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Abstract. A domain must be decomposed in sufficiently small elements to attain the desired accuracy in a numerical solution of 
partial differential equations that simulate a physical problem. In this work an unstructured mesh of triangular three nodes elements 
is generated automatically by a computer code that uses the Delaunay algorithm. To generate the first mesh, a set of points is 
distributed in the domain internal region according to user specified local mesh density parameter. To improve the iterative solution 
convergence rate of the algebraic equations system, a Delaunay algorithm is used to found the set of three vertices (mesh nodes) of 
each triangle maximizing the smallest internal angle of all mesh elements. In the triangular mesh obtained with the Delaunay 
algorithm, the circle whose circumference contains the triangle vertices is void, that is, no another mesh node is inside this circle. 
When the application of the mesh refinement error estimator over obtained results is higher than an user specified value, additional 
points are inserted in the more critical regions. The meshes obtained by this procedure are regular with nearly six triangle 
connected to each node and improve the overall numerical solution process.  
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1. Introduction  
 

With the rapid development of numerical techniques for the engineering problems solution, there was an increasing 
demand for the automatic generation of computational meshes in the past few decades. In this context, the finite 
element method has emerged as one method for the solution of mathematical physics complex problems. 

The computational mesh generation can be defined as the subdivision process of physical domain in smaller sub-
domain, with the purpose to make easier the interpolation function inside each element and reduce the error in the 
numerical solution of the differential equation. 

The importance of numerical solution technique is increasing in the design, simulations and analysis of complex 
problem of engineering, mainly in automotive and aerospace areas. Thus, the improvements in the robustness, velocity 
and quality of automatic mesh generator become of great importance in the process of dissemination of computational 
methods. 

In the finite element method, the original domain can be subdivided in simple geometric forms (elements), such as: 
triangle and/or quadrilaterals to two-dimensional or tetrahedra, hexahedra and pentahedra to three-dimensional 
problems. Algorithms of the automatic mesh generation process may define the distribution and shape of the elements. 

The problem of mesh generation is a delicate process, because consist in the determination of the number of nodes 
and their locations and elements (groups of nodes), with variables sizes and shapes that result in a better description of 
original geometric domain, but without committing the convergence of the numerical solution (Canann et al., 2000). 

In the structured mesh each node pertains to a fixed number of elements or there are a fixed number of 
neighborhood nodes to each mesh node. However, in the unstructured mesh the number of elements that contains a 
mesh node is variable, thus there are a variable number of neighborhood nodes to each mesh node. 

One of the first and well-succeeded attempts to generate finite element mesh with some degree of automation and 
mathematical consistency was due to Zienkiewicz and Phillips (1971).  

The methods to construct unstructured mesh are frequently based upon geometrical ideas. There are several 
methods available such as Voronoi diagrams and Delaunay triangulation, advancing front technique and octree / 
quadtree. A survey of fundamental geometric data structure of the Voronoi diagrams and Delaunay triangulation is 
presented by Aurenhammer (1991). Their work demonstrates the importance and usefulness of the Voronoi diagram in 
a wide variety of fields inside and outside computer science and surveys the history of its development.  

Mavriplis (1992) developed an algorithm for generating an unstructured mesh in an arbitrary two-dimensional 
configuration. That article combines the mathematical feature of Delaunay triangulation algorithm with the desirable 
point placement feature, boundary integrity, and robustness of the advancing-front-type mesh generation strategies. 

In 1993, Rebay published a work that describes an unstructured mesh generation method entirely based on the 
Delaunay Triangulation. Rebay (1993) used the Bowyer-Watson algorithm to generate non-uniform mesh in domain of 
arbitrary shape. The method shown is computationally efficient and applicable both to two and three dimensions. 

Rourke (1994) describes the construction of the Voronoi Diagrams with some definitions and basic properties. 
Their book presents the code to construct the dual of the Voronoi sites (Delaunay Triangulation). 

Subramanian et al. (1995) developed an algorithm for two and three-dimensional automatic structured mesh 
generation. The algorithm was designed utilizing the scheme suggested by Zienkiewicz and Phillips (1971). Several 
examples are presented illustrating the effectiveness of the algorithm.  
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A new method for construction the Delaunay triangle computing the angles of points with respect to a baseline in a 
region instead of checking the empty circumcircle was proposed by Du (1996). Several examples and applications were 
included in his paper to demonstrate the efficiency of the algorithm for automatic Delaunay triangulation of arbitrary 
planar domains.  

