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Abstract The analysis addresses fundamental aspects of the extinction of diffusion flames established by burning of bi-
component fuels. This analysis is asymptotically done presuming one-global-step chemical reactions with large activation
energies. Two parameters are responsible to characterize the problem, the ratio of the activation energies and the ratio of
the Damkhöler numbers. The results pointed out that not only the chemical reaction with the largest activation energy
controls the flame extinction, but also the chemical reaction with the smallest activation energy. The flame extinction
conducted by the less thermal sensitive reaction showed to be directly influenced by the composition of the bicomponent
fuel.
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1. Introduction

The asymptotic structure of flames is already considered as a classical problem about which a great deal of research
has been performed (Liñán, 1974; Seshadri, 1996). Despite the large amount of work that has been done on the subject,
there are questions in need of fundamental explanation. The present work addresses some questions about the extinction
of multicomponent fuel diffusion flames.

By presuming that the reactions are done in one-global-step and their activation energies are large, the internal
structure of diffusion flames have been described (Liñán, 1974). From this kind of analysis it is able to determine the
extinction condition of diffusion flames and the fraction of oxygen and fuel that leak through the flame.

Another asymptotic analysis was developed based on reduced kinetic mechanisms, about 4 steps and 6 species (Peters
and Willimas, 1987). Due to a more detailed kinetic mechanism, compared to one-global-step mechanisms, the analysis
produces results close to the experimental results.

In all the studied cases, the flame structure is imposed by the burning of a single fuel. Few works analysed the
extinction problem of the multicomponent fuel. One of that analyses considered the multicomponent fuel as a single fuel
and the chemical properties of that hypothetical single fuel are an average the multicomponent fuel properties (Hamins
and Seshadri, 1984). The results agreed well with the experimental results because the properties of each fuel were
taken at the extinction condition. Another approach for the problem was presented recently. Still using large activation
asymptotics, the structure of bicomponent fuel diffusion flames and the extinction condition were determined (Fachini,
2002). In that work, the activation energies and the Damkhöler numbers of both reactions were considered as being of
the same order of magnitude. The results showed that the reaction with the largest activation energy and/or with the
smallest Damkhöler number led the flame to extinction.

The emphasis of this work is to extend the analysis presented by Fachini (2002) by assuming the activation energy
and the Damkhöler number of one reaction are much larger than those of the other reaction.

2. Flowfield Description

The flowfield of initially nonpremixed reacting flows is composed by a thin reacting zone surrounded by a broad
frozen zone. The thickness of the frozen zone is determined by the boundary conditions and that of the reacting zone is
determined by the properties of the chemical reactions. In the combustion state, the large heat released rises the gases
temperature inside the reacting zone to the several times the initial temperature. The chemical reaction is sustained by
the oxygen and fuel diffusion from the frozen zone to the reacting zone.

Usually in combustion, chemical reactions are much faster than the any process of the frozen flowfield. The Damkhöler
number Da, the ratio of the frozen flowfield time scale to the reaction time, is large. The consequence of Da � 1 is the
reacting zone to be much thinner than the frozen zone, thereby justifying to apply boundary layer assumption to the
problem. Therefore, in the leading order problem, the chemical reaction is assumed as infinitely fast; the reacting zone
is infinitely thin surface. The consequence of this approximation is that the detail of the chemical reaction disappears
and is described by a global one-step mechanism; called Burke-Schuman mechanism. By employing the Burke-Schuman
mechanism, the leading order nonpremixed combustion problems have solutions. Flame position, flame temperature, the
oxygen and fuel fluxes to the flame and the heat flux from the flame are evaluated for given boundary conditions.

Since the Burke-Schuman mechanism admits infinitely fast chemical rates, extinction conditions is not determined
for this condition because there is no leakage of fuel and oxygen through the flame. To analise the extinction, it becomes
necessary to solve the equations corresponding to the higher order approximation in the boundary layer assumption.
In that approximation the reaction rate is huge but finite, thereby the reactants leak through the flame. Therefore, to
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perform the extinction analysis the flowfield description needs a correction only in a thin zone surrounding the flame
(reacting zone). The main processes inside the reacting zone are mass and heat diffusion and reaction. The diffusive-
reactive equation describing the internal structure of the flame must be integrated with boundary conditions that are
determined by the matching with the solution of the leading order problem, flowfield problem with Da →∞. Moreover,
other flowfield properties, as position and temperature of the flame, are necessary to perform the asymptotic analysis.

