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Abstract: In this paper, a new multiaxial high-cycle fatigue endurance criterion is proposed. It considers, as

measures of fatigue solicitation: (i) a new function of the shear stress amplitude, which is capable to account for the

nonproportional character of the loading history in a very simple manner and (ii) the maximum principal stress along

the stress history, rather than the maximum hydrostatic stress usually considered as a measure of solicitation upon

embryocracks. Assessment of the resulting criterion shows that it compares very well with experimental data published

in the literature.
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1. Introduction

In many practical situations, mechanical components are subjected to complex cycling multiaxial nonpropor-
tional loading histories under service conditions. Although experimental testing is of fundamental importance
for the product development, it should be kept to a minimum due since it is costly and lengthy. The development
of new, more accurate and if possible computationally cheaper multiaxial fatigue models capable to predict the
durability of these structures is therefore extremely desirable. Most of the criteria for multiaxial fatigue can be
classified into one the following methodologies: a) Empirical, b) Stress Invariants, c) Critical Plane, d) Strain
Energy, e) Combined Energy/Critical Plane and f) Mesoscopic. Extensive experimental studies conducted by
Gough et al. (1951) and Nishihara and Kawamoto (1945) provided the basis for the development of empirical
criteria, which aimed to predict the fatigue strength of metals under multiaxial cyclic loading. Sines (1959)
identified the effect of static superimposed stresses on the permissible amplitude of alternating stresses and
proposed a multiaxial fatigue criterion based on stress invariants. Crossland (1956) developed a model that
considers the maximum value of the hydrostatic pressure rather than its mean value as initially suggested by
Sines. More recently, Deperrois (1991) and Bin Li et al. (2000) presented stress invariant based criteria which
provided better results than those obtained by Sines and Crossland. Considering that fatigue models could be
explored from a different scale, Dang Van (1973) (see also Dang Van & Papadopoulos (1987) and Papadopoulos
et al. (1997)) proposed the so called mesoscopic criteria. This approach assumes that a localized plastic de-
formation of an unfavourably oriented grain precedes fatigue damage. Thus, local microscopic stresses (which
can be written as a function of macroscopic stresses) should be used to define a crack initiation criterion. More
recently, Zouain & Cruz (2002) proposed a stress based shakedown model for High Cycle Fatigue (HCF), which
yielded even better predictions of fatigue strength.

In this paper, a new multiaxial high-cycle fatigue endurance criterion is proposed. It considers, as measures
of fatigue solicitation: (i) a new function of the shear stress amplitude, which is capable to account for the
nonproportional character of the loading history in a very simple manner and (ii) the maximum principal
stress along the stress history, rather than the maximum hydrostatic stress usually considered as a measure of
solicitation upon embryocracks. We claim that geometric quantities associated with the elliptic hull containing
the stress path (after projection onto the deviatoric stress subspace) gives the correct measure for the shear
solicitation to fatigue. A simple theoretical result presented in this paper allows us to compute such quantities
in a very simple way. Further, the hydrostatic stress is basically the quantity obtained by averaging the
normal stress over all the planes passing through a givem material point. We claim that the worst situation —
corresponding to an eventual embryocrack oriented orthogonally to the maximum principal stress — instead
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of the average one should be taken into account when describing the contribution of the normal stress to the
fatigue damage. Thus, the maximum principal stress is considered instead of the maximum hydrostatic stress.
Assessment of the resulting criterion shows that it compares very well with experimental data published in the
literature. Further, it is very simple to implement, making it very competitive with respect to those proposed,
for instance, by Papadopoulos or by Zouain & Cruz.

The paper is organized as follows: the fatigue model is presented in section 2. Measures for shear and normal
solicitations to fatigue are proposed in sections 2.1 and 2.2, respectively. The resulting criterion is assessed in
section 3. Some concluding remarks are presented in section 4.

