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Abstract. In order to domain the energy storage technology in the form of latent heat it is necessary to solve the melting and 
solidification problems of a phase change material (PCM). This work describes efforts in finding solutions that more closely 
approach the physical reality of the problem. Simulations for the partial melting, with a new solidification in sequence, and for the 
solidification of pure water in the interior of cylinders are presented. Inversion of the density is taken into account. The simulations 
have been developed in the transient form, using the Finite Volume Method for the solution of the governing equations. The 
solutions are optimized concerning the mesh and time steps. The behavior of the solid-liquid interface geometry, the field of 
enthalpy and density in the domain, the streamlines and the behavior of the Rayleigh number are presented as the result of the 
solutions found. Comparisons between the solid volume when considering only the diffusive process and when considering the 
convective process are carried through. The behavior of the bulk temperature of the liquid is also evaluated for the two forms of 
solution. The grid convergence index is applied (GCI) for the verification of grid independence. 
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1. Introduction 
 

Latent heat energy storage systems become of capital importance when one desires to rationalize electrical energy 
consumption. An important application of this technology is the assistance to central air-conditioned and industrial 
refrigeration plants so as to lower energy consumption at its peak and to render consumption more uniform along the 
day. As in other countries, the cost of industrial electrical energy is variable along the day in Brazil, and one of its 
highest values coincides with peak moments. Another relevant factor concerning cost is contract demand which, when 
surpassed, causes the consumer to pay a fine. To ensure economic viability ice banks have been used to render the 
energy consumption curve more favorable during peak consumption. However, some undesirable aspects are associated 
with the usage of this technology, one of which is the uncertainties in the equation of heat transfer taxes during the 
melting and solidification of phase change material (PCM). 

Due to the complexity of the problems of phase change material, simplifying hypotheses are usually adopted. 
Among these hypotheses, the one which disrespects the effects of natural convection has had the highest impact. When 
the PCM is water, the effects of density inversion are usually disregarded, following the classical approaches of Stefan 
and Neumman. One of the most used configurations in ice banks is PCM confinement in tubes. Fusion and internal 
solidification were dealt with by Saitoh and Hirose (1982), who presented numerical solutions, by Rieger et all (1983), 
who experimentally and numerically investigated paraffin melting, by Ho and Viskanta (1984), who also carried out 
experimental and numerical research using paraffin as PCM, and by Hirata and Nishida (1989) who, too, used paraffin 
in their experimental investigations. One of the first researches to use water as PCM in tubes was the one by Rieger et 
all (1986), who carried out experimental investigation. Tsai and Hwang (1998), developed numeric and experimental 
studies in duct flow, taking into consideration the effects of density variation. Chen and Lee (1998) developed 
experimental studies on the melting process taking metastability into consideration. This work uses first-order boundary 
conditions to simulate melting, and it resorts to melting with water sequential resolidification in a cylindrical geometry. 
The effects of density inversion and of the effects of natural convection were taken into consideration. The practical 
problem focused here is a latent heat storage module. It consists of a sheaf of tubes with pure water as PCM, which 
resorts to internal cross flow. Only one tube is considered in this approach. 
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2. Physical model and boundary conditions 
 
Domain geometry, as well as its nomenclature, is shown in Fig. (1). 
 

 
Figure 1. Physical Model 
 

First-order boundary condition, both in the melting and solidification phases, was considered to simulate this 
problem, as shown in the physical model in Fig. (1), 
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where T (°C) is the temperature, r0 (m) the external radius, θ (rad) the angular positions, Tp (°C) the wall temperature 
and t (s) is time. 

For the hydrodynamic problem, boundary conditions used were non-sliding and impermeability both in the tube and 
in solid PCM, 
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where u (m/s) is angular velocity, v (m/s) é radial velocity, r (m) radial position, rs (m) solid radius. 

