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Abstract. There are several methods that can be used for automatic fault detection in mechanical plants, such as, neural network, 
RMS level alarms and fuzzy system, among others. The fuzzy inference system has some advantages when compared with others 
methods the main of these advantages being the possibility of working with many different types of industrial plant fault 
characteristics and of being implemented in a user-friendly way. On the order the repetitive and exhaustive work required from an 
expert in maintenance to create pertinent functions and inferences rules that describe the mechanical plant is clearly a 
disadvantage. This article deals with overcoming this problem, presenting a methodology to automatically create a fuzzy inference 
system using statistical information from an available database. Some examples of fuzzy system to detect and to classify localized 
and distributed defects in rolling bearing, generated with this methodology, are presented.  
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1. Introduction 

 
The fault diagnosing task is normally accomplished by an expert team in industrial plant. However, in an industrial 

plant where monitoring systems deliver a huge amount of information to be analysed for diagnostic purpose, the 
importance of automatic defect diagnoses in predictive maintenances is clear. This is particularly the case of rolling 
bearing health condition monitoring, since such component is widely distributed in industrial machines. 

There are several ways to automate diagnostic task. As examples, one can mention the RMS level alarm (Shin, 
1992), widely used for fault detection in industrial plants, and diagnoses system based on neural network (Li, 2000; 
Padovese, 2002). The first one is simple to implement and use, but its diagnostic reliability is weak (Vicente, 2001). 
The second can present a higher reliability, but is a black-box model, and does not allow the user of heuristic 
knowledge (Ayoubi, 1997). 

A way to overcome the black-box model limitation of neural networks is by the use of a system based on fuzzy 
logic. In this context the most employed tool is the fuzzy inference system (Tsoukalas, 1997). In the past years fuzzy 
system has been employed for failure diagnosis of rolling bearings (Liu, 1996; Mechefske, 1998; Vicente, 2001a; 
Vicente, 2001b), gear boxes (Joentgen, 1999) and industrial plants (Jeffries, 2001; Tarifa, 1997). It has also been used 
in industrial control, dynamic system models, pattern recognition, among others (Cox, 1994; Mathworks, 1995; 
Kartalopoulos, 1996; Shaw, 1999). 

In the specific case of rolling bearing fault diagnosis, fuzzy systems presented in literature have several limitations, 
such as: the use of heuristic information solely (Vicente, 2001a; Vicente, 2001b); the use of a single fault descriptor 
parameter (Liu, 1996); and the diagnostic of few types of defects (pit in outer and inner raceways and rolling element) 
(Mechefske, 1998). 

A disadvantage of fuzzy inference system is that it requires the repetitive and exhaustive work from an expert in 
maintenance to create pertinent functions and inferences rules that describe the mechanical plant (Ayoubi, 1997). This 
article proposes a methodology to overcome these difficulties by automatically creating membership functions and 
inference rules, by using statistical information from an available database. However, this methodology does not totally 
eliminate the necessity of the maintenance expert, since his knowledge is necessary to specify the best signal parameters 
that describe the diagnostic problem, as well as to verify the reliability of the diagnostic results. In order to exemplify 
this methodology some diagnostic results obtained from an automatically generated fuzzy inference system, for a 
rolling bearing fault detection problem is presented 

 
2. Fuzzy Inference System 

 
Fuzzy inference systems are based on fuzzy logic. It is possible to understand fuzzy logic by comparison with 

classic logic. While in classic logic an element must belong to either a set or its complement, in fuzzy logic this same 
element can belong to a set and its complement, depending on a membership degree. A way to represent this 
membership degree is (Tsoukalas, 1997): 
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Let A be the fuzzy set, X the universe of discourse of this set, x an element in the universe of discourse and µA the 
membership function in the interval [0,1]. In this case, 0 represents the total not-belong condition and 1 the total belong. 

A fuzzy inference system has the structure showed in Fig. (1). 
 

 
 
Figure 1 – Fuzzy Inference System structure 

 
As can be seen in Fig. (1), to describe or create a fuzzy inference system one must define several characteristics 

system. These characteristics are presented as follow: 
1. Input Parameters – numeric data which describe the studied system; 
2. (Input) Membership function – relation between the numeric value of input and its membership degree in a 

fuzzy set;  
3. (Output) Membership function – relation between a membership degree in a fuzzy set and an output numeric 

chosen value; 
4. Inference rules – IF – THEN – ELSE rules which relate input sets with output sets. These rules can be 

represented by: IF x is A AND/OR y NOT is B AND/OR... ...w is F THEN u = k ELSE IF...; 
5. System properties (for more details and options of these properties see Cox,(1994)): 

a. Logic Operators (OR/AND/NOT); 
b. Implication Operator THEN; 
c. Aggregation Operator ELSE and 
d. Defuzzification Operator. 