The analysis of the flame structure of bicomponent fuel diffusion flames will be performed on the counterflow con-
figuration. The counterflow configuration is broadly used because it permits a good access to the flame interior in
experimental studies. The radiative energy transfer is included in the model by the approximation of optically thin
transparent gas and released in the CO2 and H2O bands.

The flowfield properties necessary to perform the flame structure analysis are those specified by Fachini (2001). The
nondimensional spatial coordinate, nondimensional temperature, oxygen mass fraction, fuel 1 mass fraction and fuel 2
mass fraction are defined as x, θ, YO, Y1 and Y2, respectively. Then, flame position and flame temperature and the
oxygen and bicomponent fuel fluxes to and the heat flux from the flame are as following

x = xf , θ = θf ,

d0 = − dYO

dx

∣∣∣
x=xf

, d1 =
dY1

dx

∣∣∣
x=xf

, d2 =
dY2

dx

∣∣∣
x=xf

, d−θ =
dθ

dx

∣∣∣
x=x−

f

, d+
θ = − dθ

dx

∣∣∣
x=x+

f

,

respectively.
By following the conditions assert for this problem, in terms of mass, the chemical reactions of a general bicomponent

fuel proceed at one global step according to

F1 + s1O2 → c̃1CO2 + h̃1H2O (Q1)

F2 + s2O2 → c̃2CO2 + h̃2H2O (Q2)

in which si, c̃i and h̃i are the massic stoichiometric coefficients of reaction i, i.e. for each unit mass of fuel i, si mass of
air are consumed to have stoichiometric reaction. Qi is the heat released by the reaction i.

The nondimensional rates of these chemical reactions are expressed by

w̃i = Dai%
βi1+βi2yβi1

O yβi2
i e−θai/θ, i = 1, 2

where βi• and θai = Ei/RT0 are the the global reaction order and the nondimensional activation energy of reaction i,
respectively. The definitions for the rescaled oxygen and fuels mass fractions, yO and yi, are as following

yO = YO/YO0, yi = siLeOYi/(YO0Lei)

The Damkhöler number Dai is defined as

Dai = (Bi l/v0)(ρ0YO0)
βi1+βi2−1Leβi2

i /(siLeO)βi2−1

The subscript 0 corresponds to the condition at the air stream. Bi, l, v, ρ and Lei are the frequency factor, the distance
between the nozzles from which the air stream and fuel stream, the velocity of the streams come out, the density and
the Lewis number of fuel i, respectively.

More details about the counterflow configuration with bicomponent fuel stream can be found in Fachini (2001).

3. Flame Structure

It is worthy to mention that the aim of this analysis is not to study the any particular multicomponent fuel, but
presents a general tool that is able to help anyone to obtain extinction data for fuels composed by more than one
component..

As seen in the leading order problem describing either one-fuel diffusion flames (Fachini et all, 1999) or multicompo-
nent fuel diffusion flames (Fachini, 2002), the chemical reaction was considered infinitely fast, thereby it occurred in an
infinitely thin zone; there were no leakage of fuel and oxygen through the flame. This assumption makes the derivatives
of the variables discontinuous at the flame. To avoid the discontinuity in the derivatives, it is necessary to solve the
problem for the next order of magnitude that corresponds to the description of the internal structure of the flame. In
the limit θa1 � θa2 � 1 presumed in this section, the flame presents a different internal structure. Again, in the leading
order problem, the flame is still considered infinitely thin. However at order of magnitude corresponding to 1/θa2 the
problem, in which the evolution of the consumption of fuel 2 is described, treats the zone where fuel 1 is consumed as
infinitely thin. The reason for that is because the reaction 1 is much more dependent on temperature than the reaction
2. Since both reactions compete for oxygen, it is reasonable to expect that the zone where fuel 1 is consumed to be
inside the zone where fuel 2 is consumed. The zone where fuel 2 is consumed is called layer 1 and the zone where fuel 1
is consumed is called layer 2.

