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Abstract. Chaotic behavior of dynamical systems offers a rich variety of orbits, which may be controlled by small perturbations in 
either a specific parameter of the system or a dynamical variable. Therefore, this kind of behavior may be desirable in different 
applications. Chaos control usually involves two steps. In the first, unstable periodic orbits that are embedded in the chaotic set are 
identified. After that, a control technique is employed in order to stabilize a desirable orbit. This contribution employs the close-
return method to identify unstable periodic orbits (UPO) and a variation of the Ott-Grebogi-Yorke (OGY) technique, called semi-
continuous control, to stabilize some UPO. As an application to a mechanical system, a nonlinear pendulum is considered. Based on 
parameters obtained for a experimental setup, analyses are carried out considering signals that are generated by numerical 
integration of the mathematical model. Results show that these techniques may be employed to control chaos in mechanical systems. 
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1. Introduction  

 
Chaotic behavior has been extensively analyzed from the early sixties when E. Lorenz developed studies on the 

unpredictability of meteorological phenomena. Nowadays, different fields of sciences have special interest in this kind 
of phenomenon as for example engineering (Moon, 1998; Piccoli & Weber, 1998; Mees & Sparrow, 1987), medicine 
(Goldberger et al., 1990), ecology (Schaffer, 1985), biology (Hassell et al., 1991) and economy (Peel & Speight, 1994; 
Aguirre & Aguirre, 1997). As a matter of fact, chaos may occur in many natural processes and the idea that chaotic 
behavior may be controlled by small perturbations of some physical parameter is making this kind of behavior to be 
desirable in different applications. 

Chaos control is based on the richness of responses and also on the sensitive dependence to initial condition related 
to a chaotic behavior. Basically, a chaotic attractor has a dense set of unstable periodic orbits, and the system often 
visits the neighborhood of each one of them. One of these orbits may be the desirable behavior of the system in a 
particular situation. Moreover, the sensitive dependence to initial condition also implies that the system’s evolution may 
be altered by small perturbations. Therefore, control of chaos may be understood as the use of tiny perturbations for the 
stabilization of unstable periodic orbits embedded in a chaotic attractor. 

It should be pointed out that it is not necessary to have a mathematical model to describe the system dynamics since 
time series analysis may be employed with this aim. Kantz & Shreiber (1997) say that the most direct link between 
chaos theory and the real world is the analysis of time series from real systems in terms of nonlinear dynamics. 
Therefore, all control parameters may be resolved from time series analysis. 

Chaos control methods may be classified as discrete or continuous techniques. The first chaos control method has 
been proposed by Ott et al. (1990), nowadays known as the OGY (Ott−Grebogi−Yorke) method. This is a discrete 
technique that considers small perturbations promoted in the neighborhood of the desired orbit when the trajectory 
crosses a specific surface of section, such as some Poincaré section. On the other hand, continuous methods are 
exemplified by the so called delayed feedback control (DFC), proposed by Pyragas (1992), which states that chaotic 
systems can be stabilized by a feedback perturbation proportional to the difference between the present and the previous 
state of the system.  

Nowadays, there are many variations of the OGY technique that overcome some of the limitations of the original 
method, as for example: control of orbits with high period (Otani & Jones, 1997 and Hübinger et al., 1994), control by 
time-delay coordinates (Dressler & Nitsche, 1992; So & Ott, 1995 and Korte et al., 1995), control of unstable periodic 
orbits with high instability (Hübinger et al., 1994 and Ritz et al., 1997). For more details on chaos control based on 
OGY method refer to: Chen (2001), Chanfreau & Lyyjynen (1999), Ditto et al. (1995), Ditto & Showalter (1997), Dubé 
& Després (2000), Shinbrot et al. (1993), Ogorzalek (1994), Grebogi & Lai (1997), Bayly & Virgin (1994) and 
Boccaletti et al. (2000). 