 
Fig. (2) presents an example of fuzzy inference system application. The purpose of this fuzzy system is to evaluate 

the amount of the tip given by a restaurant client to the staff, according to the quality of the food and services. The 
characteristics used in this example are: 

1. Input Parameters – the service and food quality grades; 
2. (Input) Membership function –  Service: Poor, Good and Excellent; Food: Rancid and Delicious; 
3. (Output) Membership function – Tip: Cheap, Average e Generous; 
4. Inference rules –  

• IF service is poor OR food is rancid THEN tip = cheap ELSE 
• IF service is good THEN tip = average ELSE 
• IF service is excellent OR food is delicious THEN tip = generous 

5. System properties – 
a. Logic Operators: OR (max. function) and AND (min. function); 
b. Implication Operator THEN (min function); 
c. Aggregation Operator ELSE (max function); 
d. Defuzzification Operator (centroid) 

 
Fuzzy inference system features are the following (Mathworks, 1995): 

• It is conceptually easy to understand; 
• It is flexible; 
• It is tolerant of imprecise data; 
• It can model systems of arbitrary complexity; 
• It can be built on top of the experience of experts; 
• It is based on natural language. 

 



 

 
 
Figure 2 – Fuzzy Inference Process Example (Mathworks, 1995). 

 
 
Moreover, others fuzzy systems advantages are: allowing the use of heuristic knowledge; analyzing and verifying 

knowledge in fuzzy system; and managing a lot of information of different natures. 
Among fuzzy system limitations we can cite (Ayoubi, 1997): 

• It works in a highly abstract and heuristic way; 
• A maintenance expert is required to determine inference rules and membership function of fuzzy system 

(relationship between input and output). 
• It does not have self-organization and self-regulation mechanisms as is the case for neural networks. 

 
Tab. (1) shows a comparison between fuzzy systems and another widely used methodology for automatic diagnosis, 

the neural networks. 
 

Table 1– Basic features of fuzzy inference systems and neural networks (Tsoukalas, 1997) 

 
Fuzzy Systems Neural Systems 

Linguistic Representation Black Box Representation 

Expert Knowledge Required Example Data or Performance Function Required 

Some Adaptation Adaptation Mechanisms Available 

Fault Tolerant Fault Tolerant 

Application-Dependent Computational Cost Rather High Computational Cost 

Multiple Descriptions Possible Multiple Descriptions Possible 
 



  

3. Automatic Generation of Fuzzy Inference System 
 
The main difficulty for creating fuzzy system is to establish the membership functions and the inference rules. In 

this paper it is proposed to accomplish these two processes automatically. Inference rules and membership functions 
statistically created by this methodology can later aggregate others rules and functions gotten heuristically. 

Although this fuzzy system creation process is being automate regarding input membership functions and inference 
rules, other characteristics, such as, output membership functions, logic operator, implication operator, etc. still need to 
be defined by user. 

 
3.1. Membership Function 

 
Firstly one defines parameters (e. g., RMS, Kurtosis, etc.) which describe the studied system and system outputs (e. 

g. normal bearing, bearing with pit, corrosion, etc.) Secondly, it is built a database composed of several conditions 
descriptors related to an output. 

Using this database, it is calculated the mean and the standard deviation of each descriptor related to an output. In 
this case, there are several descriptors associated with the same output (e. g. considering a bearing defect as an output 
and RMS as the input, there is a RMS value related to each shaft speed considered in the fuzzy system). Each descriptor 
is represented by its mean and standard deviation. 

The next step is the choice of the membership function shape (Trapezoidal, Triangular, Pi, Beta, Gaussian, etc.) 
(Cox, 1994). In this work, it was used the Beta shape of membership function (Fig. (3)). This function is described by: 
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In equation above, the Beta shape is defined by a mean (m) and dispersion (∆). The dispersion (∆) is equal to the 

standard deviation calculated in the database multiplied by a dispersion proportional factor (in this case, it was used the 
value 1 for this factor, value obtained by trial and error). 

 

0

1

u[
x]

m - ∆ m m+ ∆ 

0.5

 
 
Figure 3 –Beta’s Function Parameters 

 
Using means and standard deviations, obtained from the database, to shape the membership function previously 

defined, one generates one membership function group related to each output. We can divide this membership functions 
in groups that are related to outputs. Therefore, the number of membership functions groups is equal to the number of 
outputs. 