The position of the layer 2 inside the layer 1 is determined by the physical and chemical properties. In this work that
position is assumed to be at the edge of the layer 1 in the fuel side of the flame, as seen in figure 1. With this structure
configuration, the flame is more stable because the leakage of oxygen is of the order of 1/θa1, much smaller than 1/θa2

that is the oxygen leakage if the layer 2 were in the middle of layer 1. Note that the flame configuration is formed by
two reaction zones controlled by diffusion. In this case two diffusion-flame structures are merged to form the structure
of the bicomponent fuel diffusion flame.
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Figure 1: Schematic representation of the internal structure of a diffusion flame through the profiles of fuels 1 and 2

and of oxygen.

To study two-fuels diffusion flame structure with distinct activation energies the following expansion must be con-
sidered

θ = θf − ε1 Θ1/m1δ
1/b1
1 − ε2 (Θ2 + γ2ξ2)/m2δ

1/b2
2 + · · ·

y0 = 0 + ε1 (Ψ01 + γ1ξ1)/δ
1/b1
1 + ε2 d1Ψ02/m2δ

1/b2
2 + · · ·

y1 = 0 + ε1 d1Ψ11/m1δ
1/b1
1 + ε2 d1Ψ12/m2δ

1/b2
2 + · · ·

y2 = 0 + ε1 d2Ψ21/m1δ
1/b1
1 + ε2 d2Ψ22/m2δ

1/b2
2 + · · ·

x = xf + ε1 ξ1/m1δ
1/b1
1 + ε2 ξ2/m2δ

1/b2
2 + · · ·

(1)

where

b1 = 1 + β21 + β22, b2 = 1 + β11 + β12,

ε1 = θ2
f/θa2, ε2 = θ∗ 2

f /θa1 = (θf + ε1Θ1f/m1δ
1/b1
1 )2/θa1,

m1 = d2, m2 = (d−θ + d+
θ − q2d2)/2,

γ1 = −d1/d2, γ2 = 1− 2(d−θ − q2d2)/(d−θ + d+
θ − q2d2),

δ1 =
Pe Da2 e−θa2/θf dβ21+β22−1

2

θα+β21+β22
f

(
ε1

m1

)1+β21+β22

,

δ2 =
Pe Da1 e−θa1/θ∗

f dβ11+β12−1
1

θ∗ α+β11+β12
f

(
ε2

m2

)1+β11+β12
(

m2

d1q1

)β11+β12

,

The definition of d1, d2, d−θ and d+
θ were already given in the previous section and they represent the fluxes of y1

and y2 and the heat fluxes at the flame in the oxygen side and in the fuel side of the flame, respectively.

3.1. Solution of order ε1

Almost everywhere inside layer 1, the influence of the reaction of fuel 1 on the oxygen consume and on heat released
is very small compared to that of the fuel 2, except inside the layer 2 located at ξ1 = ξ1f (z = z∗f = zf + ε1ξ1f/m1δ

1/b1
1 ).

Since the layer 2 is assumed to have a diffusion flame configuration, the oxygen mass fraction and the fuel 1 mass
fraction go to zero, Ψ11 = (Ψ01 + γ1ξ1f ) = 0 and the reaction rate of the oxidation of fuel 1 can be represented by delta
function at first approximation in the problem of order ε1 at ξ1 = ξ1f . As will be seen later dΨ11/dξ1|ξ1<ξ−1f

= 0 and

dΨ11/dξ1|ξ1=ξ+
1f

= 1, thereby the reaction rate of the oxidation of fuel 1 can be expressed as d1δ(ξ1 = ξ1f ). Therefore,

as occurred in the leading order problem, the problem of the order ε1 also has discontinuous derivatives for the functions
Θ1, Ψ01 and Ψ21 at ξ1 = ξ1f (z = zf + ε1ξ1f/m1δ