There are reports on some experimental applications of OGY based control methods as in magnetoelastic ribbons 
(Ditto et al., 1990; In et al., 1995; Hübinger et al., 1994), in nonlinear pendulums (Hübinger et al., 1994; Korte et al., 
1995; Starret & Tagg, 1995; Yagasaki & Uozumi, 1997) and in a double pendulum (Christini et al., 1996). 
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This contribution concerns with the analysis of chaos control in numerical signals obtained from a nonlinear 
pendulum. The proposed mathematical model is based on an experimental apparatus analyzed by Franca & Savi (2001) 
and Pinto & Savi (2003). These previous articles consider the chaotic behavior of an experimental nonlinear pendulum, 
analyzing state space reconstruction, determination of dynamical invariants and prediction. The pendulum has both 
torsional stiffness, provided by a string-spring device, and viscous damping, provided by a magnetic device. These 
characteristics make this apparatus distinct from the others reported in the literature. Here, all signals are numerically 
generated by the integration of the equations of the mathematical model, which uses experimentally identified 
parameters. The Close-Return (CR) method (Auerbach et al., 1987) is performed to determine unstable periodic orbits 
embedded in the attractor, and a variation of the OGY technique called SCC (semi-continuous control) method 
proposed by Hübinger et al. (1994) and extended by Korte et al. (1995) is considered to perform the control. Results 
confirm the possibility to use this approach to deal with mechanical systems. 

This article is organized as follows. Section 2 describes how the CR method can be used to extract unstable periodic 
orbits from chaotic data.  Section 3 describes the OGY control method and its variation used in this work. Section 4 
presents the pendulum model and applies the discussed methods.  Section 5 presents some conclusions.  
 
2. Determination of Unstable Periodic Orbits 

 
A chaotic set has a large number of unstable periodic orbits (UPO) embedded in it. Moreover, the system’s 

trajectories visit the neighborhood of each one of them. The control of chaos can be treated as a two-stage procedure. 
The first stage is composed by the identification of unstable periodic orbits. This step may be understood as a “learning 
stage”. Since periodic orbits are dynamical invariants, they can be analyzed from time series, exploiting topological 
invariance (Xu et al., 2002; Gunaratne et al., 1989).  

A time series is a sequence of observations of some time variables of the system, and it is usually related to a 
nonlinear dynamical system whose experimental analysis furnishes a scalar sequence of measurements. Nonlinear 
analysis involves different tools, including state space reconstruction and determination of dynamical invariants. 
Lyapunov exponents and attractor dimension are some examples of dynamical invariants that could be used to identify 
chaotic behavior (Franca & Savi, 2001). 

This article considers the close-return method (Auerbach et al., 1987) to the identification of UPOs. The basic idea 
is to search for a period−τ UPO in the time series. Let the dynamics of the system be represented by { } , a map 
concerned to a certain surface of section. This state vector may be obtained either by the direct observation of all the 
states of the system or by state space reconstruction from a scalar time series s

N
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n (n = 1, … N). The identification of the 
UPO is based on a search for pairs of points in the time series that satisfy the condition: 
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where r1 is a tolerance value for distinguishing return points. After this analysis, all points that belong to a τ-periodic 
cycle are grouped together. During the search, the vicinity of a periodic orbit may be visited many times, and in this 
case it is necessary to distinguish each orbit, remove any cycle permutation and average the orbits extracted for 
improved estimations. In order to decide if two nearby periodic orbits of period-τ correspond to distinct periodic orbits, 
the approach presented by Otani & Jones (1997) is employed, who sort each of two UPO with same period in an 
ascending order to obtain two new sets of points and use them for the comparison. If the distances of all corresponding 
points of the two new sets are less than the tolerance r2, then they are grouped together into the same UPO cluster. 
Otherwise, they are considered to be distinct UPO.  

Other different approaches can be employed for the determination of UPO as proposed by Pawelzik & Schuster 
(1991), Pierson & Moss (1995), So et al. (1996), Schmelcher & Diakonos (1997,1998), Diakonos et al. (1998), Pingel 
et al. (2000), Davidchack & Lai (1999), Dhamala et al. (2000). 

Having identified an UPO, one is able to proceed to the next stage and control the chaotic system in order to 
stabilize it in the desired orbit. In the following section, the OGY control method is described. 

 
3. OGY Control Method 
 

The OGY (Ott et al.,1990) approach is described considering a discrete system of the form of a map 
),(1 pF ii ξξ =+ , where p∈  is an accessible parameter for control. This is equivalent to a parameter dependent map 

associated to surface of section. Let 
ℜ

),( 0pF FF ξξ =  denote the unstable fixed point on the section corresponding to an 
orbit in the chaotic attractor that one wants to stabilize. Basically, the control idea is to monitor the system dynamics 
until the neighborhood of this point is reached. After that, a proper small change in the parameter p causes the next state 
ξi+1 to fall into the stable direction of the fixed point. In order to find the proper variation in the control parameter, δp, it 
is considered a linearized version of the dynamical system near the equilibrium point: 
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where Fii ξξδξ −= , 0ppp ii −=δ , , and ),( 0pFDA Fξξ= ),(/ 0ppFw Fξ∂∂= . The Jacobian A and the sensitivity 
vector w can be estimated from a time series using a least-square fit method as described in Auerbach et al. (1987) and 
Otani & Jones (1997). 