2. The fatigue model

Mechanical degradation due to fatigue under high number of loading cycles takes place at stress levels well
below the yield limit. According to pioneering studies conducted by Ewin & Rosenhain (1900), high cycle
fatigue damage can be associated with cyclic plastic deformations at the grain level, leading to the formation
of persistent slip bands and later to the nucleation of microcracks, even if the material shows an essentially
elastic behaviour at macroscopic level. On the other hand, if the material point manages to attain cyclic elastic
behaviour at grain level, eventually after a number of initially plastic cyclic deformations, then fatigue failure
is not expected to occur. Thus, since plasticity plays an important role on crack initiation, shear stresses must
be considered as one of the driving forces of the fatigue process. Another varible that must be considered is the
normal stress acting upon embryo-cracks, which has been shown by Sines (1959) to affect the fatigue resistance.
Its influence has been taken into account by many authors through an average of the normal stress acting upon
all the planes passing through the material point. As remarked by Papadopoulos (1997) such average is equal
to the hydrostatic stress. Under such assumptions, many fatigue limit criteria can be written as:

f(τ) + g(σ) ≤ 0, (1)

where f and g are functions of the shear stress τ and the normal stress σ, respectively. For instance, the criterion
proposed by Crossland (1956) can be written as:

τeq + a pmax ≤ b, (2)

where τeq :=
√
J2,a is the J2 measure of the amplitude of the deviatoric stress S := σ − 1

3 (trσ) I and pmax
is the maximum value of the hydrostatic stress observed along the stress history, while a and b are material
parameters. The Dang Van (1973) criterion is based on a mesoscopic scale approach and can be written as:

τ(t) + a p(t) ≤ b, (3)

where τ(t) := 1
2 |spmax(t) − spmin(t)| is half the difference between the maximum and the minimum principal

deviatoric stresses (measured at the grain level) at time instant t. The criterion proposed by Papadopoulos
relies on the argument that the accumulated plastic deformations at mesoscopic level, at each slip plane, are
proportional to the resolved shear stress amplitude Ta. An average of this quantity within an elementary volume
is given by:

√
< T 2

a > =
√

5

√
1

8π2

∫ 2π

ϕ=0

∫ π

θ=0

∫ 2π

ψ=0

(Ta(ϕ, θ, ψ)2 dψ sin(θ) dθ dϕ. (4)

The angle ψ covers all the gliding directions, while ϕ and θ define the orientation of the material plane inside
the elementary volume. The resulting criterion can be expressed as:√

< T 2
a >+ a pmax ≤ b, (5)

where, once again, pmax is the maximum value of the hydrostatic stress observed along the stress history, while
a and b are material parameters.

The criterion proposed by Papadopoulos provides very good results when compared with experimental
results for a wide range of materials and loading conditions. On the other hand, an disadvantage associated
with these criteria is the fact that they require quite lengthy and complicated calculations. Here we present an
alternative fatigue endurance criterion based on new definitions for functions f(τ) and g(σ) in expression (1).

2.1. The equivalent shear stress amplitude

The Crossland criterion considers, as a measure of the shear solicitation to fatigue along the loading history,
the

√
J2 radius of the sphere circumscribing the stress path (after projection onto the deviatoric space). As

illustrated in Fig. (1), proportional and nonproportional paths can be circumscribed by the same sphere
although a more severe solicitation is expected when the nonproportional stress history is considered.
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Figure 1. Proportional and nonproportional stress paths associated with the same amplitude
√
J2,a.

As an alternative, one could consider a quantity associated with the minimum ellipsoid circumscribing the
stress path, as previously suggested by Deperrois (1991), and later by Bin Li et al. (2000): the basic idea is to
consider shear stress amplitudes in several ortogonal directions, summing up their effects to provide a measure
of the shear fatigue solicitation. Deperrois proposes, as the equivalent shear stress, the expression:

f(τ) :=
1

2
√

2

√√√√ 5∑
i=1

D2
i , (6)

where Di, i = 1, . . . , 5 are computed as follows: first, the longest chord D5 between two distinct points of the
stress path in the deviatoric space is determined; next, the stress path is projected into a subspace orthogonal
to such chord; a new longest chord D4 is computed in this subspace, and the process is repeated successively
for the remaining dimensions. As remarked by Papadopoulos (1997), in some situations the Deperrois criterion
shows a lack of uniqueness of the longest chord, making the definition of the orthogonal subspace an ill posed
problem. Another approach is given by Freitas and his collaborators (Bin Li et al. (2000)): the equivalent shear
stress is defined as the square root of the sum of the squared semi-axes of the minimum cricumscribing ellipsoid:

f(τ) :=
√
R2
a +R2

b . (7)

As described by Bin Li et al., the proposed approach requires two steps to define the minimum circumscribing
ellipsoid. First, the minimum circumscribing circle with radius Ra is constructed, according to the minimum
circumscribing hypersphere approach. Then, the second semi-axis Rb of the minimum circumscribing ellipsoid
is obtained, with the radius Ra as the major ellipsoid semi-axis. Although this measure of shear solicitation is
appealing and, for many cases, provides very good results, it contains a drawback. For the sake of illustration,
consider the two triangular stress paths A and B shown in Fig. (2.a).
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(a) (b)
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Figure 2. (a) Drawback in the criterion proposed by Freitas and (b) correct circumscribing ellipsoids.