The initial condition assumed in the solution of the thermal problem during melting depends on the approach to be 
used. In Stefan’s approach, we have: 
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where, T* (°C) is the temperature of melting, whereas in Neumann’s approach, 
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In solidification initial condition will be: 
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where Tsub (°C) is the temperature of sub-cooling and Tini (C°) is the initial temperature. 
For the hydrodynamic problem, both in melting and in solidification, 
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3. Governing equations 
 
Heat transfer from or to encapsulated fluid generates thermal gradients that, in turn, generate density gradients 

inside the fluid domain. In the presence of a gravitational field, under certain physical configurations, density gradients 
may cause movement and, therefore, the existence of natural or free convection. According to the literature, the 
treatment given to the cavity is applied to a large number of natural phenomena and industrial processes associated with 
melting and solidification. Exemplifying, one may mention the melting and solidification of an encapsulated PCM in 
spheres, plates or tubes, where the internal solid surface is mobile (solid-liquid interface). Following this reasoning, 
knowledge of the fields of velocity, temperature, density and pressure is needed to the full solution of this kind of 
problems, which characterizes a linkage between the thermal and hydrodynamic problems, and makes it necessary that 



the governing equations be solved simultaneously. Governing equations for this geometry are written below for the 
polar coordinates system.  

 
3.1. Continuity equation 
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where ρ (kg/m³) represents density. 
 
3.2. Movement quantity equations in the directions r and θ 
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being p (N/m²) pressure, Br e Bθ the radial and an angular components of field forces, which in both cases is 
gravitational acceleration g (m/s²), and µ (N s/m²) dynamic viscosity. Boussinesq’s approximation was adopted for the 
treatment of body force terms in the liquid phase, assuming reference temperature as the melting temperature Tref=T* 
and ρref=ρ*. According to Maxwell’s thermodynamical relations [Van Wylen et all (1998), Callen (1985), e Bejan 
(1994)] we have the equation of the thermodynamical state, which relates density to temperature and pressure for a 
given substance, 
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for small mass variations it is acceptable to expand the function about a reference situation, with a Taylor series, 
originating: 
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for liquids, and using the thermal expansion coefficient β , Eq. (11) assumes, 
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inserting Eq. (12) in Eq. (8) e (9) we have: 
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where pH is the hydrostatic component. Due to the fact that water density does not behave in a linear form with 
temperature it is necessary to determine the behavior of the volumetric expansion coefficient for each discretized 
volume. To this end, Vasseur’s et all polynomial (1983), was used to model the behavior of density according to 
temperature. 
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4. Energy equation 
 
In phase change problems, the domain is composed by three distinct regions, each of which having specific 

properties. For pure substances, temperature is constant in solid liquid interfaces. To solve this difficulty, energy 
equation, written considering thermodynamic property enthalpy h (J/kg) with constant thermal conductivity k (W/m K), 
is used. 
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Adopting Cao et al’s model (1989), which used Kirchoff’s concept of temperature, described and applied by 

Vielmo (1993), considering constant thermal conductivity in each phase, 
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where the sub-indices S and L refer to liquid and solid phases. Energy equation becomes: 
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where, 
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where cp (J/kg K) is the specific heat and λ (J/kg) is the latent heat. 

 
5. Numeric methodology 

 
The finite volume approximation described by Patankar (1980) and Maliska (1995) was used for the 

discretization of the governing equations. In the treatment of movement quantity equations, the generic variable φ and 
the diffusive coefficient Γ become φ=u for the coordinate θ, φ=v for the coordinate r and Γ=µ.. 

In energy depends on the focus being on the liquid, interface or solid. For the solution of this equation 
Patankar’s algorithm was modified, taking into consideration the characteristics of Cao et al’s model (1989). The 
algebraic equation system resulting from the integration of differential equations is solved by the TriDiagonal-Matrix 
Algorithm (TDMA), with block correction. The interpolation function used is Power-Law, and the SIMPLEC was used 
to treat the pressure-velocity coupling. A computational grid of 40x40 volume elements was used. 