Considering the fact that the Jacobian matrix A has an unstable eigenvector, eu, related to eigenvalue λu, and also a 
stable eigenvector, es, related to eigenvalue λs, defining the local direction of unstable and stable manifolds, 
respectively. Then, a contravariant basis, fu and fs, is defined such that: 

 
lmml fe δ= , (3) 

  
where δlm is the Kronecker delta. The stabilization of the orbit is performed forcing ξi+1 to fall on the local stable 
manifold of the fixed point, which is represented by the condition: 
 

01 =+iuf δξ . (4) 
 
Applying Eq. (2) in Eq. (4) and using the fact that the Jacobian matrix can be written as A = λu eu fu + λs es fs, the 

following condition can be written: 
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Then, solving Eq. (5) for δpi yields: 
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which is the desired control law. Such control is activated if the resulting change in the parameter δpi is less than the 
maximal disturbance allowed, δpmax. 

In order to overcome some limitations of the original OGY formulation such as control of orbits with large 
instability, measured by unstable eigenvalues, and orbits of high period, Hübinger et al. (1994) introduced the so called 
semi-continuous control (SCC) method or local control method, which is described in the following section. 
 
3.1. Semi-Continuous Control Method 
 

The semi-continuous control (SCC) method lies between the continuous and the discrete time control because one 
can introduce as many intermediate Poincaré sections, viewed as control stations, as it is necessary to achieve 
stabilization of a desirable UPO. Therefore, the SCC method is based on measuring transition maps of the system. 
These maps relate the state of the system in one Poincaré section to the next section. 

In order to use N control stations per forcing period T, one introduces N equally spaced successive Poincaré 
sections )1(,...,0, −= NnnΣ . Let  be the intersections of the UPO with n

n
F Σξ ∈ nΣ and )1,( +nnF be the mapping from 

one control station nΣ to the next one 1+nΣ . Here, the superscript n is used instead of the subscript i of the previous 
section, to differentiate both methods.  Hence, one considers the map 
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As in the OGY method one uses a linear approximation of )1,( +nnF around and : n
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Hübinger et al. (1994) state the possibility of the eigenvalues of be complex numbers and then they use the fact 
that the linear mapping deforms a sphere around  into an ellipsoid around . Therefore, a singular value 
decomposition (SVD),  
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is employed in order to determine the directions and in n
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sv nΣ which are mapped onto the largest, , and 

shortest, , semi-axis of the ellipsoid in 
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Korte et al. (1995) state the control target as being the adjustment of such that on the map n+1 the direction 

is obtained, resulting in a maximal shrinking on map n+2. Therefore, it demands ,  where 
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Hence, from Eq.8 one has that 
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which is a relation from what α and  can be conveniently chosen. As in the OGY method, all parameters can be 
extracted from a time series analysis and one must monitor the system dynamics until the neighborhood of any fixed 
point is reached to make the necessary changes in the control parameter. 

npδ

In the next section, a nonlinear pendulum is analyzed applying the CR method to search for UPO as described in 
Section 2 and the SCC-OGY method to perform control of this mechanical device.  
 
4. Nonlinear Pendulum 

 
In this article, a nonlinear pendulum is considered as a mechanical application of the general procedure to control 

chaos. The motivation of the proposed pendulum is an experimental set up, previously analyzed by Franca & Savi 
(2001) and Pinto & Savi (2003). In this section, it is presented the mathematical model of a nonlinear pendulum and the 
corresponding parameters. Numerical simulations of such model are employed in order to obtain time series related to 
the pendulum response. Systems’ parameters are experimentally obtained from an experimental setup. Finally, some 
unstable periodic orbits are identified and their control simulated.  

It is considered the pendulum shown in Figure (1a), which consists of an aluminum disc (1) with a lumped mass (2) 
that is connected to a rotary motion sensor (4). A magnetic device (3) provides an adjustable dissipation of energy. A 
string-spring device (6) provides torsional stiffness to the pendulum and an electric motor (7) excites the pendulum via 
the string-spring device. An actuator (5) provides the necessary perturbations to stabilize this system by properly 
changing the string length. 