In both cases, due to the fact that Ra is computed as the radius of the minimum circumscribing hypersphere,
the methodology proposed by Bin Li et al. defines the same “minimum ellipsoid” for both stress paths A and
B. This is true even when the length δ of the stress path B tends to zero. This would lead to the same
measure of shear solicitation even for the limiting affine case. Figure (2.b) sketches what would be the minima
circumscribing ellipsoids for the stress paths A and B. Notice that the semi-axis Rb decreases with the length δ,
but this is not taken into account by the methodology proposed by Bin Li et al. Furthermore, quite ellaborate
algorithms are required in order to compute the semi-axes Ri, i = 1, . . . , 5 of the ellipsoid.



We acknowledge that the concept of minimum circumscribing ellipsoid is an appropriate measure of the
equivalent shear stress. The concern here is restricted to the definition of the elliptic hull and to the methodology
proposed in order to obtain the geometrical characteristics of the ellipsoid. In this setting, we embrace the
idea that the minimum circumscribing ellipsoid contains the information required to characterize the shear
solicitation. Thus, we propose as the measure f(τ) of shear solicitation to fatigue the expression:

f(τ) :=

√√√√ 5∑
i=1

λ2
i , (8)

where λi, i = 1, . . . , 5 are the semi-axes of the ellipsoid circumscribing the stress path (in the deviatoric space).
In general, however, such ellipsoid and hence its semi-axes are difficult to determine. The result presented in
what follows enable us to derive a new expression for f(τ) which can be almost trivially computed.

2.1.1. Invariance of the prismatic hull

Let Dev3 denote the space of symmetric deviatoric tensors from R3 to R3 and let {Ni, i = 1, . . . , 5} be an
arbitrarily chosen orthonormal basis for such space. Any deviatoric stress state S(t) can be written as:

S(t) =
5∑
i−1

si(t)Ni. (9)

If the basis of Dev3 is given, for instance, by:

N1 =


2√
6

0 0
0 −1√

6
0

0 0 −1√
6

 , N2 =

 0 0 0
0 1√

2
0

0 0 −1√
2

 ,

N3 =

 0 1√
2

0
1√
2

0 0
0 0 0

 , N4 =

 0 0 1√
2

0 0 0
1√
2

0 0

 , N5 =

 0 0 0
0 0 1√

2

0 1√
2

0

 ,

(10)

then the components si(t) of S(t) in this basis can be expressed as:

s1(t) =

√
3
2
Sxx(t), s2(t) =

1√
2

(Syy(t)− Szz(t)) ,

s3(t) =
√

2Sxy(t), s4(t) =
√

2Sxz(t), s5(t) =
√

2Syz(t);

(11)

From (8), it is possible to describe the stress path in terms of a curve in R5, where each point s(t) ∈ R5 can be
expressed as:

s(t) := (s1(t) s2(t) . . . s5(t))
T
. (12)

Let the set of all points s(t) describing the path of deviatoric stresses in R5 be represented by the symbol ∆.
The result presented below allows us to compute the equivalent shear solicitation to fatigue in an almost trivial
way:

Proposition 1 Given an ellipsoid E in Rm with centre located at the origin and an arbitrary orthonormal basis
{ni, i = 1, . . . ,m} of Rm, let P be a rectangular prism circumscribing E such that its faces are orthogonal to
each one of the basis elements. If λi, i = 1, . . . ,m are the magnitudes of the principal semi-axes of E and
ai, i = 1, . . . ,m denote the distances of the centre of the ellipsoid to the faces of the rectangular prism, then:

5∑
i=1

λ2
i =

5∑
i=1

a2
i . (13)

Proof: Let Sm1 be the unit sphere in Rm:

Sm1 := {y ∈ Rm; ||y|| = 1}, (14)

where ||y|| :=
(
y2
1 + y2

2 + . . .+ y2
m

)1/2 is the classical Euclidean norm in Rm. The ellipsoid E can be characterized
as the set of points:

