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Abstract. Axisymmetric boundary element formulations for contact and fracture mechanics are employed for the simulation of 
indentation tests. The method combines a load-scaling boundary element technique for frictional contact analysis and a dual 
boundary element method (dual BEM) for axisymmetric crack propagation ones. The efficiency of these two techniques has been 
previously demonstrated. An efficient coupled formulation, capable of simulating contact-induced crack propagation while keeping 
proper equilibrium conditions in the frictional contact area, was recently presented. This coupling is briefly revisited in this paper. 
Aggregating the efficiency of the separate formulations is not straightforward and possible approaches are explained. The validity 
and efficiency of the proposed approaches are verified through several new indentation tests under different circumstances. 
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1. Introduction 
 

Indentation tests are commonly used for the assessment of material fracture properties. In particular, indentation of 
brittle solids by relatively hard spherical and flat-tipped indenters may induce the growth of cone cracks. 

Two-dimensional and axisymmetric boundary element formulations for contact mechanics have been developed 
during the eighties by Andersson (1981) and Abdul-Mihsein et al. (1986), respectively. de Lacerda and Wrobel (2000) 
developed an efficient axisymmetric one, applicable to linear elastic materials, in which an incremental load-scaling 
technique is used to guarantee proper traction behaviour at the edge of the frictional contact area. 

From the fracture mechanics point of view, only recently, a dual boundary element formulation for axisymmetric 
elasticity problems has been presented (de Lacerda and Wrobel, 2002). This particular technique is well suited for 
crack problems allowing the computation of stress intensity factors with great accuracy and the analysis of crack 
propagation problems also with great efficiency. 

In the present work the coupling of the aforementioned frictional contact and dual fracture formulations is 
performed with the objective of modeling indentation tests. An algorithm for this coupling is proposed and the dual 
formulation is adapted to account for the incremental procedure. The keypoint in this development is to aggregate the 
efficiency of both formulations into the proposed algorithm. In this sense, the friction in the contact area brings some 
difficulties as well as requirements concerning the type of crack elements which must be added during propagation.  
 
2. Contact and Crack Models 

 
Consider a system of two or more elastic bodies in contact, in equilibrium under external loads and constraints. 

Problems involving contact can be categorized in different ways depending on characteristics such as the geometry of 
the contacting surfaces, presence of friction and loading history. 

In non-conforming frictional contacts the final extent of the contact area is not known a priori and depends on the 
magnitude of the applied external forces. Furthermore, the presence of friction implies the development of shear 
stresses whose magnitudes may lead to relative tangential displacements at the contact interface, and which are also 
dependent on the load history. This load dependence of the analysis makes it nonlinear, requiring the subdivision of the 
external loads for its solution, 
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where Pm represents all external loads at the final stage. As a consequence of this load discretization, displacements and 
tractions at the bodies are also subdivided 
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where it is clear that each load increment ∆Ρk results in changes to the displacement and traction fields corresponding to 
∆uj

k and ∆tj
k, respectively. Neglecting body forces and considering this subdivision, the following incremental 

boundary integral equation can be derived, 
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where Uij(ξ,x) and Tij(ξ,x) are the displacement and traction fundamental solutions at a field point x due to a unit load 
applied at a boundary point ξ, the free term Cij(ξ) is dependent on the geometry at ξ, ∆uj

k(x) and ∆tj
k(x) are the 

displacement and traction increments over the boundary Γ, and the sign on the second integral (cpv) indicates Cauchy 
Principal Value. In axisymmetric analyses i, j = r, z and λ = 2 π rx, with r and z being the radial and axial coordinates, 
respectively, and rx being the radial distance from the field point x to the axis of symmetry z. 

Subdividing Γ into a series of boundary elements and choosing appropriate functions to represent the 
displacements and tractions at these elements, Eq. (3) can be used to build a system of equations, which together with 
boundary and contact equilibrium and compatibility conditions, is solved to obtain unknown variables all over the 
boundaries. 