Therefore, the shape (type) of membership function is chosen by user but its final shape is defined by statistical 
properties (mean and standard deviation) contained in database. 

 
3.2. Inference Rules 

 
The inference rules used in the current methodology are predefined fuzzy rules. In order to present them, each 

possible output is written as Def(i), each input parameter as X(j), each membership function related to an output as 
N(i,j,k) and final result as Y(i), where: 

i=1...n (number of possible outputs); 
j=1...m (number of input parameters) and; 
k=1...p(i,j) (number of membership functions related to possible output and input parameter) 
 
The standard rules are: 
 
 



 
IF {[X(1)] is [N(i,1,1)] OR [X(1)] is [N(i,1,2)] OR ... OR [X(1)] is [N(i,1,p(i,1))]} AND {[X(2)] is [N(i,2,1)] OR [X(2)] 
is [N(i,2,2)] OR ... OR [X(2)] is [N(i,2,p(i,1))]} AND ... AND {[X(m)] is [N(i,m,1)] OR [X(m)] is [N(i,m,2)] OR ... OR 
[X(m)] is [N(i,m,p(i,1))]} THEN [Y(i)] is [Def(i)] ELIF 
 
IF {[X(1)] is [N(i+1,1,1)] OR [X(1)] is [N(i+1,1,2)] OR ... OR [X(1)] is [N(i+1,1,p(i+1,1))]} AND {[X(2)] is 
[N(i+1,2,1)] OR [X(2)] is [N(i+1,2,2)] OR ... OR [X(2)] is [N(i+1,2,p(i+1,1))]} AND ... AND {[X(m)] is [N(i+1,m,1)] 
OR [X(m)] is [N(i+1,m,2)] OR ... OR [X(m)] is [N(i+1,m,p(i+1,1))]} THEN [Y(i+1)] is [Def(i+1)] ELIF 
 
IF ... 
 
 
Figure 4 – Standard inference rules 

 
The fuzzy inference system has n (number of possible output) rules similar to the standard one, shown in Fig. (4). 
This inference rules can be interpreted as follows: if the fuzzy system input is near to a condition (e.g. bearing with 

pit, normal bearing, etc) used in the creation step then the phenomenon of this input is related to that condition. The 
measure of nearness is done comparing the input values with every centres (or means) of membership functions defined 
in fuzzy system.  The nearness value is obtained through the membership function which is related with the standard 
deviation (or dispersion) obtained from database. 

 
4. Creating Fuzzy System 

 
In this article, the procedure described above is applied to generate a fuzzy inference system which diagnoses and 

classifies defects in rolling bearings. 
Initially, a rolling bearing fault database is required. This database was built from acceleration vibration signals 

gotten from failed rolling bearings. The rolling bearings used are of FAG B015TVP type. The experimental conditions 
used are shown in Tab. (2). The faults located in inner and outer raceways are: pit, corrosion 1 (exposition of a strip of 
the race to synthetic sea water for 8 hours), corrosion 2 (idem for 24 hours) and a scratched race. 

Six different shaft speeds (400 to 1400 rpm) were employed by using motor frequency control, and 3 different 
radial loads (200, 400 and 600 N) were applied for each shaft speed. 

The vibration signals were measured in the experimental rig (Fig. (5)), using a sample rate of 5 kHz and period of 
10 seconds. For each system condition showed in Tab. (2), 20 samples were collected. 

 
Table 2 –Experimental Conditions 
 

Defect/Normal Defect Location Shaft Speed (rpm) Load (N) 
Normal  400  
Scratch  600 200 

Corrosion 1 Inner Raceway 800 400 
Corrosion 2 Outer Raceway 1000 600 

Pit  1200  
  1400  

 

 
 
Figure 5 – Experimental rig scheme 

 
In what follows, for each database vibration signal its frequency spectrum was calculate. Fig. (6) shows the used 

procedure. 
 



  

 
 
Figure 6 – Procedure for frequency spectrum calculation 

 
Fig. (7) shows a frequency spectrum obtained with this procedure. 
 

 
 
Figure 7 – Frequency spectrum example (Defect: Corrosion 1, Defect on Inner Raceway; Shaft Speed: 1400 rpm; Load: 

600 N) 
 
The spectrum amplitudes (as exemplified in Fig. (7)) were taken as the fuzzy system input parameters. Thus, 65 

parameters are used as fuzzy systems input, e.g. each point of the spectrum vector is considered a parameter. In this 
work, the first spectrum point was denominated PSD_F1, the second was denominated PSD_F2, and so on. 

