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Abstract. This paper presents a methodology to detect and locate faults in rotor shafts. The damage presence diminishes the stiffiness of
the rotor then the vibrational behaviour is altered. The fault identification is dealt as an engineering inverse problem and the fault
parameters (position, severity, length) are the system inputs to be found. A functional formed by the difference between the dynamic
characteristics of the system and the model is minimized for identification purposes. Genetic algorithms were chosen to perform the
optimisation task. Results of computational simulation show a good correlation between simulated  fault parameters and identified ones.
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1. Introduction

Nowadays The modern design of rotating machinery increases the use of composite materials and new alloys in various
machine components. These materials  permit rotating machinery to attain high operation speeds. However, such materials
are susceptible to the appearance of fault. These faults lead to a loss of mechanical properties of the materials reducing
fatigue life, which can cause the machine to fail or to the malfunction of its components.

A sudden failure in rotating machinery can cause great economic loss, inconvenience to users and even loss of human
lives. To avoid such problems it is necessary to develop a methodology to detect the faults at their early stages. The trend of
increasing the use of thermal plants for energy generation in Brazil is a factor that reinforces the necessity of the national
industry to develop fault detection techniques.

In the mid-seventies a great number of publications about rotors containing faults (most transverse cracks) have been
published. According to Muszynka (1982), at least 28  rotor failure faults that can be attributed to shaft crack, occurred
during the period 1972 to 1982 in the North-American utility industry. Several researchers propose mathematical models to
represent  rotors with cracks: Gasch (1976), Henry and Okae-Avae (1976) and Mayes and Davies (1976). Nelson and
Nataraj (1986) use the F.E.M. ( Finite Element Method) to represent more realistic complex industrial rotors. Cheng and Ku
(1991) simulate the dynamic behaviour of a damaged rotor, regarding the fault as a source of energy reduction. This
reduction entails modification in the element stiffness matrix.

The opening and closing  crack mechanism due to the shaft rotation is known as “breathing”. The breathing
phenomenon introduces non-linearities in the  rotor properties and alters the shaft stiffness periodically with its rotation.
Nelson and Nataraj (1986) use truncate Fourier series to represent mathematically the crack open/close mechanism.
Bachschmid and Tanzi (2001) propose that the breathing mechanism and the vibratory motion of the cracked rotor are
influenced by thermal stress, that can appear during thermal transients when  machine operation conditions chance. The
breathing phenomena will not be discussed in the present work.

The purpose of this work is to evaluate the changes in the dynamic properties of flexible rotors (natural frequencies,
eigen-modes, critical speeds and unbalance response)  due to the presence of faults in the shaft. The fault is characterized by
three parameters: severity (related with  fault depth), position along the shaft, and length.

The identification of the fault parameters is based on Genetic Algorithm techniques. The functional to be minimized is
composed by the difference between the dynamic characteristics of the system and those from a F.E.M. model. The fault
parameters are the design variables to be obtained through the optimization program. Genetic Algorithms were used in the
present work due their robustness in solving inverse-problems in engineering.

2. Theoretical Background

2.1. Equations of Motions

Flexible rotors are dynamical systems whose models are composed typically by elements such as flexible shafts, rigid
discs and bearings. The equation that describes the motion of the rotor can be obtained by applying Lagrange’s equation,
Eq.(1), to energy expressions calculated for the rotor elements. More detailed information about  the rotor equations of
motion can be found in Lalanne and Ferraris (1998).
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where qi are generalized independent coordinates, Fqi are generalized forces and T and U are the kinetic and strain energy
components, respectively.

The disc elements are assumed as being rigid and have only kinetic energy. Shaft elements are elastic systems having
both kinetic and strain energy. The shaft finite element is shown in Fig.(1): the element has 2 nodes, each node has 4
degrees of freedom namely, 2 translations (u, v), and 2 rotations (�, �).
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Figure 1. Degrees of freedom of shaft finite element.

The degrees of freedom of the shaft element can be arranged into two different vectors, �u (displacement along X
direction) and �w (displacement along Z direction), Eq.(2) and Eq. (3), respectively.