Sub-relaxations of 0.8 order were used for all variables due to the instabilities of the hydrodynamic problem. 
Values of the 10-8 order were used as convergence criteria, both for enthalpy variations and for the maximal mass 
residues (SMAX). The adoption of variable temporal evolutions was needed due to numerical divergences. Time steps 
were chosen so as that enthalpy, in the liquid domain, developed in the order of 200 J/kg, when there were no control 
volumes in phase change. When there were control volumes close to phase change, time steps were reduced to values 
that produced enthalpy variations of the order of 10 J/kg, in liquids. The existence of three distinct domains with 
specific properties for each region contributes to the complexity of the problem. To immobilize the solid region a high 
value was attributed to absolute viscosity, µ=1050, in the positions where h<λ. 

 
6. Results and discussion 

 
The results discussed here were calculated for a diameter d=0.064 m. Pure water was used as working fluid, 

initially in the sub-cooling solid phase (Neumann´s approach), that is, in t=0, Tsub=-8°C; to begin the melting process 
the wall tube was exposed Tp=4°C, as it can be seen for the instant t=6000 s, in Fig. (2). In t=15000 s, Tp=-5.5°C is 
prescribed, starting resolidification that can be identified in the instant t=15010 s. The symmetry of the problem was 



considered for simulation, and thermal resistance imposed by the tube wall was disregarded. Enthalpy behavior in the 
domain is exposed on the right, in color scale with superimposed isenthalpic lines. Enthalpy value h=0 for solid in 
melting temperature, i. e, T=T*=0°C was used as reference value for the simulations. Therefore, negative enthalpies 
characterize the solid regions, whereas enthalpy values higher than latent heat identify the liquid region, h≥λ=333472.8 
J. Phase change region has higher values for enthalpy 0<h<λ. On the left corner, on the bottom, is Rayleigh number for 
the instant, which is defined according to Ho and Tu (1998): 
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where ∆T in melting represents the temperature difference between the wall and melting temperature; in solidification 
this difference is the one between liquid average temperature and melting temperature. α (m2/s) is thermal diffusivity, ν 
(m2/s) cinematic viscosity, ω=9.297173x10-6 (°C1.894816) and L  (m) average thickness in the liquid region.  

 

 
Figure 2. Numeric results for partial melting in the periods t=6000 s, t=15010 s (starting of resolidification), t=15500 s, 

t=17000 s, t=20600 s. On the left, enthalpy behavior. On the right, relative density with superimposed 
streamlines 

 
Density behavior in the liquid region is exposed on the right side, in color scale. The highest value is in red, and the 

minimal values in blue. Streamlines are superimposed to the behavior of the relative density, enabling the observation 
of liquid behavior during the evolution of the phenomenon. On the bottom are exposed the times for which simulations 
were made. In Fig. (2), t=6000 s, one can observe the behavior of the melting process, and it can be seen that the fluid 
with the highest energy level is concentrated in the inferior regions of the tube. Since wall temperature is Tp=4°C, the 
density of the liquid, close to the wall, will reach its maximum value. This causes the movement of the liquid in these 
regions to the inferior levels of the tube. The liquid close to the solid will have a lower density and therefore it will go to 
the superior positions of the tube. This behavior is shown on the left side of the same figure, and it was repeated for the 
simulations with Tp≤4°C. It is possible to perceive the existence of a eddy standard that demonstrates the behavior of 
the phenomenon. Two eddies occur for this instant, a bigger one rotating clockwise (negative) and one rotating anti-
clockwise (positive). Eddies structure is dynamic along time, and in simulations with wall temperatures Tp≥8°C there is 
an inversion in the behavior of the enthalpy and density, there being a liquid concentration with higher energy in the 
superior position. Eddies standard is also completely altered. 