1/b1
1 ). At ξ1 = ξ1f , the jump condition in the first derivative of Θ1,

Ψ01, Ψ11 and Ψ21 will be used in the analysis of order ε2.
The oxidation of the fuel 2 occurs in the layer 1, which has a thickness of order ε1. The variations of the temperature

and the reactants in this layer are followed by the system of equations of order ε1, resulting of taking equation (1) into
the balance equations (Fachini, 2001),

d2

dξ2
1

Θ1 = q1d1δ(ξ1 − ξ1f ) + q2d2(Ψ01 + γ1ξ1)
β21Ψβ22

21 e−Θ1/m1δ
1/b1
1 (2)
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d2

dξ2
1

d2(Ψ01 + γ1ξ1) = d1δ(ξ1 − ξ1f ) + d2(Ψ01 + γ1ξ1)
β21Ψβ22

21 e−Θ1/m1δ
1/b1
1 (3)

d2

dξ2
1

d1Ψ11 = d1δ(ξ1 − ξ1f ) (4)

d2

dξ2
1

d2Ψ21 = d2(Ψ01 + γ1ξ1)
β21Ψβ22

21 e−Θ1/m1δ
1/b1
1 (5)

The boundary conditions of equations (2) to (5), determined by the matching with the leading order solutions, are
given by

dΘ1

dξ1
+ d−θ =

dΨ01

dξ1
+ 1 =

dΨ21

dξ1
=

dΨ11

dξ1
= Ψ11 = 0, ξ1 → −∞ (6)

Ψ01 + γ1ξ1f =
dΨ01

dξ1
= Ψ11 = 0, ξ1 = ξ1f (7)

dΘ1

dξ1
− d+

θ =
dΨ11

dξ1
− 1 =

dΨ21

dξ1
− 1 = 0, ξ1 →∞ (8)

Note that the definitions of m1 and γ1 are such that permit the derivative of Ψ01 to be normalized for ξ1 → −∞ and
zeroed at ξ1 = ξ1f .

By integrating equation (4) with the boundary conditions (7) and (8) one finds

Ψ11 =

{
0, ξ1 < ξ1f

ξ1 − ξ1f , ξ1 ≥ ξ1f
(9)

Exploring the fact that the excess enthalpy function (Liñán and Williams, 1993), defined as H = (q1 − 1)y1 + (q2 −
1)y2 + y0 + θ, and mixture fraction, defined as Z = y1 + y2 − y0, and their first derivatives are continuous everywhere
(Fachini, 2001), it is possible to find expressions relating the variables Θ1, Ψ01, Ψ11 and Ψ21 as following

(q1 − 1)d1Ψ11 + (q2 − 1)d2Ψ21 + d2(Ψ01 + γ1ξ1)−Θ1 = dHξ1 (10)

d1Ψ11 + d2Ψ21 − d2(Ψ01 + γ1ξ1) = dZξ1 (11)

where dH and dZ are the derivatives of the functions H and Z at the flame z = zf (Fachini, 2002), which are

dH = −(d1 + d2) + d−θ = (q1 − 1)d1 + (q2 − 1)d2 − d+
θ

dZ = d1 + d2

Therefore, from equations (9), (10) and (11) and the values of dH and dZ one finds

(q2 − 1)d2Ψ21 + d2(Ψ01 + ξ1)− (Θ1 + d−θ ξ1) = 0 ξ1 ≤ ξ1f

(q2 − 1)d2(Ψ21 − ξ1)− (q1 − 1)d1ξ1f − (Θ1 − d+
θ ξ1) = 0 ξ1 ≥ ξ1f

(12)

and

Ψ21 − (Ψ01 + ξ1) = 0 ξ1 ≤ ξ1f

Ψ21 − (ξ1 + (d1/d2)ξ1f ) = 0 ξ1 ≥ ξ1f

(13)

From boundary conditions (7) and (8) or from equation (13) for ξ1 ≥ ξ1f , it is seen that the reaction of fuel 2 does not
exist because the oxygen quantity in the region ξ1f ≤ ξ1 < ∞ is not enough to cause an important consumption of fuel 2.
Then, at layer 2, ξ1 = ξ1f , the flux of fuel 2 is practically equal to that at the condition ξ →∞, i.e. dΨ21/dξ1|ξ1→∞ = 1,
and the value of Ψ21 can be specified, Ψ21 = ξ1f (1 + d1/d2). By combining equations (12) and (13), the following
relations are found

Θ1 = q2d2Ψ01 + (q2d2 − d−θ )ξ1 for ξ1 ≤ ξ1f ,
Θ1 = d+

θ ξ1 + (q2 − q1)d1ξ1f for ξ1 ≥ ξ1f .