Assuming m as the number of load steps, m sets of results for ∆uj
m(x) and ∆tj

m(x)  need to be calculated. At each 
step k the contact conditions will depend on the total contact profile at the previous step k-1. 

Multiple steps (m > 1) are essential for an accurate analysis. Different criteria can be used to define the load 
increments ∆Ρk. Here, node to node contact elements and a load scaling technique are used to calculate these 
increments. The basic idea of this technique is to use a linear extrapolation function to obtain a very close to zero 
normal traction value at the pair of nodes at the edge of the contact area. 

At each load step, an iterative procedure is necessary to find the correct partitioning of stick and slip regions. In 
this iteration process compatibility contact equations are changed appropriately.  

Notice from Eq. (3) that the integrations do not change in the incremental process, only the compatibility contact 
equations may be modified. An LU linear system solver (L is a lower-triangular square matrix with unity diagonal 
elements, and U is an upper-triangular square matrix) is quite attractive for the load-scaling scheme where trial loads 
are employed (provided the size of the problem is not a restriction to the application of O(N3) solvers). However, to 
perform a new LU decomposition every time a compatibility equation is modified is a very expensive task Fortunately, 
these modifications are usually very small compared to the number of equations in the system and this feature gives 
room to the application of special algorithms to speed-up the analysis (de Lacerda and Wrobel, 2000). The suitability of 
such scheme to crack propagation analysis is investigated. 

The dual BEM is a very attractive method to model fracture mechanics problems because of its accuracy and easy 
`re-meshing' on crack propagation analysis. The method basically consists on the simultaneous application of the 
displacement and traction boundary integral equations to the crack boundaries (Portela et all, 1991), giving rise to a 
mathematically well-posed formulation. 

Recently, traction equations have been derived for axisymmetric elasticity (de Lacerda and Wrobel, 2001). Without 
loss of generality, the traction boundary integral equation is also written in incremental form, 
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where the collocation point ξ  is on a smooth part of the boundary Γ, mk are the components of the normal vector at 

ξ, Dikj(ξ,x) and Sikj(ξ,x) are known functions of derivatives of Uij(ξ,x) and Tij(ξ,x), and the sign on the second integral 
(hpv) indicates Hadamard Principal Value. 

Crack boundary conditions are usually traction free and that may well be the case for the increments of growing 
cracks. Still, imposing these conditions is not straightforward in an incremental formulation, and details of these 
procedures are thoroughly explained in the next section. The use of different element types rather than simple traction 
free ones is investigated. 

After the boundary discretization, Eqs. (3) and (4) are applied at crack nodal points, one on each side of the crack. 
At non-crack boundaries only Eq. (3) is applied. A discretized system of equations is obtained where integrals over 
each element must be computed. Two types of integrations will appear: non-singular and singular. The first ones are 
computed using Gauss quadrature and the second requires different treatments, depending on which kernel of each 
equation is being integrated. 



An accurate evaluation of stress intensity factors is essential for crack trajectory simulations. Here, the modified 
crack closure integral method (Rybicki and Kanninen, 1977) is adopted for its simplicity, speed and good level of 
accuracy. The method is based on an approximate evaluation of the crack closure integrals, proposed by Irwin (1957). 

 
3. Crack Propagation Model 

 
Cracks will extend until stress intensity factors fall bellow the critical stress value KT (toughness) of the material. 

Several criteria have been proposed to determine the direction in which cracks should propagate. Perhaps the most 
commonly used is the maximum principal stress criterion. It predicts that cracks will grow in a direction perpendicular 
to the maximum principal stress at their tip. With the knowledge of the stress intensity factor values KI and KII, this 
direction θc can be easily obtained. Fracture instability occurs at a crack tip when the maximum principal stress reaches 
the toughness magnitude KT. Assuming that an equivalent mode I stress intensity factor KIeq is responsible for the 
fracture process, this condition is present when KIeq  > KT. 