In t=15010 s resolidification is already happening, and one can observe the existence of a thin solid layer. 
Concentration of fluid with high enthalpy occurs at the bottom of the tube, and from this moment on there are two phase 



change fronts, the solidification front and the melting front, and the liquid is confined between them. The advance of the 
melting front is reduced by sensible energy associated with liquid, and this effect is more intensely felt at the bottom, 
generating a lack of uniformity in the thickness of the solidified material. The solid in the central position, that is in 
melting temperature, continues to melt until temperature balance is reached. In t=15500 s eddies structure is completely 
altered and minimized, for density gradients are very low. In t=17000 s there aren’t density gradients any longer and the 
meeting of the two phase change boundaries happens; the internal solid starts to exchange diffusive energy with the 
solidification front, as can be seen through isenthalpic in t=20600 s, a situation close to complete solidification. 
Behavior standard in solidification depends on the liquid temperature in the beginning of the process. In simulations 
carried out with initial temperature Tini≥8°C, a concentration of liquid with high energy occurs at the top of the tube in 
the beginning of the process; when the mixture temperature defined by Eq. (21) hits Tmist≈4°C, concentration occurs at 
the bottom of the tube, that tends to equalize the thickness of the solidification front. Influence of natural convection, 
during melting, is small at first, growing with the evolution of the phenomenon. Its effect can be noticed through the 
“disfigurement” of the solid in the center of the tube. 

In solidification, the time and intensity of the action of natural convection are bigger for situations where initial 
sensible energy, brought by the temperature of the liquid Tini, is elevated with a low Tp. To evaluate the importance of 
natural convection in the solidification process the behavior Tmist/Tini in the relation Vsol/V0, where Vsol is the solidified 
volume of PCM and V0 is the initial volume. Fig. (3a) was plotted for two simulations. In both, the same physical 
model, boundary conditions and initial conditions were considered, being the difference between them the method used 
for their solution. The first was developed considering the process of solidification as purely diffusive, and the other 
with convection action. 
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One observes a faster decrease in Tmist in the simulation solved with natural convection, and this behavior was 

repeated in the simulations developed with other boundary and initial conditions. The intensity of the difference 
between the two solutions becomes smaller with the decrease of sensible energy in the liquid in the beginning of the 
process. The time needed for the homogenization of the temperature in the liquid domain also decreases for the same 
reason, and the decrease of Tini causes the same effects. 
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Figure 3. (a) The behavior of the relation Tmist/Tini in the relation Vsol/V0 for diffusive and convective solutions with 

Tini=16°C and Tp=-5.5°C. (b) The behavior of the relation Vf/V0 in the relation t/tmax using Tini=8°C and 
Tini=16°C with Tp=-5.5°C. Simulations developed considering the pure diffusive process and the process in 
the presence of natural convection 

 
The influence of the natural convection and of the sensible energy extant in the beginning of the process on PCM 

solidification time can be visualized in Fig. (3b), through the behavior of the relation Vf/V0 in the relation t/tmax. There Vf  
is the liquid volume and tmax is the maximum time of the solidification process. Results for the two different situations 
in solidification are exposed. In the first Tini=8°C was considered, in the second Tini=16°C, with Tp=-5.5°C in both 
situations. In both cases, solutions were obtained for the pure diffusive process and for the process occurring in the 
presence of natural convection. When evaluating these solutions one perceives their proximity, for even there not being 
a faster decrease of Tmist when convection is not considered, this does not causes significant differences between the two 
solutions, the pure diffusive one and the one in the presence of natural convection. This behavior may be justified by the 
fact that sensible energy is much lower than latent energy, low Stefan numbers. Sensible energy level in the liquid has 
little interference on solidification velocity, for temperatures in the order of 8°C, and is coincident in solutions with 
natural convection and pure diffusion.  



For higher temperatures, as in 16°C, solidification velocity is lower in the first instants, Vf/V0 > 0.6, of the 
convective process. After homogenization of the temperature is reached, Fig. (3), there is an inversion in the velocities 
of solidification for Vf/V0 < 0.4, and the convective process is more rapid for Vf/V0 < 0.4. At the end of the process 
solidified bulk is the same for both cases and the time for this to happen, tmax, is similar in all simulated cases. 