� �T2211, ψ,u,ψ,uδu �            (2)

� �T2211 θ,w,θ,wδw �

                    (3)
 The displacements u and w can be approximated by:

� �δuyNu 1�           (4)

� �δwyNw 2�           (5)

where N1(y) and N2(y) are cubic shape functions for a bending beam. The relations between displacements and slopes are:
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The kinetic (TS) and strain (US) energies of a shaft element are given by the following expressions:
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where I is the area moment of inertia of the shaft cross section, S is the cross section area, � is the density and L is the
element length. Substituting displacement equations and their derivates into Eq.(8) and Eq.(9) and using the Lagrange’s
equations in the resulting equations, one obtains the classical mass (M), the secondary mass (MS), the gyroscopic (C) and
the stiffness (K) matrices of shaft elements (Lalanne and Ferraris (1998)) .

2.2. Fault model

The crack diminishes the area moment of inertia of the rotor cross section in which the fault is localized. Therefore,
shaft stiffness decreases and the rotor vibratory pattern alters. The area moments of inertia about X axis (IX) and Z axis (IZ)
change from a maximum to minimum value during a rotation cycle, depending on the angular position of the fault. This
behaviour introduces non-linearity in the cracked rotor.

A simplified fault model considers an average value of the area moment of inertia of the damaged cross section along a
rotation cycle (Id). Id is related to the no faulty area moment of inertia, I, by using a parameter �, Eq.(10), where � represents
damage severity. Deeper cracks generate smaller values to �.

IξId �         (10)

This model considers that the shaft possesses a localized damaged region and, for that region, the deterioration is
assumed to be uniform per unit length and distributed in such a way that no shift in the line of action of the resultant force
occurs, Cheng and Ku (1991). Then, the corresponding damaged finite element has less capacity to store strain energy with
respect to an undamaged element.  The damaged element is considered to have a length Ld, which is supposed to be as small
as possible in order to represent a realistic fault. As the fault is localized at an arbitrary location along the shaft, its location
is associated with the position of the damaged element (p) along the shaft. Thus, three parameters are used to characterize
the fault. This way, a vector of design variables, Vp, can be formed for optimization purposes, as given by Eq.(11):

� �dp L,p,ξV �         (11)

3. Fault identification using optimization methods

Usual methods to identify faults in structures, such as ultrasonic, infrared radiation, magnetic particles, are not effective
in dealing with rotors due the existence of high noise levels found in industrial plants. Moreover, the necessity to stop the
plant to conduct the tests is a time-consuming operation and causes economic losses. As vibration patterns reflect changes in
mechanical properties of a structure, they can be used to identify and localize damage.

     

Figure 2. Scheme of inverse problem solution.

The determination of physical parameters of structures by using system output signals (vibration signals in the present
case) is treated in engineering as an inverse problem, He et all (2001).  The solution of the inverse problem demands two
principal components: a simulation F.E.M. rotordynamic analysis program and a non-linear optimization code. Figure (2)
illustrates the scheme of an inverse problem solution by using genetic algorithms in the optimizer.

The identification process is written as an optimization problem in which the minimization of a functional formed by
the difference between the dynamic characteristics of the real system and  the dynamic characteristics of the F.E.M. model.
At the end of the process it is reasonable to expect that the functional will be minimized (global minimum) and the design
variable values are such that they correspond to the fault parameters of the real mechanical system.
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3.1. Genetic algorithms

Classical optimization techniques present good performance in dealing with well defined objective functions, in which
the gradient is easily obtained all over the design variable domain. However, it is well known that classical methods fail in
solving most inverse problems founds in dynamics. Moreover, classical optimization techniques can not deal with local
minima that also are prone to appear in such kind of task. Genetic Algorithm techniques have the advantage of not using
gradient information and they are not influenced by local minima.

Genetic algorithms are probabilistic search algorithms that imitate natural selection processes and genetics. An initial
population of individuals (solutions) is randomly created. Each individual in this initial population is evaluated and,
according to its fitness, survives or is eliminated. The chosen ones are copied to perform genetic manipulations, according
to crossover and mutation. Again, the “best” individuals are chosen and the process is repeated until a convergence criterion
is achieved, Michalewicz (1994). The scheme of a simple genetic algorithm is shown in Fig.(3).