Once the directions are defined, crack increments are added to the system: a pair of elements for each extended 
crack. Their sizes are usually controlled as an increasing or decreasing function of the corresponding tip element size. 
Observe that the predicted angles θc do not take into account the length of the increments, so corrections are found 
necessary to adjust their orientations. This so-called prediction-correction technique is an iterative procedure which 
requires an efficient method for the solution of the system, since this process will be repeated a great number of times. 
LU decomposition and the dual boundary element method can also be efficiently used in this crack propagation 
procedure (Portela et al, 1991). Prior to the incrementation, all current coefficients of the system have been 
decomposed and properly stored. When cracks are incremented, a few extra rows and columns are added to the system 
and these new system coefficients are the only ones to be decomposed. Actually, they are decomposed as many times as 
the increment elements are adjusted during the iterations, searching for the best θc values. 

It was seen that an LU solver can be efficiently used in contact and crack analyses. In combined problems such as 
contact-induced crack propagation, the algorithm for the solution must be simultaneously efficient. In this type of 
problem, before cracks start propagating, a certain amount of load has necessarily been applied. Consider this particular 
stage of the analysis, where k load steps have been applied and a certain number of iterations were performed to obtain 
the current contact status and overall solution. Let Hk denote the history of operations which transform the initial 
contact configuration into the current one (after k steps). As mentioned for the contact model, this history of changes 
provides a series of modifications on the solution which can be quickly evaluated. Moreover, reapplying this group of 
operations is an even faster procedure since much of the computation during the first time has been stored. 

The LU decomposition of the new coefficients in the propagation algorithm is stored alongside the original 
decomposed matrix. It is worth remembering that, originally, the system contained contact conditions for the initial 
configuration. After the system solution, results will correspond to the initial contact status and a history of load 
increments and contact iterations must be applied to recover the current load stage Pk. Unfortunately, reapplying the 
operations Hk to the new slightly larger system is not sufficient to obtain the new results. These operations are likely to 
open the crack increments at load steps smaller than k, but somehow the increments must be kept closed until the 
fracturing moment when the amount of load Pk is reached. This task differentiates the present combined contact crack 
analysis from pure crack propagation ones, and overcoming this problem with efficiency is the key point of the 
algorithm. The approach used to solve this task is described in the next section, along with possible alternatives with 
advantages and disadvantages of each discussed. 

Finally, the last step of the propagation algorithm corresponds to the angle adjustments of the crack increments. 
These corrections are necessary until a predefined tolerance is reached. This tolerance, which can be specified by the 
analyst, is the maximum allowed difference in degrees between the previous and the currently calculated direction of 
propagation (δθ). The smaller this value, the greater the number of angle iterations and time of analysis. If any of the 
increments is tilted, the former new decomposed coefficients are discarded along with the last set of results and the 
process is restarted from the assembling routine. The whole incrementing process is repeated until KIeq < KT at all crack 
tips. When all cracks are arrested by the toughness of the relevant material the analysis returns to the contact algorithm, 
possibly for further load incrementations and contact iterations. 
 
4. Recovering the Current Load 

 
At this point, cracks have grown and the number of unknowns in the system has increased proportionally to the 

number of extra elements. Basically, regarding the boundary conditions, elements can be of two types: simple boundary 
elements (fck - traction free crack elements) with two unknown values per node, or contact boundary elements (cck - 
contacting crack elements) with an additional two unknowns per node. The first type has one-half of the number of 
unknowns compared to the second and this difference, in terms of computational speed, becomes evident as the system 
is progressively expanded with the crack growth. Therefore, its use should be preferred, however, inserting it in the 
proposed incremental contact model is much more complicated. Tractions would have to be prescribed at these 
elements in order to keep increments closed up to the last step before their opening. These values are not known and 
would have to be calculated in a post-processing level using results from the unincremented system. Furthermore, 
adapting these conditions to the external load scaling process and elaborating a book-keeping format for the future 



crack increments to be added to the system, are enough reasons to discourage the use of this type of element in the 
present method. Nevertheless, a less accurate approach is later discussed where these elements are used with some 
success. On the other hand, contact elements have been implemented with the load scaling and history of results in 
mind, and keeping the gaps closed at any stage is as simple as defining the elements to be in stick mode. 