 

 
 

Figure 1. Nonlinear pendulum. (a) Physical Model. (1) Aluminum disc; (2) Lumped mass; (3) Magnetic damping 
device; (4) Rotary Motion Sensor; (5) Actuator; (6) String-spring device; (7) Electric motor. (b) Parameters 
and forces on the aluminum disc. (c) Parameters from driving device. 

 
In order to describe the dynamics of this apparatus, a mathematical model is proposed considering Fig.(1).  Let F1 

and F2 be the forces exerted on the rotating masses and given by: 
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where ϖ is the forcing frequency, a defines the position of the guide of the string with respect to the motor, b is the 
length of the excitation arm of the motor, D is the diameter of the aluminum disc and d is the diameter of the driving 
pulley. The ∆l parameter is the length variation in the string provided by the linear actuator (8) shown in Fig. (1a). This 
parameter is considered as the variation on the accessible parameter for control purposes, being equivalent to in Eq. 
(10).  Therefore,  the equation of motion of pendulum is given by: 
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where I is the inertia of the aluminum disc plus lumped mass, m is the lumped mass and ζ is the viscous dissipation 
parameter. The pendulum dynamics can also be written: 
 













−−−−−++





















−−
=









)sin(
2

])()cos(2[
2

0

2

10
22

2
φ∆ϖφ

φ
ζ

φ
φ

I
mgDlbatabba

I
kd

II
kd &&&

&
 (14) 

 
In order to determine numerical values for parameters in Eq.(13), it is considered the same setup of Franca & Savi 

(2001) and Pinto & Savi (2003), presented in Fig. (2).  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Experimental apparatus of the nonlinear pendulum: (1) Disc with concentrated mass; (2) Magnetic damping 

device; (3) Rotary motion sensor: PASCO CI-6538; (4) Springs; (5) DC Motor: PASCO ME-8750; (6) 
Magnetic transducer: TEKTRONIX; (7) Science workshop interface: PASCO CI-6760. 

 
In this setup, the motor (5), PASCO ME-8750, has the following characteristics: 12V DC, 0.3-3Hz and 0-0.3A. The 

signal measurement is done with the aid of two transducers: a rotary motion sensor (3), PASCO encoder CI-6538, 
which has 1440 orifices and a precision of 0.250 and a magnetic transducer (6), employed to generate a frequency signal 
associated with the angular phase of the motor, which is used to construct the Poincaré map of the signal. The apparatus 
is connected with an A/D interface (7), Science Workshop Interface 500 (CI-6760) where the sampling frequency varies 
from 2Hz to 20kHz. The interface samples the signal 8 times for frequencies below 100Hz and a single time for higher 
sampling rates. Furthermore, this interface does not have any anti-aliasing filters. A 0-18V variable output AC-DC 
adapter provides power supply. Table (1) shows the parameters of Eq.(14) that were measured on the experimental 
setup and adopted here. 
 
Table. 1 – Experimental values of parameters. 
 

Parameter a (m) b (m) d (m) D (m) I (kgm4) k (N/m) m (kg) 
Value 1.6 x 10-2 6.0 x 10-2 2.9 x 10-2 9.2 x 10-2 1.876 x 10-4 4.736 1.6 x 10-2 

 



Values of the adjustable parameters ϖ and ζ were tuned to generate chaotic behavior in agreement to the 
experimental work done by Franca & Savi (2001). The ∆l parameter has a null value for the system without control 
action.  Hence, these parameters are as shown in Tab. (2). 

 
Table. 2 –Values of adjustable parameters. 
 

Parameter ϖ  (rad/s) ζ (kg.m2/s) ∆l (m) 
Value 5.15 5.575 x 10-5 0 

 
After applying these parameters in the model described by Eq. (14), that is without control action, a fourth-order 

Runge-Kutta scheme with time step equal to ( )100/2 ϖπ was employed to perform numerical simulations. From such 
data, it can be confirmed that the system presents a chaotic motion. Lyapunov exponents, calculated by the algorithm 
proposed by Wolf et al. (1985), assure this conclusion showing one positive value: λ = {+18.73, −5.64}. Figure (3) 
shows temporal evolution, phase space and a strange attractor on the Poincaré section. 

 

 
(a) (b) (c) 

 
Figure 3. Chaotic motion. (a) Temporal evolution in 90 seconds. (b) Phase space. (c) Strange attractor. 
 