At this context, the present study shows the results of a computer code used to generate automatic unstructured 
mesh of triangular three nodes elements applying the Delaunay triangulation method coupled to the quadtree technique. 
Some examples are presented illustrating the performance of the used algorithm. A conduction heat transfer problem is 
solved to show the code mesh generation capability in an irregular domain. 

 
2. Solution methodology: Galerkin finite element  

 
At the present study, the Galerkin finite element method with automatic mesh generation was employed to obtain 

the solution of a conduction heat transfer problem. The finite element technique considers an approximated solution to 
a differential operator 0f)(L =−φ , where f is the source-term. The approximated solution can be build with a linear 
sum of a finite set of basis functions as: 
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Here “K” is the number of nodes in domain eeΩ=Ω U (union of the sub-domain of each element “e”), Wi is the 

basis functions or the global interpolation function that carry on the influence of the value of φ  at node “i” over the 
domain. This approximated solution results in a residual that is calculated as: 
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In the Galerkin Weighted Residual Method (Huang and Usmani, 1994), the nodal values iφ  are calculated by the 

algebraic equations system obtained when the residual is minimized, that is, or when each scalar product of the residual 
(ℜ ) with the basis functions (Wi) is reduced to zero as: 
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The global function (Wi) depends only of space coordinates and is defined inside each element “e” that has node “i” 

as one vertices by the elemental interpolation function e
iW . The e

iW  functions have the following properties:  
(a) they are zero out of the element “e”;  
(b) they assume unitary value in the node “i” and 
(c) they assume null value in another node of element “e”. 
The global function Wi is obtained supposing that inside each element that contain the node “i” the function Wi is 

equal the e
iW : 

 

U e
ii wW = for all “e” elements that contains node “i”  (4) 

 
In the discretization of domain eeΩ=Ω U  a set of three nodes triangular elements will be used (Fig. 1).  
 

 
Figure 1. A two-dimensional domain discretized with triangular element.  



A two-dimensional conduction heat transfer problem with constant properties can be represented by: 
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where k is the thermal conductivity; T is the temperature field and Q is the volumetric heat generation rate. 
 
Applying the Galerkin Weighted Residual Method (described in the previous section) and the Green Theorem to 

reduce the order of derivatives in diffusive term of the heat conduction differential equation (Eq. 5) the following 
equation is obtained: 
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Here T~  represents the temperature field approximation inside element “e”. 
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where Se indicate the surface of element “e” that has intersection with the boundary of domain Ω  and “q” is the Se 
normal component of heat flux vector, e

iT  is the temperature at each node of the element “e”, P is number of nodes of 
element “e” and M is the total number of elements in Ω domain. 

 
3. Automatic mesh generation  

 
Several techniques for unstructured mesh generation were proposed in the past years. The problems of unstructured 

mesh generation is largely one of designing an algorithm that is automatic, robust, and yield suitable elements shapes 
and distributions for the flow and heat transfer solver. In Mavriplis (1997) a survey of techniques for generation of 
unstructured mesh is presented, such as: advancing-front technique, Delaunay triangulation, edge and face swapping 
technique, quad/octree-based methods, stretched mesh generation, mixed-element meshes. Of the techniques presented 
in Mavriplis (1997) two are suitable for unstructured mesh generation: the advancing-front method, and Delaunay-
based approaches. While the advancing-front method is somewhat heuristic in nature, Delaunay-based methods are 
firmly rooted in computational geometry principles. 

This paper solves numerically the conduction heat transfer problem (Eq. 5) and presents a description of a computer 
program that uses the quadtree technique to insert inner nodes within a 2D domain and the Delaunay triangulation to 
connect the nodes for each triangular element. 

 
3.1 Quadtree based method 

 
The quadtree is a hieraechical tree structure, which is based on the recursive subdivision of cells into four smaller of 

equal sizes (Yiu et al, 1996). 
With this method, rectangles containing the geometric model are recursively subdivided until the desired resolution 

is reached. Figure 2 shows the two-dimensional quadtree decomposition of a model. Irregular cells are then created 
where rectangles intersect the surface, often requiring a significant number of surface intersection calculations. The 
quadtree technique does not match a pre-defined surface mesh, as an advancing front or Delaunay mesh might, rather 
surface facets are formed wherever the internal quadtree structure intersects the boundary. The resulting mesh also will 
change as the orientation of the rectangles in the quadtree structure is changed and can also require. To ensure element 
sizes do not change too dramatically, a maximum difference in quadtree subdivision level between adjacent rectangles 
can be limited to one. Smoothing and cleanup operations can also be employed to improve element shapes.  