For simplicity, consider the single crack propagation case in Fig. 1, although the following approach is general and 
extendable to multiple crack analysis. The top row of Fig. 1 shows a sketch of the crack growing process. The load is 
incremented (a→b) until the value Pk is reached, where the equivalent mode I stress intensity factor is greater than the 
toughness of the material. Next, the load is kept constant and the crack is extended (b→c) perpendicular to the 
maximum principal stress direction. In Fig. 1c, the mesh has two more contact elements, and new rows and columns are 
added to the system. After the decomposition of these new coefficients, the system is solved providing a solution vector 
S0 which represents the situation in Fig. 1d. The objective is to obtain the solution Sk which corresponds to the load Pk 
with the new crack increment (Fig. 1f). In the new system, it is necessary that the new pair of elements behave as in 
stick mode until the crack opening stage, as depicted in the bottom row of Fig. 1. The computation of Sk is better 
visualized if performed in two steps: First, the solution S0 is transformed into an intermediate solution corresponding to 
Fig. 1e, through a series of known operations Hk. Secondly, the crack increment is simply released from stick mode 
(e→f) and contributions from this event are added to the intermediate solution giving Sk. 

In practice, these two steps are independent from each other and can be simplified into a single faster one. The 
crack increment is set as a separate contact pair with zero gap in the first place, with compatibility conditions provided 
from post-processed stresses tj

k,b in the uncracked system in Fig. 1b, 
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After decomposition and system solution, a different result for S0 is obtained and the simple fast application of Hk 

over this system, plus extra contact iterations if the status changes between configurations b and c, gives the solution 
Sk. Apart from numerical errors, traction-free conditions tj

k,f =0 at the crack increment is a result within Sk. 
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Figure 1. Steps during crack propagation. 
 

The load scaling technique is based on calculating the load Pk which results in near zero normal tractions at the 
edge of the contact area. With the crack propagation, it is normal that changes on the contact stresses will occur. The 
normal traction values at the edge will no longer be zero, however the differences are normally negligible compared to 
the stresses in the vicinity. 
 



4.1. Crack increments with simple boundary elements 
 

Simple boundary elements (fck) can still be used for the increments discretization in a different approach. In this 
case, the previous history of increments and iterations Hk is completely discarded. A new incremental contact loading 
history is initiated and processed until the target load is reached. Recalculating the whole history can be very time-
consuming, specially because it has to be re-done after every correction. Still, it is much faster than decomposing and 
solving the whole system with updated contact conditions. Compared to the formal approach with contact elements, the 
present one may even be faster if a large number of crack increments is added to the system. The main problem of this 
approach is the presence of the open crack increments at the beginning of the iterations, which does not occur in 
practice. For this reason, it is expected that the frictional contact stresses will be different from the real ones 
(frictionless analyses should not be affected). Another issue which may be influenced by this approach is the crack 
trajectories. These matters are investigated in the following examples. 

It may be claimed that, if the previous approach cannot guarantee correctness of the frictional stresses, then 
applying multiple load steps would not be essential. Instead, just a single load step could be used as an alternative, 
speeding up the analysis. This extra approximation certainly yields less accurate frictional contact stresses, compared to 
the multiple steps case. 
 
5. Contact-Induced Crack Propagation Analysis 
 

A number of indentation tests were numerically simulated to verify the accuracy and efficiency of the proposed 
formulation. Results are compared with simple theoretical formulae, when available, and with numerical results from 
previous simulations by other authors. 