E := {x ∈ Rm; x = Ly, y ∈ Sm1 , } , (15)



where L : Rm → Rm is a symmetric, positive semi-definite matrix with eigenvalues given by the magnitudes
λi, i = 1, . . . ,m of the semi-axes of E . On the other hand, the distance ai, from the faces of the rectangular
prism orthogonal to a basis element ni to the centre of the ellipsoid, can be expressed as:

ai = sup
x∈E

(x,ni), , i = 1, . . . ,m. (16)

where (x,y) =
∑m
i=1 xi yi denotes the classical Euclidean inner product in Rm. By considering the fact that

the points x from the ellipsoid E satisfy (14), we can develop (15) as:

ai = sup
x∈E

(x,ni) = sup
y∈Sm

1

(Ly,ni) = sup
y∈Sm

1

(y,Lni) = ||Lni||, (17)

since the supremum of (y,Lni) among the points y from Sm1 is attained for y parallel to Lni. Now, let us
represent the identity operator on Rm as:

I =
m∑
i−1

ni ⊗ ni, (18)

where ⊗ denotes the tensor product operator such that (a⊗ b)u = (a,u)b. It follows that:

L2 = L

(
m∑
i−1

ni ⊗ ni

)
L =

m∑
i−1

Lni ⊗ Lni (19)

Finally, since the Frobenius norm of the linear operator L is given by ||L||F = (
∑m
i=1 λ

2
i )

1/2, from (16) and (18)
we obtain:

m∑
i=1

λ2
i = ||L||2F = tr (L2) = tr

(
m∑
i−1

Lni ⊗ Lni

)
=

m∑
i−1

(Lni,Lni) =
m∑
i−1

||Lni||2 =
m∑
i−1

a2
i . (20)

The aforementioned statement is of fundamental importance for the computation of the measure f(τ) of
shear solicitation to fatigue since it precludes the need to determine the principal semi-axes of the ellipsoid.
More specifically, whenever the ellipsoid is a good approximation for the convex hull of the stress path ∆, the
shear stress amplitude f(τ) can be simply computed as:

f(τ) :=

√√√√ 5∑
i=1

a2
i , (21)

where, in the context of the present study, ai, i = 1, . . . , 5 are the amplitudes of the components si(t) of the
deviatoric stresses defined as:

ai := max
t
|si(t)|, i = 1, . . . , 5. (22)

The procedure for computation of f(τ) can be summarized as follows:

• For each time instant t, given the Cauchy stress tensor σ(t), compute the corresponding deviatoric stress
state:

S(t) = σ(t)− 1
3
(trσ(t)) I; (23)

• For each time instant t, determine the components of the deviatoric stress tensor S(t) in terms of an
arbitrarily chosen orthonormal basis Ni, i = 1, . . . , 5:

si(t) = (S(t),Ni) ; (24)

• Compute the amplitudes of the deviatoric stresses ai, i = 1, . . . , 5 as:

ai :=
1
2

(
max
t
si(t)−min

t
si(t)

)
, i = 1, . . . , 5. (25)



• Compute the shear solicitation to fatigue f(τ) as:

f(τ) :=

√√√√ 5∑
i=1

a2
i . (26)

2.2. The normal stress

Tensile normal stresses contribute to the fatigue degradation by acting (essentially in mode 1) upon even-
tually existing embryocracks in the material.

Many fatigue endurance criteria consider the hydrostatic stress as the measure of the solicitation to fatigue
produced by the normal stresses since, as remarked by Papadopoulos (1997), the hydrostatic stress is basically
the quantity obtained by averaging the normal stress over all the planes passing through a givem material point.

In this paper, we claim that the worst situation — which corresponds to considering the existence of an
embryocrack oriented orthogonally to the maximum principal stress (among the three eigenvalues of the stress
tensor and along all the stress path) — should be considered rather than the average solicitation given by the
maximum hydrostatic stress.

2.3. The resulting endurance criterion

Based on the considerations developed along sections 2.2 and 2.3, we propose the following multiaxial hych
cycle fatigue endurance criterion:√√√√ 5∑

i=1

a2
i + κσpmax ≤ λ, (27)

where ai, i = 1, . . . , 5 are defined as in (22) and σpmax is the maximum principal stress among acting upon the
material point along the loading history, while κ and λ are material parameters. If f1 and t1 are the fatigue
endurance limits under alternate bending and alternate torsion solicitations, respectively, then the parameters
κ and λ can be computed as:

κ =
√

2
f−1 − t−1

(
t−1 −

f−1√
3

)
and λ =

√
2

t−1f−1

f−1 − t−1

(
1− 1√

3

)
. (28)

3. Assessment of the criterion

Proportional and out-of-phase multiaxial fatigue experiments for a number of different materials were con-
sidered to assess the proposed criterion in predicting fatigue strength under a high number of cycles. The data
collected are reported in Tables 1 to 4 and correspond to experiments on hard metals (1, 3 ≤ f−1/t−1 <