 

 
 

Figure 2. The two-dimensional quadtree decomposition of a model (Owen (2002)).  
 



3.2 Mathematical features of theVoronoi diagram and Delaunay triangulation 
 
Given a set of points in the plane, there exist many possible triangulations of these points. A Delaunay construction, 

that is the dual of the Voronoi diagram, represents a unique triangulation of these points with a large class of well-
defined properties. Some properties can be employed to construct algorithms for generating the Delaunay triangulation 
of a given set of points. 

Let }p...,,p,p{S n21=  of 3n ≥  be a set of points in the two-dimensional Euclidean plane, thus a region can be 
assigned to each points ip  in S , such that the points in this region is closer to ip  than to any other point of S . These 
n regions divide the domain into a non-overlapping convex set known as the Voronoi diagram. All those points 
assigned to ip  form the Voronoi region V(pi). Mathematically, let {pi} denote a set S  of n points, the Voronoi region 
V(pi) can be defined as: 

 
{ }ij,pppp:p)p(V jii ≠∀−≤−=  (6) 

 
Note that this defined set closed. Some points do not have a unique nearest point, or nearest neighbor. The set of all 

points that have more than one nearest neighbor form the Voronoi diagram edges for the set of pi points (dashed lines 
in Fig 3). 

 
 

Figure 3. Voronoi diagram (dashed lines) and Delaunay triangulation (solid lines) on a set of points (Du (1996)). 
 
In 1934 Delaunay (Rourke, 1994) demonstrated that when a dual graph is drawn with straight lines normal to each 

boundary of all Voronoi region, it produces a planar triangulation of the Voronoi diagram of S (if no four points are co-
circular), called the Delaunay Triangulation. To obtain the Delaunay triangulation, each par of points pi that share an 
edge of an Voronoi polygon is joined by a straight-line segment, thus resulting in a triangulation of the original n points 
set, represented in Fig. 3 by the solid lines. 

Each vertex of the Voronoi diagram is located at the point of contact of three adjacent polygons and, also, defines 
the circumcentre for a Delaunay triangle. It is thus clear this if a triangle 321 ppp∆  constructed by the straight-line 
segments connecting three pairs of points of S ({p1p2}, {p2p3} e {p3p1}) satisfies the Delaunay criterion, that is, 
circumcircle does not contain any other point of S. Therefore, these given points will form a Delaunay triangle, if and 
only if the circumcircle defined by these points contains no other points in its interior, Fig. 4.  

Delaunay triangulation has further properties (Du (1996)): 
a) Assume that p1p2 is a Delaunay edge with end points p1 and p2, and )2,1k(Spk ≠∈  lies on one side of the edge 

p1p2. Let αk=<p1pkp3 )2,1k( ≠  be the interior angle of point pk with respect to the edge p1p2, and there is a point 
3 so that α3=<p1p3p2 = max {αk, )2,1( ≠k }, where }2,1K,p{Sp k3 ≠∈ , then the triangle 321 ppp∆  is Delaunay 
satisfying (see Fig. 4). 

 

 
 

Figure 4. Verification of the Delaunay criterion. 
 



b) The nearest neighbor pj of a point pi in the plane defines a Delaunay edge pjpi (for example, points 5 and 6 in 
Fig. 5). 

 

 
 

Figure 5. Point 5 nearest neighbor point 6 in the p5p6 edge of one Delaunay triangle. 
 
c) Every edge of two adjacent points on the original boundary is a Delaunay edge (Fig. 6).  
 

5. Mesh generation program 
 
The program is divided in the following steps:  
(a) Geometric input: This section is responsible by reading of the original boundary points of S, that are input in 

a counterclockwise order from any initial boundary point (Fig. 6). When this input sequence is used, interior points are 
located to the left of all boundary edges. 

(b)  

 
 

Figure 6. Data set and its original boundary.  
 

(b) Internal point creation: A quadtree based method, Thompson et al. (1999) is used to generate points within 
the 2-D domain according to local mesh density information, which may be user defined or obtained from an error 
based adaptive analysis. The points for all domain is generate based on the given density distribution. At the first stage 
these density is imposed in an input file, where the values are defined in conformity to the necessary initial mesh 
refinement. 