From these relations, the derivative of the temperature Θ1, imposing the conditions dΨ01/dξ1|ξ1=ξ1f = 0 and dΨ21/dξ1|ξ1=ξ1f =
1, are determined at both side of the layer 2, ξ1 = ξ1f ,

dΘ1

dξ1

∣∣∣∣
ξ1=ξ−1f

= q2d2 − d−θ and
dΘ1

dξ1

∣∣∣∣
ξ1=ξ+

1f

= d+
θ (14)

These derivatives at borders of layer 2 will be used to solve the problem of the oxidation of fuel 2.

4



Figure 2: The edge of the layer 1 ξ1f , where the reaction 1 takes place, as function of the modified Damkhöler
number δ1/q3

2 . The curve for d1/d2 = 2.00 represents the mixture Y1 = 0.11 and Y2 = 0.01, that 1− d−θ /q2d2 =
−0.775, ξL

1f = 1.099 and δL
1 /q3

2 = 0.979. The curve for d1/d2 = 7.95 represents the mixture Y1 = 0.99 and
Y2 = 0.01, that 1− d−θ /q2d2 = −5.914, ξL

1f = 0.750 and δL
1 /q3

2 = 3.125.

An analysis of the equation (13) shows that for d1/d2 � 1 (|γ1| � 1) the structure of the flame must be similar
of that of one-fuel diffusion flames, as would be expected. To satisfy this feature, the position of layer 2 has to be
inside the fuel side of the flame, ξ1f � 1. Under this condition the boundary condition corresponding to the heat
flux, equation (14), agrees with the boundary condition corresponding to heat flux for the the one-fuel diffusion flame
problem. Thus, the heat flux jump condition is d−θ + d+

θ = q2d2. In the other limit, d1/d2 � 1 (|γ1| � 1), the one-fuel
diffusion flame structure is recovered again, but in this case the position of the layer 2 goes to zero, ξ1f → 0 according to
ξ1f ∼ (d1/d2)

−1, to satisfy the condition that Ψ21 is finite. For |γ1| = O(1), the mass fraction of fuel 2, Ψ21, at the layer
2, Ψ21 = ξ1f (1 + d1/d2), is directly proportional to the flux of fuel 1 and inversely proportional to the flux of fuel 2.

With Eqs. (12) and (13), the description of the oxidation of fuel 2 becomes simple because they provide relationships
among the variables which allow the integration of only one equation of the system of equation (2) to (4). The equation
that follows the consumption of oxygen Ψ01 is given by

d2Ψ01

dξ2
1

= [Ψ01 − (d1/d2)ξ1]
β21(Ψ01 + ξ1)

β22e−[Ψ01+(1−d−
θ

/q2d2)ξ1]/(δ1/q
b1
2 )1/b1

(15)

This equations must satisfy the three conditions found in equations (6) and (7), dΨ01/dξ1|ξ1→−∞ = −1, dΨ01/dξ1|ξ1=ξ1f
=

0 and Ψ01(ξ1 = ξ1f ) = (d1/d2)ξ1f . The extra condition will be employed to determine the position of layer 2, ξ1f , that
corresponds to the eigenvalue of the problem.