Two classes of Genetic Algorithms can be implemented. Both of them follow the same sequence of modeling genetic
recombination and natural selection. The first represents parameters as an encoded binary string and the other works directly
with continuos parameters (floating numbers), Haupt and Haupt (1998). Figure (4) shows a chromosome individual
representation using binary encoding.

Figure 3. Simple genetic algorithm flowchart.

3.1.1. Genetic operators

In the following, the most important genetic operators are briefly described.
Selection: The selection of individuals that will be copied into the next generation is done in the way that higher fitness
individuals have their survival chances increased. There are several  selection processes: roulette wheel and its extensions,
scaling techniques, tournament, elitist models, and ranking methods, according to Goldberg (1989) and Michalewicz (1994).
Crossover: During this operation two new individuals are generated by the changing of genetic material between two
individuals that are randomly chosen, Fig.(5). Parents are eliminated from the population in such a way that the number of
individuals remains constant.
Mutation: Mutation process alters a small allele quantity of the entire population. Mutation tries to hold genetic diversity
among the individuals and avoids fast convergence.
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Figure 4. Representation of an individual in binary code.

Figure 5. Binary crossover.

4. Dynamic response of cracked rotors

The dynamic behaviour of cracked rotors was studied by analyzing the influence of the three fault parameters (severity,
location , length) on the rotor response. Four dynamic features were analyzed, aiming at obtaining meaningful information
about fault influence: whirl speed, vibration modes, unbalance response and critical speeds. The dynamic response of a
vertical rotor model, composed by a 10 mm diameter shaft, three discs and two support bearings localized at the ends, as
shown in Fig.(6). The physical properties of the discs are presented in Tab.(1) and the bearing properties are shown in
Tab.(2). To simulate the dynamic behaviour of the rotor-bearing system, the program MONOROTOR was used (developed
at INSA Lyon-France).

Table 1. Physical properties of discs.

Disc Mass(Kg) Moment of

Inertia (Kg m2)

Polar Moment of

Inertia (Kg m2)

External

Diameter (m)

Thickness (m)

Inferior 0.963 0.0008 0.0017 0.12 0.011

Central 1.51 0.0021 0.0043 0.15 0.011

Superior 0.784 0.0004 0.0008 0.09 0.016

genes

1 1 0 1 0 0 1 1 1 0 0 0 0 11 0 0

1 0 0 0 0 1 1 0 1 1 1 0 1 10 0 1

1 1 0 1 0 0 1 1 1 0 1 0 1 10 0 1

1 0 0 0 0 1 1 0 1 1 0 0 0 11 0 0

Parentes

Offspring

Position chosen randomly



Table 2 . Physical properties of bearings.

Bearing Kxx (N/m) Kzz (N/m)

Lower 18,774 18,774

Upper 24,774 24,774

Figure 6. Vertical rotor F.E.M. model.

The influence of fault severity in whirl speeds is shown in Fig.(7). It is observed that more severe faults causes greater
reductions in whirl speeds, as it was expected. Figure (8) shows the influence of damage location in whirl speeds. It can be
observed that the fault localized at the 10th finite element (see Fig.(6)) leads to greater changes than faults localized in
another position. It is worth to mention that this position corresponds to the maximum displacement point for the third
mode.  The fault does not affect significantly the rotor vibration modes, Fig.(9), however the modes determine which whirl
speed will be the most affected by damage. Table (3) shows the results for the third critical speed of the rotor. The position
p = 10 is the one that  most alters the critical speeds in the present example. More detailed analysis about the influence of
fault parameters in the  rotor dynamic behaviour can be found in Simões (2002).

Table 3. Third critical speed.

Critical speed (Hz)
Damage locationDamage severity (�)

p = 5 p = 10 p = 12
0.5 49.02 48.18 48.84
0.8 49.31 49.09 49.29
1 49.41
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Figure 7. Whirl speeds of the cracked rotor, p = 10; Ld = 0.01 m.
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5. Simulation results.