In order to validate these results it is necessary to evaluate associate errors, and to this end Grid Convergence Index 
(GCI) methodology, Roache (1998), was applied to the results of the simulations developed for melting. Neumann´s 
approach was used in the initial condition, Tini=-5.5°C, and in the boundary condition Tp=10°C; a tube with diameter 
d=60 mm was used. Initially Eq. (22) was used to evaluate the order of the method employed. This required obtaining 
results in three different grid situations. The grid relation used was r=3, grids with 40x40, 120x120 and 360x360 
volume element number. This created the need of a geometric coincidence among the evaluated points, as well as of a 
temporal coincidence, which was also observed. Enthalpy was the variable chosen to verify method order p. It was 
chosen because it is the central variable of the problem. The results are in Tab. (1). 
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where f terms are solutions and the sub-indices 1, 2 and 3 refer to the refined, intermediate and less refined grid. 

Evaluations were developed for three angular positions in the tube and, in each of these positions, three positions 
along the radius were chosen. The angles of these positions are referred in relation to the abscissa axes. These positions 
were chosen so that there would be one at the top of the tube, one in its medial position and one at its bottom. Result 
analysis shows that the method order was close to 1, as it was expected, with the exception of the control volumes near 
the walls of the tube. In these regions velocity tends to zero, and diffusion prevails. At the inferior regions velocity 
decreases, causing the phenomenon to be more diffusive than convective. In these positions there is also a decreasing in 
the method order.  

 
Table 1. Results for relative error and the GCI for first-order boundary conditions Tp=10°C, initial condition Ti=-5.5°C 

and r0=30 mm. 40x40, 120x120 and 360x360 volume grids 
 

 Position 
Enthalpy h 

(J/kg) 

f2=f40 

f1=f120 

f2=f40 

f1=f360 

f2=f120 

f1=f360 

(s) 
X=r cos θ 

(m) 

Y= r sin θ 

(m) 

Grid  

40x40 

Grid  

120x120 

Grid  

360x360 

Order p

ε 

% 

GCI 

% 

ε 

% 

GCI 

% 

ε 

% 

GCI 

% 

Angular Position θ1=83.25° 

0.00348205 0.02941965 369821.3 369763.7 369665.9 0.48 0.0156 0.066 0.041 0.18 0.025 0.11 

0.00339389 0.02867485 358094.3 358026.3 357806.3 1.07 0.018 0.024 0.079 0.1 0.06 0.08 

0.00330574 0.02793005 345959.9 345916.4 345735.6 1.2 0.013 0.014 0.065 0.07 0.051 0.056

Angular Position θ1=11.25° 

0.02905576 0.00577955 369771.7 369710.4 369608.9 0.46 0.016 0.073 0.043 0.2 0.026 0.12 

0.02832017 0.00563323 358002.2 357910.1 357677.8 0.84 0.026 0.051 0.091 0.18 0.065 0.13 

0.02758459 0.00548692 345903.1 345835.6 345641.2 0.96 0.019 0.03 0.076 0.11 0.056 0.09 

Angular Position θ1=-83.25° 

0.00348205 -0.0294196 369697.7 369633.7 369527.7 0.46 0.0173 0.08 0.045 0.2 0.029 0.13 

0.00339389 -0.0286748 357864.2 357743.5 357494.7 0.66 0.034 0.096 0.099 0.28 0.07 0.2 

200 

0.00330574 -0.0279300 345818.9 345720.3 345506.5 0.7 0.028 0.08 0.09 0.25 0.062 0.17 

 
Evaluations of the relative error, ε, used Eq. (23),  
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GCI was determined by using Eq. (24), considering local approximation order, p, Eq.(22), 
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As it can be seen, maximum relative error, ε, reached values of the order of 0.1%, in comparisons between the 

results obtained by the 40x40 and 360x360 grids. For the GCI, the maximum error is of the order of 0.3%, in the same 
situation. Based on the results shown in Tab. (1) one can say that the 40x40 volume grid was enough for the present 
analyses. Besides, the grid relation between the two solutions is r=9, representing a high computational cost for a 
difference of only 0.1% in the values of the solutions. 