Next, it was calculated the mean and standard deviation of 15 samples collected with the same experimental 
condition (in this article, we considered four experimental conditions: load, shaft speed and defect type). These values 
were used to create the input membership functions. The five others samples were used only to test the fuzzy system. A 
computer code was implemented (by using MatLab (Mathworks, 1995)) to generate (according the proposed 
methodology) and test the fuzzy system. Some of the 165 input membership functions resulting from the system 
generation (Number of Defect x Number of Load x Number of Shaft Speed) are shown in Fig. (8). In this figure, each 
graphic has a function set related to a defect (Normal, Scratches_Outer, etc). The Universe of Discourse is defined in [-
2.1,3.2]. 

 

  
 
Figure 8 – Input membership functions examples related to a parameter (PSD_F5).  
 



 
In this practical example, nine inference rules (Number of Faults), similar to rule shown in Fig. (9) are created. 
 

IF {[PSD_F1_Sample is PSD_F1_Pit_BD1] OR [PSD_F1_Sample is PSD_F1_Pit_BD2] OR ... OR [PSD_F1_Sample 
is PSD_F1_Pit_BD18]} AND {[PSD_F2_Sample is PSD_F2_Pit_BD1] OR [PSD_F2_Sample is PSD_F2_Pit_BD2] 
OR ... OR [PSD_F2_Sample is PSD_F2_Pit_BD18]} AND ... AND {[PSD_F65_Sample is PSD_F65_Pit_BD1] OR 
[PSD_F65_Sample is PSD_F65_Pit_BD2] OR ... OR [PSD_F65_Sample is PSD_F65_Pit_BD18]} THEN [Sample 
has Pit] 
 
Figure 9 – Inference rule example.  
 

In Fig. (9), PSD_F1_Pit_BD1 is the first membership function which describes the PSD_F1 parameter of defect Pit, 
PSD_F1_Pit_BD2 is the second membership function which describes the PSD_F1 parameter of the same defect, 
PSD_F2_Pit_BD3 is the third one, and so on. 

The membership functions chosen as the output ones of the fuzzy system are present in Fig. (10). It is possible to 
observe that each type of faults has a different output membership functions. The value of defuzzification output 
(graphic abscissa) obtained from this function relates a non-dimensional scale to failure intensity. In this scale the 
degree 10 is the defect used to generate the database. The only exception is the corrosion cases, where Corrosion 2 has 
higher intensity (degree 10) than Corrosion 1. 

Finally, the other system properties required are defined as fellow: 
• Logic Operators: OR (maximum function) and AND (minimum function); 
• Implication Operator THEN (minimum function); 
• Aggregation Operator ELSE (maximum function); 
• Defuzzification Operator (centroid) 

Details of these parameters and functions can be seen in Cox (1994). 
 

   
 
Figure 10 – Output membership functions of fuzzy system 
 
5. Results 

 
In order to analyse the diagnostic performances of the fuzzy system developed, two basic indexes were used: 

detection and classification indexes. The detection index express the ability of differentiating between a defected rolling 
bearing (does not caring about defect type) and a normal rolling bearing. The classification index express the ability of 
diagnose the defect type. 

The results from the tested fuzzy system are shown in Tab. (3). 
 

Table 3 – Fuzzy inference system results  
 

Index % of Hints 
Detection of Defect 90% 
Classification of Defect 62% 
 Time (s) 
Time to Create 150 s. 
Time to test (per sample) 16 s. 

 
It is important to emphasize that the objective of this work was to demonstrate the viability of the methodology and 

not to optimize the fuzzy system properties and parameters. This means that better results can be reached, if a more 
detailed study is carried out. Such study could improve diagnosis reliability of the system.  



  

The implemented fuzzy system presents a worse performance than several systems based in neural network (Li, 
2000; Padovese, 2002) where detection hints are higher than 90%. Li (2000) obtained 100% of detection and 
classification hints using MLP (Multi Layer Perceptron), but using only three classes of faults: fault in the rolling 
element, in the inner and outer raceways. He did not that account of different types of faults. He also optimized the 
neural network parameters (number of neurons in hidden layer and learning rate). Padovese (2002) used a database 
similar to that used in this work and obtained 100% of detection and classification hints using PNN (Probabilistic 
Neural Network), seeking as well for optimal neural network parameters. 

It is worth noting that the detection and classification tasks in the present study is more complex (with vary shaft 
speed and load) than that of the two previous cited papers. Another advantage of the fuzzy system is its open 
architecture when compared to the Multilayer Perceptron neural network. Moreover, the input parameters used here 
have much redundancy what interferes in the final performance. This redundancy could be optimizes. 