Three types of axisymmetric indenters are used in the numerical tests: a sphere (sph), a machined sphere (ms) and a 
cylinder (cyl). The first indenter has a radius of 1.98 mm and produces a non-conforming type of contact, with an 
increasing contact area as the load is augmented. The second indenter has the same radius and a flat base of 1 mm 
radius. The last indenter has a height also equal to 1.98 mm, and the same contacting area as the machined sphere, a 
circular base with 1 mm radius. The same material was employed for the three indenters – Tungsten carbide with 
Young's modulus of 614 GPa and Poisson's ratio equal to 0.22. The cracked specimen is an axisymmetric monolith, 
with radius and height equal to 20 mm. These dimensions were verified to be sufficiently large to avoid boundary 
influences over the propagating cracks. Three types of brittle materials were tested and their properties, including their 
fracture toughness, are presented in Tab. 1. In the contact area, nondimensional friction values of 0.05, 0.1, 0.2 and 0.3 
were employed, besides some frictionless analyses. 
 
Table 1. Monoliths material properties. 
 

Material Soda-lime glass Silicon 
Nitride 

Fused 
silica 

Young´s modulus (Mpa) 69000 335000 70000 
Poisson´s ratio 0.21 0.27 0.14 
Fracture toughness (MPa m1/2) 0.75  3.9 1.9 

 
In the first validation test, the machined spherical indenter is pressed against the three types of monolith and a 

further, hypotetical one, with Poisson's ratio equal to 0.4 and an arbitrary Young's modulus. The contact is assumed to 
be frictionless, and a tiny crack c=10 µm long is imposed normal to the top surface of the monolith, distant from the 
axis of symmetry by r0=1.1 mm. A total of 213 linear elements were used for the model discretization, with 10 along 
the initial crack (5 on each side) and 40 along each contacting surface. A 10 KN load was applied in a single step, and a 
total of 80 crack increments were allowed to propagate. As expected, cone cracks were formed as shown in Fig. 2. Note 
the different angles they make with the horizontal direction, which increase in an inverse proportion to the Poisson's 
ratio. The angle obtained in the case of the soda-lime glass monolith is approximately the same reported by Kocer and 
Collins (1997), while all the others match previously reported values (Bush, 1999). 

The second set of tests includes a comparison between the two flat base indenters, for different friction values. The 
boundary element mesh was identical to the previous case, and the monolith material used was soda-lime glass. In the 
crack trajectories in Fig. 3, the angle of propagation was the same as before for the different combinations. However, it 
is interesting to notice that the trajectories are slightly offset from each other. This effect can be attributed to the 
influence of friction and the indenter geometry at the onset of the propagation. In the machined indenter case, the crack 
tends to find the cone angle before the cylindrical indenter case, i.e. with a smaller amount of applied load. The effect 
of friction is to keep the initial crack faces in contact, with a larger mode II stress intensity factor required for the initial 
development of the crack, as expected. 
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Figure 2.  Cone angles formed during indentation of different materials. 
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Figure 3.  Effect of friction and indenter type on crack propagation. 
 

The two flat indenters are also used to simulate the correlation between the applied load (P) and the base radius (R) 
of the cone crack, for the soda-lime monolith. The following expression is valid when R is sufficiently larger than the 
indenter radius (Lawn, 1993),  
 

32 RP α=          (6) 
 
where α is a constant depending on the Poisson's ratio and fracture toughness of the cracked specimen. In Fig. 4, results 
for both indenters with frictionless contact conditions, and the cylindrical indenter with friction µ =0.05, compare well 



with the asymptotic expression (6) in the specified range. Notice that the cylindrical indenter without friction appears to 
be in closer agreement, but although the other two results seem to be slightly outside, their slope is very similar to the 
expected one. This behaviour matches the observations in Fig. 3, where the cones are slightly offset. At the beginning 
of propagation, a ‘pop in’ effect can be observed. This phenomenon is well reported in the literature and corresponds, 
in Fig. 4, to the gaps between data at small values of R. Another point in agreement with observations in Fig. 3 is that a 
higher load was needed to initiate the propagation for the machined sphere, and an even higher one for the cylinder 
with friction, compared to the cylinder without friction. In fact, a much higher load was needed for the cylinder with 
friction, resulting in a larger ‘pop-in’ effect. 
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Figure 4.  Relation between applied load and cone crack base radius for the conforming type of contact. 
 