As pointed out in Section 2, the first stage of the control strategy is the identification of UPOs embedded in the 
chaotic attractor. The close-return method (Auerbach et al., 1987) is employed after dividing the coordinates φ  and  
by a factor 9 and 18, respectively. The value of the tolerance r

φ&

1 is  chosen to be 0.003 and r2 is set to be ten times r1. 
Table (3) shows the number of UPOs found up to period-15. 
 
Table 3. Unstable periodic orbits up to period 15 found. 

 
Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

UPOs found - 1 7 1 - 3 5 3 1 2 6 6 1 4 5 
 

Figure (4) presents a strange attractor of the motion showing points in the surface of section corresponding to the 
UPOs to be stabilized. The SCC method is applied considering three intermediate sections (named intermediate 
Poincaré section #2, #3, #4) (Fig. (5)). Therefore, a total of four maps per forcing period are considered.   

 
 

Figure 4. Strange attractor showing UPO. 



 
 
Figure 5. Strange attractor in intermediate sections showing UPO. 
 

After the identification of the UPOs embedded in the Poincaré section #1, the piercing of the same UPOs in the 
other three Poincaré sections is determined. Then, the local dynamics expressed by the Jacobian matrix and the vector 
sensitivity of the transition maps in a neighborhood of the fixed points are determined using the least−square fit method 
(Auerbach et al., 1987 and Otani & Jones, 1997). After that, the SVD technique is employed for determining the stable 
and unstable directions near the next fixed point. The sensitivity vectors are determined allowing the trajectories to 
come close to a fixed point and then one perturbs the parameters by the maximum allowable value. In this case, a 
perturbation in l∆ of  is performed, fitting the resulting deviations [  from the next 
piercing by the least square procedure. After that, SCC method is employed to stabilize unstable periodic orbits and the 
parameter changes are calculated from Eq. (10). 

mx 2102 −± lAl nnn ∆δξ∆δξ /])(1 −+

In order to explore the possibilities of alternating the stabilized orbits with small changes in the control parameter 
we perform a simulation that aims the stabilization of a period−3 UPO in the first 500 forcing periods, of a period−8 
UPO between 500 and 1000 forcing periods, of a period−2 UPO between 1000 and 1500 forcing periods and of a 
period−3 UPO, different from the first one, between 1500 and 2000 forcing periods. Figure (6) shows the system’s 
dynamics in the Poincaré section #1 during the actuation.  

 

(a) (b) 
 
Figure 6. Response under control. (a) Temporal alternating of UPOs in Poincaré section #1. (b) Control signal. 
 

It is important to note the different times needed for the system to achieve the desired stabilization on a particular 
UPO. This happens because one must wait until the trajectory comes close enough to a control point to perform the 
necessary perturbation. It should be pointed out that, as expected, results show that unstable orbits are stabilized with 
small variations of control parameter, less than 2mm in this case.  

More details on the orbits stabilized due to SCC method are presented in Figures (7-10). In all cases, as the target 
orbit changes, one notes short transients on the temporal evolution of ∆l followed by tiny periodic perturbations, as well 
as good results regarding to keeping the system in the desired orbit.    

 
 
 
 
 



 
 

 
 

Figure 7. UPO period−3 stabilized. 
 
 

 
 
Figure 8. UPO period−8 stabilized. 
 
 

 
 

Figure 9. UPO period−2 stabilized. 
 
 

  
 
Figure 10. UPO period−3 stabilized. 



5. Conclusions 
 

This contribution discusses the control of chaos in signals obtained from a nonlinear pendulum, based on an 
experimental apparatus previously analyzed by Franca & Savi (2001) and Pinto & Savi (2003). All signals are 
generated by numerical integration of the equations of motion, but the parameters used were experimentally evaluated. 
In the first stage of the control process, the close-return method is employed to identify unstable periodic orbits. After 
that, a variation of the OGY technique, the semi-continuous control method, is considered to stabilize desirable unstable 
orbits. Moreover, least-square fit method is employed to estimate Jacobian matrixes and sensitivity vectors. Singular 
value decomposition is employed to estimate directions of unstable and stable manifolds in the vicinity of control 
points. The general procedure here discussed is applied to a chaotic signal of a nonlinear pendulum. After identification 
of unstable orbits, some of them are stabilized by the proposed techniques. Results confirm the possibility of using such 
approach to control chaotic behavior in mechanical systems.  
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