 
6. Conclusion 

 
In this work, we proposed a methodology to create automatically fuzzy inference system using statistical 

information from available database. This methodology automatically accomplishes the fuzzy system development 
steps of creation and implementation of membership function and inference rules.   

Using this methodology, a diagnostic system was created in order to detect and classify rolling bearing defects. The 
parameters which describe the 9 types of defects are the spectrum amplitudes of vibration signals. The developed 
system led to good results for fault detection but not so good for fault classification. This situation could be expected 
since we were worried about demonstrating the viability of the methodology and not about attaining the best results by 
optimization of parameters and properties of the diagnostic fuzzy system. 

The main contribution of this work is emphasizing the benefits of automatically generating diagnostic fuzzy 
inference system, by the use of statistical information. With this methodology the necessity of a maintenance expert 
does not disappear, but his knowledge is reduced to the choice of the input parameters (which best describe the fault 
phenomenon) and to verify the results reliability. 

 
7. Acknowledgements 

 
The authors wish to thank CAPES for the financial support (Process PROCAD 0136-01-08). 
 

8. References 
 

AYOUBI, M.; ISERMANN, R., 1997. “Neuro-fuzzy systems for diagnosis”. Fuzzy Sets and Systems, v. 89, p. 289-
307. 

COX, E., 1994. “The Fuzzy Systems Handbook”. Ed. AP Professional, 615 p.. 
JEFFRIES, M.; LAI, E.; PLANTENBERG, D. H.; HULL, J. B., 2001. “A fuzzy approach to the condition monitoring 

of a packaging plant”. Journal of Materials Processing Technology, v. 109, p. 83-89. 
JOENTGEN, A.; MIKENINA, L.; WEBER, R.; ZEUGNER, A.; ZIMMERMANN, H.-J., 1999. “Automatic fault 

detection in gearboxes by dynamic fuzzy data analysis”. Fuzzy Sets and Systems, v. 105, p. 123-132. 
KARTALOPOULOS, S. V., 1996. “Understanding Neural Networks and Fuzzy Logic: Basic Concepts and 

Applications”. IEEE Press. 
LI, B.; CHOW, M.; TIPSUWAN, Y.; HUNG, J. C., 2000. “Neural-Network-Based Motor Rolling Bearing Fault 

Diagnosis”. IEEE Transactions on Industrial Electronics, v. 47, n. 5, October, p. 1060-1069. 
LIU, T. I.; SINGONAHALLI, J. H.; IYER, N. R., 1996. “Detection of Roller Bearing Defects using Experts System 

and Fuzzy Logic”. Mechanical Systems and Signal Processing, v. 10 n. 5, p. 595-614. 
MATHWORKS, THE, 1995. “Fuzzy Logic Toolbox: For Use With MATLAB, User’s Guide”. Version 2., MathWorks 

Inc., 227 p. 
MECHEFSKE, C. K., 1998. “Objective Machinery Fault Diagnosis Using Fuzzy Logic”. Mechanical Systems and 

Signal Processing, v. 12 n. 6, p. 855-862. 
PADOVESE, L. R. “Automatização de Diagnóstico de Falhas em Plantas Industriais”, 2002, 142 p., Tese de Livre 

Docência, EP-USP. 
SHAW, I. S.; SIMÕES, M. G., 1999. “Controle e Modelagem Fuzzy”. Ed. Edgard Blücher. 
SHIN, Y. S.; LIU, C. S.; JEON, J. J., 1992. “Determination of Vibration Alert Level in Condition Monitoring of 

Rotating Machinery”. Proc. of Intern. Modal Analysis Conference - IMAC, v. 2, p. 1483-1490. 
TARIFA, E. E.; SCENNA, N. J., 1997. “Fault Diagnosis, Direct Graphs, and Fuzzy Logic”. Computers Chem. Engng., 

v. 21, p. S649-S654. 
TSOUKALAS, L. H.; UHRIG, R. E., 1997. “Fuzzy and Neural Approaches in Engineering”. John Wiley & Sons Inc.. 
VICENTE, S. A. V.; FUJIMOTO, R. Y.; PADOVESE, L. R., 2001a. “Rolling Bearing Fault Diagnostic System Using 

Fuzzy Logic”. The 10th IEEE International Conference on Fuzzy Systems, v. 2. 
VICENTE, S. A. da S.; MASOTTI, P. H. F.; ALMEIDA, R. G. T. de; TING, D. K. S.; PADOVESE, L. R., 2001b. 

“Automatic Diagnosis of Defects in Bearings Using Fuzzy Logic”. Anais do COBEM 2001. 
 