This behaviour is clarified in Fig. 5, which shows a plot of the normalized strain energy release rate as a function of 
crack length, following Lawn (1993) and Mauginot and Maugis (1985), for different values of the contact friction 
parameter. Two sets of curves are presented, for r0/a = 1.1 and r0/a = 1.3, where a is the cylinder radius and r0 is the 
distance between the crack and the axis of symmetry. Although plots were only produced for a single load case, higher 
or lower indentation loads would simply shift the curves upwards or downwards, respectively (Mauginot and Maugis, 
1985). The first crossing points between the curves and the stability line G/2G0 = 1 (G0 is the fracture surface energy) 
indicate the normalized crack length necessary to initiate propagation. It is clear that, in both cases, this length must be 
greater as friction increases. Alternatively, for a fixed crack length, increasing friction means that a higher load would 
be required to initiate propagation. It can be observed in Fig. 5 that all curves present two peaks, a characteristic feature 
of cylindrical punches, and that the amplitude of the first peak increases with the ratio r0/a, in agreement with the results 
of Mauginot and Maugis (1985). 

Figure 6 presents the accumulated CPU time (on a Pentium III-750/128Mb) for the propagation of eighty crack 
increments in the soda-lime monolith, induced by the cylindrical indenter, under different circumstances. It is clear that 
applying all the load in one single step (total load) is faster than using several steps. Therefore, in a conforming type of 
contact, this approach should be preferred if only the crack trajectory is sought. If a correlation between load and crack 
size is required, then load steps are necessary. In this case, it can be seen that the numerical procedures are much more 
time consuming when friction is considered. The main reasons are the greater number of contact iterations to define the 
stick-slip partition, and the longer time needed to compute the operations Hk to obtain the solution at the k-th load step. 
Another factor that can be observed is the influence the crack increment angle error tolerance (δθ) has on the CPU time. 
An analysis with an error tolerance of 3º is approximately twice faster than using 1º. This factor can be verified in the 
insert to Fig. 6, where a larger number of crack (angle) iterations are needed for the 1º case. This figure also shows that, 
after a certain number of increments, the number of crack iterations reduces to nearly one. This happens when the crack 
finds its straight direction of propagation 
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Figure 5.  Cylindrical punch. Normalized strain energy release rate against c/a for two starting locations of the crack 
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Figure 6. Influence of friction, crack angle tolerance iteration and number of load steps on the performance of the 

algorithm. 
Results for the non-conforming indentation test of a Silicon Nitride monolith block are depicted in Fig. 7, alongside 

theoretical and experimental trend lines. In this test, the initial crack is 8 µm long and 0.351mm distant from the axis of 
symmetry. The dual BEM results for the indenter load (P) versus the crack length (C) seem to converge to the 



theoretical far-field relation. However, as previously observed by, the numerical results deviate from the experimental 
ones (Bush, 1999; Lee et all, 1997) as a result of plastic deformation within the indenter. Two regions of unstable crack 
growth at the onset of propagation were detected in this test. The applied load was never reduced during indentation, 
and this explains the gaps between data indicated by these regions. The first gap is between the initial crack location 
(dashed line) and the initial marks of the two presented results. The second gap is between the initial data marks and the 
fourth mark of each result. The two regions together correspond to the ‘pop-in’ effect commonly observed in 
experimental tests. It can be seen that the introduction of friction in this test was not significant at all. Neither the crack 
trajectories nor the minimal load for the ‘pop-in’ were substantially different. The minimum load necessary to initiate 
crack propagation was found to be P=1.59 KN, which is quite close to experimental observations (Lee et all, 1997), 
even though the initial crack size (8 µm) may not be the most appropriate and the formulation is not particularly well 
suited for this analysis, due to the absence of plasticity. 
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Figure 7.  Relation between applied load and cone crack length on the spherical indentation. 
 