A set of files containing the dynamic characteristic of the rotor was obtained by using MONOROTOR program. The
fault parameters were previously established in such a way that the corresponding results play the role of the real system.
The code GAOT version 5 (The Genetic Algorithm Optimization Toolbox for Matlab 5) was used for optimization (this
software was developed in the College of Engineering  - North Carolina State University – USA).

The fault parameters (vector Vp - Eq.(11)) are optimized by coupling the program MONOROTOR with the code
GAOT. For this purpose, it is necessary to define lower and upper bounds to the design variables, write the objective
function to be minimized, define the initial population and its size, and fix the number of generations. As the optimization
code was designed to maximize a fitness function, the negative of that function is set. The fitness function is given by
Eq.(12):
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where �S are vectors corresponding to the first six whirl speeds of the “real” system, SS correspond to the first six modes, dS

is the vector that contains the unbalance response of the system and VcS are the first three critical speeds. The vectors �m,
Sm, dm and the value Vcm represent the same dynamic quantities as above, for the mathematical model. wj

q, wj
r, wj

S e wt are
weight coefficients used in the multi-objective function. Finally, in Eq.(12) n corresponds to the discretization used in the
determination of the whirl speeds, l is the number of nodes in the F.E.M. mesh and k is the number of unbalance responses
calculated.

The simulation results obtained for the rotor presented in Fig.(6) are shown in Tab.(4). The size of the initial population
was 1000 individuals and the number of generation was fixed to 15. The average calculation time was 3 hours, running in a
PC-Athlom 1200 MHz computer. The situation in which two simultaneous faults are considered together along the rotor
was also analyzed, as shown in Tab.(5). In that case, the size of the initial population remained the same as before.



Table 4. Simulation results (one fault along the rotor).

“Real” parameter Identified parameter
Simulation � p Ld(m) � p Ld(m) Objective function

1 0.5 6 0.02 0.45 6 0.017 0.0756
2 0.5 13 0.02 0.423 13 0.015 0.0918
3 0.5 17 0.02 0.542 17 0.024 0.0857
4 0.8 4 0.02 0.836 4 0.026 0.089
5 0.8 11 0.02 0.894 11 0.04 0.077
6 0.8 11 0.02 0.894 11 0.017 0.077
7 0.5 5 0.002 0.51 5 0.0021 6.5*10-5

8 0.5 10 0.002 0.55 10 0.0025 1.1*10-4

Table 5. Simulation results (two simultaneous faults along the rotor).

Fault parameters

Fault 1 Fault 2Simulation

� p Ld(m) � p Ld(m)

Objective

function

Real parameters 0.5 6 0.003 0.8 12 0.003
1

Identified parameters 0.53 6 0.0035 0.82 12 0.0034
1.7*10-4

Real parameters 0.5 5 0.003 0.8 10 0.003
2

Identified parameters 0.7 5 0.006 0.78 10 0.0035
0.004

Real parameters 0.5 5 0.005 0.5 13 0.005
3

Identified parameters 0.64 5 0.0035 0.5 13 0.0044
0.0058

The fault location along the shaft was the parameter that was estimated with better accuracy, followed by  the fault
severity, and finally the fault length, as shown in the Tab.(4) and Tab.(5). This was expected because fault location is the
parameter that most influences the dynamical behaviour of the system, as shown in the results of section 4. The
identification of two simultaneous faults is a harder task, duplicating the  number of parameters required by the optimization
process.

6. Conclusions

The analysis of the dynamic behaviour of cracked rotors showed that fault location is the most sensitive parameter,
followed by fault severity and fault length, Fig.(8). Only severe faults introduce considerable changes in the vibratory
behaviour of the rotor, Tab.(3) and Fig.(7). This aspect justifies difficulties that appear in fault identification procedures.
Whirl speeds are more sensitive to damage than mode shapes, Fig.(7), Fig.(8) and Fig.(9). Identified fault parameters
presented good agreement, (mainly fault location, with respect to real parameters, as shown in Tab.(4) and Tab.(5). Future
work shall include non-linear fault behaviour in the rotor model in order to represent more realistic situations.
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