As before, the change in the amount of liquid left on the wall 
is very small, for the range of Deborah number analyzed. However, the film thickness arises with this parameter. This is 



 

 

in agreement with the experimental results obtained by  Huzyak and Koelling (1997) and Bonn and Meunier (1997) for 
PEO solutions. The convergence was obtained for a rather small range of Deborah number 02.00 ≤≤ De . This 
limitation is very common in  flow simulations of non Newtonian materials. Additionally, the presence of the free 
surface aggravates the problem of the convergence. 

 
 
 
 
 
 
 
 

 
 
 
 
Figure 9.  Flow classification index near the interface. 
  

 
Figure 10.  Fractional mass coverage as a function of Deborah number.  Predictions obtained to analyze the dissipative 
effect  of the viscoelastic viscosity. 

 
 Figure (11-b) shows the effect of the normal stress coefficients on the fractional mass deposited on the tube wall 
with respect to that of a Newtonian liquid. It is considered su ηη =  and 10=Ca . In this case, the characteristic time 

of the fluid is 01 2/ ηψλ =c . Again, the convergence was very difficult and, consequently, the range of Deborah 

number obtained was not sufficiently large, 4.00 ≤≤ De .  In any way, the predictions suggest a decrease on the film 
thickness left on the wall when the Deborah number increases. 
 The results presented on Fig. (11-a) and Fig. (11-b) indicate that the elastic portion of the extensional viscosity and 
the normal stress coefficient have an opposite effect on the fraction of mass deposited on the tube wall. It is clear that 
the range of Deborah number analyzed is, in fact, rather small and more simulations are necessary. However, a classical 
result presented by Debbaut and Crochet (1988) shows a similar relation between the effects of extensional viscosity 
and normal stress coefficients. They analyzed the flow of viscoelastic materials in abrupt contractions and found that 
the vortex length increases when the Trouton ratio is incremented while it decreases when the first normal stress 
difference rises.  
 

  

 
 

Figure 11.  Fractional mass coverage as a function of Deborah number. a: Predictions obtained to analyze the normal 
stress coefficients. b: Predictions obtained to analyze the elastic effect of the extensional viscosity 
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5. Final Remarks 
 

A two-dimensional model of the flow near the gas-liquid interface of a long bubble penetrating through a liquid in a 
capillary tube was presented.  The presence of the free surface makes the solution of the problem complex; the domain 
where the differential equations are integrated is unknown a priori.  A fully coupled formulation was used and the 
differential equations were solved by the Galerkin Finite Element Method. 

Two different constitutive models were used: a simple Generalized Newtonian Liquid model with a power-law 
viscosity function and an algebraic model that takes into account the different behavior of polymer molecules in 
extension-dominated and shear dominated flow zones. 

The thickness of the liquid film on the tube wall and the interface profile for Newtonian liquids in slow 
displacement, Re=0, agree with experimental data available in the literature. The effect of the Reynolds number was 
analyzed and it was observed that the liquid film deposited on the tube wall falls relatively to the case of slow motion 
for the same capillary number, when 1Re ≥ . However, the maximum deviation was smaller than 20%. 

  The predictions with the power-law model followed the same trends observed experimentally, which could not be 
predicted with a perturbation analysis.  The qualitative difference between the theoretical and experimental results may 
be caused by the unrealistic high viscosity produced by the power-law equation in regions of the flow where the 
deformation rate is small. 

The algebraic non Newtonian model was used to evaluate the effect of the dissipative and elastic portion of the 
extensional viscosity beyond the effect of the normal stress differences. The predictions show that the dissipative 
portion of the extensional viscosity and the normal stress differences have an opposite effect, on the fractional mass 
deposited on the tube wall, of that indicated by the elastic portion of extensional viscosity. In fact, the entire range of 
Deborah number analyzed is rather small and more accurate analysis is still necessary. However, results presented by 
Debbaut and Crochet (1988) also show an opposite effect of uη  and 1ψ .  

  The liquid film thickness left on the wall observed in experiments with Xanthan Gum solutions, which have a high 
Trouton ratio and vanishing normal stress difference, is very close to that of a Newtonian liquid as predicted by the 
hypothesis of  the dissipative effect of the extensional viscosity. 

  Finally, the predictions suggest that the increment of the liquid film on the tube wall, relative to Newtonian case, is 
related to elastic effect of the extensional viscosity and not with normal stress differences, as generally presented. 
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