The results presented here were obtained for the reaction global orders β21 and β22 equal to one, thereby b1 = 3.
Together with the solution of the problem represented by (15), (6) and (7), the position of the edge of the layer

1 ξ1f is determined as a function of the modified Damkhöler number δ1/q3
2 , ξ1f = ξ1f (δ1/q3

2). The values of ξ1f for
two compositions of fuels 1 and 2, Y1 = 0.99, Y2 = 0.01, represented in the fig. 2 by the case d1/d2 = 7.95, and
Y1 = 0.11, Y2 = 0.01, represented in the fig. 2 by the case d1/d2 = 2.00, are displayed in fig. 2. It is seen that there is
a limit for δ1/q3

2 , δL
1 /q3

2 , below which the solution for ξ1f , ξL
1f , does not exist. Therefore, the condition δ1/q3

2 = δL
1 /q3

2

defines the extinction of the flame. Above that limit, δ1/q3
2 > δL

1 /q3
2 , the problem has two solutions for ξ1f .

An analysis for the case of low fuel 2 mass flux, d1/d2 � 1, reveals that the oxygen mass flux crosses the layer 1
with a little change; oxygen flux for ξ → −∞ is d1(1 + d2/d1) is very close to d1 at ξ1 = ξif . Thereby, the position ξif

has to be close to zero. By taking this conclusion into account and comparing the positions ξif shown in figure 2, it can
be affirmed that the lower branch of the solution is that representing the flame structure; it is that one with physical
meaning. Note that for d1/d2 = 7.95, the lower branch solution is even closer to zero, as poiting the analysis.

In the case that the fuel 2 mass flux is compared to the fuel 1 mass flux, d1/d2 ∼ 1, the position ξ1f must increase
to permit the consumption of a large part of fuel 2 in the layer 1.

In nonlinear problems, like the extinction problem, the solutions are multiple. Moreover, the characteristic of all
solutions is not the same, ones are stable and others are unstable. After turning points, as shown in figure 2, the stability
of the solution change. Therefore, the low branch solution in figure 2 is stable and the upper branch solution is unstable.
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The results displayed in figure 2 prove that the extinction of multicomponent fuel flames can be controlled by the
reaction 2, that is the less sensitive to temperature variations. This observation is contrary to the up-to-now accepted
idea, giving by the analysis of a single fuel: the most thermal sensitive reaction is the responsible for the extinction.

3.2. Solution of order ε2

The structure of layer 2 (see fig. 1), in which the oxidation of fuel 2 is performed, is described exactly as in previous
analyses (Liñán, 1974). The formulation of the problem of the order ε2 is presented to prove that it corresponds to
the Liñán’s analysis and, consequently, the hypothesis of oxygen leakage of the order 1/θa1 through the reaction zone is
true, as adopted in previous analysis. Note that this condition must be satisfied, otherwise the previous section does not
represent the case studied in the work. The detail of this analysis is already well known.

Recalling that the solutions of order of ε1 for the oxygen mass fraction and fuel 2 mass fraction are zero at the
ξ1 = ξ1f , then the expansion (1) has to be re-written as

θ = θf − ε1 Θ1f/d2δ
1/b1
1 − ε2 (Θ2 + γ2ξ2)/δ

1/b2
2 + · · ·

yO = 0 + 0 + ε2 d2Ψ02/m2δ
1/b2
2 + · · ·

y1 = 0 + 0 + ε2 d1Ψ12/m2δ
1/b2
2 + · · ·

y2 = 0 + ε1ξ1f (1 + d1/d2)/δ
1/b1
1 + ε2 d2Ψ22/m2δ

1/b2
2 + · · ·

x = xf + ε1 ξ1f/d2δ
1/b1
1 + ε2 ξ2/m2δ

1/b2
2 + · · ·

(16)

Taking equation (16) into the balance equations for species and energy and picking up the equations of order of ε2,
one finds

d2

dξ2
2

m2(Θ2 + γ2ξ2) = d1q1

(
m2

d1q1

)−(β11+β12)

Ψβ11
02 Ψβ12

12 e−Θ2/δ
1/(1+β11+β12)
2 (17)

d2

dξ2
2

d1Ψ02 = d1

(
m2

d1q1

)−(β11+β12)

Ψβ11
02 Ψβ12

12 e−Θ2/δ
1/(1+β11+β12)
2 (18)

d2

dξ2
2

d1Ψ12 = d1

(
m2

d1q1

)−(β11+β12)