 
(c) Construction of triangles: Once the boundary points are defined and the inner points are added to the data set, 

the area can be triangulated. The set of internal points generated in the above step are connected by Watson’s algorithm 
in three nodded triangles that satisfies the Delaunay criterion. Sloan and Houlsby (1984) describe an implementation of 
Watson's algorithm for computing two-dimensional Delaunay triangulations. In the present study, the code generates a 
table containing the point’s coordinates (Tab.1) and the connectivity matrix (Tab. 2).  

 
Table 1 Point’s coordinates 
 

Node Coordinate x Coordinate y

1 0.92 0.38 
2 0.73 0.23 
3 1.00 0.00 
4 0.92 -0.38 
5 0.66 -0.16 
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Table 2 Connectivity matrix 
 

Triangle Element nodes 

1 20 21 23 
2 21 24 23 
3 24 25 23 
4 16 21 20 
5 22 19 18 
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In the connectivity matrix (Tab. 2) each element is defined through 3 nodes identified by the global number whose 

coordinates are presented in the Tab. 1. 
 
6. Mesh generation results 

 
Using the Brazil’s map, several examples showing the mesh features obtained by the above-described code are 

presented in Fig. 7 to 9, where the quadtree tecnique was implemented (Yiu et al, 1996). To generate a hollow region 
with this code, the nodes should be inserted in clockwise order. A mesh for a domain with an inside hole is presented in 
Fig.9. Figure 7 presents a domain with 566 nodes and 1010 elements unstructured nearly uniform mesh. This mesh was 
obtained with only one mesh density parameter. 

 
Figure 7. Unstructured nearly uniform mesh in Brazil map. 
 

Figure 8 presents an unstructured mesh with 2223 nodes and 4156 elements. This code allows mesh refinement in 
regions according to the adaptive solver requirements or by the user (the region of more intense gradients requires a 
mesh refinement attain the precision target). Two different mesh density parameters were used: one in the central region 
and another in the map extreme north and south regions. So, the code generates a mesh with a smoother transition 
between the remaining regions. 

 
Figure 8. Top and bottom refined unstructured mesh inside the Brazil map. 



 
Figure 9 presents Brazil’s map without the Goias State, simulating a hole or cavity in the domain. This example 

uses a mesh with 2160 nodes and 4070 elements with unequal mesh refinement. 

 
 

Figure 9. Triangulation of the Brazil’s map with an internal hole. 
 
In the previous example it was defined a gradual refinement from the cavity to the external boundary. 
 

8. A two-dimensional conduction heat transfer results 
 
Again, the Brazil’s map was used to simulate the steady state two-dimensional conduction heat transfer (Eq. (5) 

with Q = 0). An arbitrary value of 100 [W / (m2 K)] was used to the thermal conductivity parameter. In the map contour 
three thermal boundary conditions were imposed: a constant temperature equal to 400 K was imposed in the A-B 
segment of the north area, a temperature equal to 300 K was specified in the C-D segment of the south area (black 
segment in Fig. 10), and an insulated thermal condition was implemented in the remaining boundaries (B-C and D-E 
segments). This case shows an unstructured mesh with 2056 nodes and 3959 elements obtained with constant density 
parameter. 
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Figure 10. A two-dimensional conduction heat transfer. 
 

The domain represented by the Brazil’s map was chosen to test the code capability to generating a mesh in a 
complex geometry domain and solving the heat conduction problem. Results presented in Fig. 10, show the heat 
diffusion mechanism features with the end of the constant-temperature contours normal to the boundary domain where 
the insulated thermal condition was imposed. Heat diffuses from the high temperature region to the lower ones, taking 
account the heat transfer area enlargement.  
 
7. Conclusions 

 
Some features of a mesh generation algorithm based on Delaunay triangulation have been reviewed and a 

description of a quadtree/Delaunay code was presented. The computational code showed that the mesh obtained has 
good characteristics for finite element numerical heat transfer application. In spite of non-regular domain boundary and 
variable refinement, the generated meshes have nearly isosceles triangles. In this code the user could control the 



location and the mesh refinement intensity. Using an unstructured mesh mapping an irregular domain, the code showed 
a good performance to solve a conduction heat transfer problem.  
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