√
3)

involving biaxial stress states, where f−1 and t−1 are the fatigue limits under fully reversed bending and torsion,
respectively. Data came from publications by Nishihara and Kawamoto (1945) (Table 1), Heidenreich et al.
(1983) (Table 2), Lempp (1977) (Table 3) and Froustey and Lassere (1989) (Table 4). The following nomencla-
ture was adopted in these Tables: the subscript a stands for the amplitude of stresses while m represents the
mean value. As usual, σ and τ are normal and shear stresses while β contains information concerning phase
difference. The stress values reported in each table correspond to the maximum combination of stresses that
the specimen can stand without failing, up to a limit of 106 cycles.

To assess the quality of the results provided by our model, an error index I is defined as:

I =
1
λ


√√√√ 5∑

i=1

a2
i + κσpmax − λ

 × 100 (%), (29)

which gives a measure of how close the prediction of the criterion is with respect to the experimental data. A
negative I yields a non-conservative fatigue strength prediction since it indicates that the stress solicitation has
not attained a critical value while the experimental data are representative of limiting situations. On the other
hand, a positive I provides a conservative estimate while I = 0 means a perfect prediction for the observed
fatigue strength.

Table 1 reports experimental data under in-phase and out-of-phase alternated bending and torsion condi-
tions. Analysis of these data revealed that all the criteria considered show, in general, satisfactory predictions



of fatigue strength, regardless of the phase angle. Exception was observed for the Crossland criterion in exper-
iments 1-7 and 1-8, where the calculated error index were respectively -8.35% and -17.81%.

Results 2-1 to 2-6 from Table 2 are also associated with in-phase and out-of-phase alternated loadings
producing normal and shear stresses. In this set of data, the Crossland criterion yielded quite poor predictions
under out-of-phase loadings, while the other criteria rendered excellent results. Experiments 2-7 to 2-9 were
carried out under alternated bending and repeated torsion, while experiments 2-10 to 2-12 considered repeated
bending and alternated torsion. Under the presence of mean stresses, the proposed model produced more
conservative results when compared with the remaining criteria. The same trend can be observed in the results
reported in Tables 3 and 4. This fact is in agreement with the hypothesis that the worst situation — which
corresponds to considering the existence of an embryocrack oriented orthogonally to the maximum principal
stress (among the three eigenvalues of the stress tensor and along all the stress path) — should be considered
rather than the average solicitation given by the maximum hydrostatic stress. In summary, application of our
model to the experimental data provided an error index which varied in the worst cases between −8.74% and
15.34% for all materials and loading coditions analysed. The results provided by both Papadopoulos (1997)
and by Mamiya & Araújo (2002) varied between −15.3% and 7.3% while the Crossland criterion provided
significantly poorer predictions. In our model, a shift of the error index towards the conservative region can be
clearly observed whenever a mean stress is present in the loading history.

Table 1 – Fatigue strength of hard steel (t−1=196.2 MPa,f−1=313.9 MPa): experimental data (Nishihara &
Kawamoto (1945)) and predictions.

σa(MPa) σm(MPa) τa(MPa) τm(MPa) β(◦) Ia(%) Ib(%) Ic(%) Id(%)
1-1 138.1 0 167.1 0 0 -2.27 -2.3 -2.28 -1.91
1-2 140.4 0 169.9 0 30 -2.60 -0.6 -0.64 -0.27
1-3 145.7 0 176.3 0 60 -3.61 3.1 3.10 3.49
1-4 150.2 0 181.7 0 90 -3.74 6.3 6.27 6.66
1-5 245.3 0 122.6 0 0 1.44 1.5 1.44 1.73
1-6 249.7 0 124.8 0 30 0.01 3.3 3.26 3.55
1-7 252.4 0 126.2 0 60 -8.35 4.4 4.39 4.69
1-8 258.0 0 129.0 0 90 -17.81 6.5 6.70 7.01
1-9 299.1 0 62.8 0 0 0.92 0.9 0.92 1.02
1-10 304.5 0 63.9 0 90 -2,99 2.7 2.74 2.83

a Crossland, b Papadopoulos, c Mamiya & Araújo, d Current model

Table 2 – Fatigue strength of 34Cr4 (t−1=256 MPa,f−1=410 MPa) experimental data (Heidenreich et al. (1983))
and predictions.