No changes in the solution patterns were registered in all the solutions, obtained with different grids. Verification of 
the presence of a multiplicity of solutions was investigated through the alteration in TDMA sweepings. Sweepings were 
used in the coefficients and in the variables of all orientations, and no alteration in the solutions was found. 

In order to validate the results of the present work, the experimental results of Rieger et all (1986) can be used. 
Comparisons between solutions obtained with the present methodology and experimental solutions were carried out in 
Souza and Vielmo (2000). It must be considered that the experimental validation of the problems focused in this work is 
difficult, by the scarcity of works like this in the literature. Finally the methodology of Cao et al. (1989), applied here, 
was also used and tested for Vielmo (1993). 

 
7. Conclusion 

 
In melting, both in Stefan´s and in Neumann´s approach, heat transfer occurs first through diffusion. Along the 

evolution of the process, thermal gradient and space in the liquid region increase. This promotes an increase in the 
Rayleigh number, intensifying natural convection, which becomes, in some processes, the major mechanism in heat 
transfer. In solidification the process occurs first in the presence of natural convection, once in this class of problem 
there are high thermal gradients in the beginning of the process, characterizing an initial prevalence of natural 
convection. Along temporal evolution, thermal gradients and the spaces filled up in the liquid decrease, causing a 
reduction in the Rayleigh number which renders diffusion, after a certain period, the major heat transfer mechanism, 
Fig. (2), for Rac=30.3. As it was expected, the major mechanism for heat transfer in the interior of the tube varies along 
time and according to boundary conditions. Eddy structure, which is variable according to time and boundary 
conditions, drastically interferes in the modification of the heat exchange mechanism. 

The degree of complexity of the heat transfer phenomenon in these problems is associated with the “abnormal” 
behavior of density in water. This behavior is responsible for the variations in eddies structures and in the form of 
isotherms inside the tube. In melting these structures “collect” energy along the wall, delivering it to the solid, which 
intensifies the exchange mechanism in specific positions where fluid with low enthalpy is concentrated. Eddies 
structures influence phase change boundary. While diffusive process prevails, solid preserves a cylindrical geometric 
form, and phase change boundary geometry suffers “deformations” with the intensification of the eddies structures. 

In the processes of solidification and resolidification, heat transfer to the interior of the tube also varies along time. 
Convective process prevails initially, due to movement in the liquid. In the initial moments eddy structures are dynamic, 
due to the high gradients in temperature and density. As the process evolves, gradients decrease until being 
extinguished. In solidification, with full liquid volume at the beginning of the process, gradient survival time depends 
on the initial condition, Tini, and of the boundary condition Tp. In resolidification this period depends on the boundary 
condition, Tp, in the beginning of the processes of melting and resolidifition, and on the volume of liquid PCM. In 
solutions that consider only diffusion results for the solidification process are closer to reality than in those that consider 
melting. This happens due to the behavior of sensible energy, which increases in melting along the evolution of the 
process, whereas the opposite happens in solidification. 

In melting, cylindrical geometric form is preserved in problems solved with pure diffusion, and constant prescribed 
wall temperature. This shows the distancing between the modeling and the physical reality of the problem when 
simplifying hypothesis, which disregard internal convection and the “abnormal” behavior of density in water, are used. 
In solidification the geometric form of the solid ring does not suffer major deformations, which indicates the small 
influence of natural convection in solidification. 

It can be said that, in solidification, the solution developed only in the presence of diffusion generates acceptable 
results for the simulated temperature levels. Therefore, one should resort to an analytic solution of the governing 
equations of the problem, so as to obtain a closed-form solution to the problem. 
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