Ψβ11
02 Ψβ12

12 e−Θ2/δ
1/(1+β11+β12)
2 (19)

d2

dξ2
2

d2Ψ22 = 0 (20)

The boundary conditions for Eqs. (17) to (20), determined by the matching with the solution of order ε1, are given
by

dΘ2

dξ2
+ 1 =

dΨ02

dξ2
+ 1 =

dΨ12

dξ2
− 1 =

dΨ22

dξ2
= 0 ξ2 → −∞ (21)

dΘ2

dξ2
− 1 =

dΨ02

dξ2
=

dΨ12

dξ2
− 1 =

dΨ22

dξ2
− 1 = 0 ξ2 →∞ (22)

Note that the definitions of m2 and γ2 are such that permit the derivative of Θ2 to be normalized for ξ2 → −∞ and for
ξ2 →∞

Combining Eqs. (17) to (20), the following relations are found

(q1 − 1)d1Ψ12 + (q2 − 1)d2Ψ22 + d1Ψ02 −m2(Θ2 + γ2ξ2) = dH1ξ2 (23)

d1Ψ12 + d2Ψ22 − d1Ψ02 = dZ1ξ2 (24)

where dH1 and dZ1 are the derivatives of the functions H and Z at the flame z = zf + ε1ξ1f/m1δ
1/b1
1 , which are

dH1 = (q2 − 1)d2 − d1 − (q2d2 − d−θ ) = (q1 − 1)d1 + (q2 − 1)d2 + d+
θ

dZ1 = d1 + d2

The solution of Eq. (20) satisfying boundary conditions (21) and (22) becomes Ψ22 = ξ2. This solution and the
definition for dZ1 taken to Eq. (24) lead to

Ψ02 = Ψ12 − ξ2 (25)

Taking the expression for dH1 and Eq. (25) into equation (23), the following relations between Ψ02 and Θ2 and between
Ψ22 and Θ2,

Ψ02 =
m2

q1d1
(Θ2 − ξ2) and Ψ12 =

m2

q1d1
(Θ2 + ξ2), (26)
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are found. Note that, since d−θ + d+
θ = q1d1 + q2d2, m2/q1d1 = 1/2.

Therefore, taking Eq. (26) into Eq. (17), the structure inside the zone where the oxidation of the fuel 1 occurs can
be described by

d2Θ2

dξ2
1

= (Θ2 − 1)β11(Θ2 + 1)β12e−(Θ2+γ2ξ2)/δ
1/(1+β11+β12)
2 (27)

which must satisfy Eqs. (21) and (22).
The solution of the problem (27), (21) and (22) exists (Liñán, 1974), then it is guaranteed, from Eq. (26), that

the scape of oxygen is of the order 1/θa1, once that Ψ02 is of the order O(1). According to the Liñán’s (1974) work
on counterflow, for β11 = β12 = 1, the value of modified Damkhöler number δ2 for extinction is related with γ2 by the
following expression

δ2ext = e[(1− |γ2|)− (1− |γ2|)2 + 0.26(1− |γ2|)3 + 0.055(1− |γ2|)4] (28)

The discussion about the limits cases d2/d1 � 1 and � 1 realized previously can be expanded now. Since dH =
−(d1 + d2) + d−θ = (q1 − 1)d1 + (q2 − 1)d2 − d+

θ and d−θ + d+
θ = q1d1 + q2d2, the parameter γ2 can be expressed as

γ2 = 1− 2
d−θ

d1q1
+ 2

q2d2

q1d1

Therefore, for d2/d1 � 1, γ2 becomes 1− 2d−θ /q1d1 that is the result found by Liñán (1974) to describe the structure of
the one-fuel diffusion flame.

4. Conclusion
This analysis was developed in a general way, a tool to be applied to any particular multicomponent fuel diffusion

flame. The results showed that the extinction of multicomponent fuel diffusion flames can be also controlled by the less
thermal sensitive reaction.
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[6] Liñán, A., 1974, The Asymptotic Structure of Counterflow Diffusion Flame for Large Activation Energy, Acta
Astronautica, Vol. 1, pp. 1007-1039.
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