σa(MPa) σm(MPa) τa(MPa) τm(MPa) β(◦) Ia(%) Ib(%) Ic(%) Id(%)
2-1 314.0 0 157.0 0 0 -0.55 -0.6 -0.55 -0.27
2-2 315.0 0 158.0 0 60 -12.33 -0.1 -0.11 0.18
2-3 316.0 0 158.0 0 90 -22.93 0.1 0.08 0.37
2-4 315.0 0 158.0 0 120 -12.33 -0.1 -0.11 0.18
2-5 224.0 0 224.0 0 90 -8.38 5.2 5.15 5.55
2-6 380.0 0 95.0 0 90 -7.32 0.4 0.37 0.49
2-7 316.0 0 158.0 158.0 0 0.08 0.1 0.08 6.01
2-8 314.0 0 157.0 157.0 60 -12.69 -0.6 -0.54 5.34
2-9 315.0 0 158.0 158.0 90 -23.17 -0.1 -0.11 5.83
2-10 279.0 279.0 140.0 0 0 -6.38 -6.4 -6.38 -0.21
2-11 284.0 284.0 142.0 0 90 -25.5 -4.8 -4.83 1.45
2-12 212.0 212.0 212.0 0 90 -9.39 3.4 3.41 7.23

a Crossland, b Papadopoulos, c Mamiya & Araújo, d Current model



Table 3 – Fatigue strength of 42CrMo4 (t1=260 MPa,f1=398 MPa): experimental data (Lempp (1977)) and
predictions.

σa(MPa) σm(MPa) τa(MPa) τm(MPa) β(◦) Ia(%) Ib(%) Ic(%) Id(%)
3-1 328.0 0 157.0 0 0 4.19 4.2 4.19 4.63
3-2 286.0 0 137.0 0 90 -28.14 -8.8 -9.13 -8.74
3-3 233 0 0 224.0 0 0 7.30 7.3 7.3 7.94
3-4 213.0 0 205.0 0 90 -14.94 -1.8 -1.84 -1.25
3-5 266.0 0 128.0 128.0 0 -15.34 -15.0 -15.3 -7.80
3-6 283.0 0 1360 136.0 90 -28.89 -9.6 -9.97 -1.97
3-7 333.0 0 160.0 160.0 180 5.92 5.8 5.92 15.34
3-8 280.0 280.0 134.0 0 0 -2.89 -2.7 -2.89 7.04
3-9 271.0 271.0 130.0 0 90 -23.99 -5.8 -5.93 3.67

a Crossland, b Papdopoulos, c Mamiya & Araújo, d Current model

Table 4 – Fatigue strength of 30NCD16 (t−1=410 MPa,f−1=660 MPa): experimental data (Froustey & Lasserre
(1989)) and predictions.

σa(MPa) σm(MPa) τa(MPa) τm(MPa) β(◦) Ia(%) Ib(%) Ic(%) Id(%)
4-1 485.0 0 280.0 0 0 1.77 1.8 1.77 2.07
4-2 480.0 0 277.0 0 90 -27.27 0.7 0.70 1.00
4-3 480.0 300.0 277.0 0 0 3.91 3.9 3.91 7.63
4-4 480.0 300.0 277.0 0 45 -3.36 3.9 3.91 7.63
4-5 470.0 300.0 270.0 0 60 -10.93 1.6 1.60 5.32
4-6 473.0 300.0 273.0 0 90 -25.12 2.5 2.45 6.17
4-7 590.0 300.0 148.0 0 0 0.11 0.1 0.11 4.32
4-8 565.0 300.0 141.0 0 45 -7.23 -4.1 -4.07 0.14
4-9 540.0 300.0 135.0 0 90 -14.97 -8.1 -8.15 -3.94
4-10 211.0 300.0 365.0 0 0 -0.68 -0.7 -0.68 1.86

a Crossland, b Papadopoulos, c Mamiya & Araújo, d Current model

4. Conclusions

A new multiaxial fatigue criterion which is very simple to implement has been proposed. Application of this
criterion to a broad range of in-phase and out-of-phase loading conditions involving four different materials under
multiaxial, in-phase and out-of-phase states of stress yielded very good predictions of fatigue endurance. The
proposed criterion always provided more conservative endurance estimates than all the other criteria considered
in the present study, whenever shear or normal mean stresses were present in the loading history. On the
other hand, when such mean stresses were absent, the predictions were essentially the same for all criteria with
exception of Crossland. A very interesting feature of the proposed model which should be stressed is the great
simplicity of implementation of our criterion.
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