The accumulated CPU times for the propagation of thirty-six crack increments in the previous non-conforming test 
are shown in Fig. 8. An angle error tolerance δθ=1º was adopted, and two types of crack elements were used to model 
the system: contacting crack elements (cck) and contact-free crack elements (fck). As expected, the use of fck elements 
for crack growth speeds up the analysis, since they involve a smaller number of unknowns. The load-scaling technique 
is used in this test, and it can also be seen that the introduction of friction delays the analysis, whatever type of crack 
elements are employed. The crack trajectories for the cases analysed are shown in the insert to Fig. 8. Neither the 
friction in the contact area, nor the type of crack element, seem to affect the crack path. Three zones are indicated in 
this figure. In the first, the curves are nearly horizontal, meaning that only a small number of contact and crack 
direction iterations are necessary. This effect continues until the crack growth reaches the compression area formed in 
the monolith. The second zone corresponds to the deviation of the propagating crack to avoid the compressive area. In 
this process, a larger number of crack direction iterations is needed, resulting in a steeper curve. In the third zone, the 
crack reaches its straight path, and the curve slope increases as more crack increments are added to the system. 

The frictionless cases needed not be incremental, and a single load step should be sufficient for the analysis. As for 
the added crack elements, the fck type of elements is also appropriate. On the other hand, for frictional problems, the 
applied indenter load has to be incremental, and fck elements cannot produce a completely correct result as can be seen 
in Fig. 9. A friction value of µ =0.05 was used in the same non-conforming test, and no differences were noticed for the 
normal contact tractions.  



0

200

400

600

800

1000

0 3 6 9 12 15 18 21 24 27 30 33 36
Crack Increments

Ti
m

e 
(s

)
cck (0.0)
cck (0.3)
fck  (0.0)
fck  (0.3)

cck - contact crack
fck - free crack

zone 1

zone 2

zone 3

(µ)

crack trajectory

0 2 4 6 8 10

(dmm)

sphere

δθ=10

 
Figure 8.  Influence of friction and choice of crack element increment on the performance of the algorithm. 
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Figure 9.  Influence of the choice of crack element increment on the tangential tractions development. 
 
Prior to the crack propagation, tangential tractions were the same whether fck or cck elements were used. After the 
initial crack propagation, the analysis with cck elements closely matches the same contact problem without the crack 



(nck). However, when fck elements are used, the tangential traction values are very different from the previous results. 
This behaviour was expected as reported in the previous section, despite the lack of plasticity in the analysis. 
 
6. Conclusions 
 

Boundary element algorithms for the analysis of contact-induced crack propagation problems have been developed. 
For this purpose, axisymmetric formulations for contact and crack analysis were coupled in an incremental manner. 
Conforming and non-conforming frictional contact are considered and the dual boundary element method is used in the 
crack modelling, allowing the analysis of crack propagation in a faster and elegant manner. 

An efficient approach is employed to retrieve the solution with speed and accuracy. Once the initial system is 
solved, contact iterations are quickly performed to obtain the extension of the contact area and the stick-slip partition. 
For the crack formulation the original system is mantained and enlarged as the crack elements are added to the problem. 
The initial system decomposition and the contact history of iterations are also accounted for the computation of the 
solution after every crack increment. 

The influence the choice of crack elements have on the solution speed and accuracy was demonstrated in the 
results. In general, the algorithms proved to be quite efficient, being able to simulate indentation tests in a few minutes. 

The lack of plasticity in the present formulation seems to be the main reason for the mismatch in the load versus 
crack length results for the non-conforming indentation case. Future investigations will address this particular problem 
and the influence of plastic deformation due to high stress concentrations at the edges of flat punches. Finally, the 
algorithms proved to be quite efficient, and capable of accurately simulating indentation tests. 
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