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The present work presents two flexible-rotor balancing procedures, which do not use trial weights. The goal of this approach is to 

help in situations found in the industrial context, in which trial weights based techniques cannot be applied. A few reasons can be 

mentioned: the time consumed to stop the machine to install the weights and start-up again to accelerate the rotor to the balancing 

rototation for several times is prohibitive; technical reasons may make difficult the work of installing the trial weights. The actual 

balancing technique is based on pseudo-random optimization methods. In this research work two methods were explored, namely, 

the genetic algorithms and artificial neural networks. The basic idea is to obtain the flexible rotor unbalance response, which is then 

mimicked by using a FEM model in which the unbalance masses and their corresponding angular positions are the design variables 

in the optimization run. This way, an inverse problem is solved and the masses obtained are installed in previously chosen balancing 

planes at inverted angular positions. Numerical simulations show the efficiency and limitations of the methodology developed. 
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1. Introduction 
 

Normally, the problem of balancing flexible rotors has been resolved using the influence coefficients method and 
the classic modal method, also it is common to use hybrid method based on a combination of these two techniques 
(Foiles et al, 1998).  

The influence coefficients balancing method uses known trial weights to determine experimentally the response 
sensitivity of a rotor-bearing system with respect to the trial weights and subsequently calculates a set of discrete 
correction masses which will minimize whirl responses. In conventional procedures a trial mass is first applied to one of 
the balancing planes and the rotor responses are measured. This process is repeated for all the other balancing planes. 
Then an influence coefficient matrix is obtained from these data. Using this influence coefficient matrix is possible 
obtain a set of correction weights which will minimize the rotor vibrations (Lacerda, 1990). 

The classic modal method, initially proposed by  Bishop et al (1959) requires information about the flexural mode 
shapes. By means of the prior knowledge of the mode shapes and by measuring the vibration response close to the 
critical speeds it is possible to identify the generalized modal unbalances.  The generalized unbalance corresponding to 
a given mode can be corrected by a set of discrete balancing moments. Then, it is possible to determine a set of 
orthogonal correction weights that are to be installed in the correction planes for balancing the rotor at prescribed 
critical speeds (Gnielka, 1983). 

Xu et al (2001) proposed a rotor balancing method by using optimization techniques, which does not need trial 
weights. In the present work a FEM rotor model is used and two different optimization procedures are implemented, 
namely the Genetic Algorithms and Artificial Neural Networks. The goal is to determine a set of unbalanced weights, 
which installed in the mathematical model and reproduce an unbalance response close to the experimental one. 

The procedure proposed in the present paper allows to reduce some disadvantages founds in  the classical methods. 
For example, it is possible to balance the rotor even in the presence of large modal damping and large modal density 
cases, in which the modal balancing method fails (Vaqueiro,1989). Others disadvantages of the modal method such as 
those that arise in rotors with hydrodynamic journal bearings also can be minimized.  In the case of the influence 
coefficient method , test weights are needed and the procedure impose many starts and stops which are extremely time-
consuming. The runs with trial weights can therefore easily take up half, or more of the time involved in the whole 
balancing procedure. The method reported in this paper does not use trial weights, thus, it is possible a  significant 
reduction in the time consumed in the balancing procedure. 
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In the remainder, a review of the rotor FEM model is presented, the concepts about Genetic Algorithms and Neural 
Networks are discussed together with the optimization procedures applied to the problem of rotor balancing. Then, 
characteristics of he experimental test rig used in the validation of he procedure are shown. Finally, the simulation 
results are compared with the experimental ones. 

 
 

2. FEM Model 
 
The mathematical model used to calculate the unbalance forces, natural frequencies and vibration mode shapes is 

based on the finite element method and the Lagrange equations. The discrete rotor model is represented by symmetric 
rigid discs elements, symmetric Timoshenko beam elements, non-symmetric coupling elements, and non-symmetric 
viscous damped bearings. The complete rotor model is represented by the following matrix differential equation: 

 
[ ] ( )[ ] [ ] ( )[ ]tFKCM =⋅+⋅Ω+⋅ δδδ &&&      (1) 
 
Natural frequencies and mode shapes are obtained from equation (1) for the homogeneous case, through the 

calculation of the system eigenvalues and eigenvectors.  
The unbalance form is obtained from the kinetic energy expression  of the unbalance mass, as follows: 
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where: 
mu : unbalance mass 
V : velocity vector of the unbalance mass 

 
By using the Lagrange equations it is possible to obtain the mathematical model of the rotor system affected only 

by unbalance forces: 
 
[ ] ( )[ ] [ ] ( ) ( )tFtFKCM ⋅Ω⋅+⋅Ω⋅=⋅+⋅Ω+⋅ sincos 11δδδ &&&      (3) 

 
where F1 and F2 depends on the unbalance eccentricity, and the solutions are given by: 

 
( ) ( )tt ⋅Ω⋅∆+⋅Ω⋅∆= sincos 21δ      (4) 

 
The modal base of the associated non-gyroscopic system is used to reduce the number of degrees-of-freedom in 

order to calculate the system eigenvalues and eigenvectors, and to obtain the unbalance response (Steffen and Lepore, 
1983). 
 
3. Optimization Strategies 

 
The classical non-linear constrained optimization problem can be written mathematically as (Vanderplatts, 1983): 
 
Minimize: 
 

( )XF     Objective Function     (5) 
 
Subject to: 
 

( ) ( )MjXg j ,10 =≤   Inequality Constraints    (6) 
 

( ) ( )LKXhk ,10 =≤   Equality Constraints     (7) 
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In general the objective function (5), as well as the constraints functions (6) and (7), are non-linear implicit 

functions with respect to the design variables, as balancing can be understood as an inverse problem, the classical 
optimization methods could have difficulties in these cases due to local minimum (Assis, 1998). Most classical method 
do not have the global perspective and often get converged to  locally optimal solutions. Another difficulty is their 
inability to be used in parallel computing environment efficiently.  



Over the years, a number of search and optimization algorithms, which are drastically different in principle  from 
de classical methods, are getting increasingly more attention. These method mimic a particular phenomenon to solve 
search and optimization problems.  In this work, two of these method are used for to determine the correction mass in 
order to balance an unbalanced rotor, these are: Genetic Algorithms and Neural Network.  

 
3.1 Neural Networks 

 
Studies on neural networks have been motivated to imitate the way that the brain operates. A network is described 

in terms of the individual neurons, the network connectivity, the weights associated with various interconnections 
between neurons, and the activation function for each neuron (Haykin, 1998). The network maps an input vector from 
one space to another. The mapping is not specified, but is learned. The network is presented with a given set of inputs 
and their associated outputs. The learning process is used to determine proper interconnection weights and the network 
is trained to make proper associations between the inputs and their corresponding outputs. Once trained, the network 
provides rapid mapping of a given input into the desired output quantities. This, in turn, can be used to enhance the 
efficiency of the design process. 

Consider a single neuron. This neuron receives a set of n inputs, xi , i=1, 2 ,... n, from its neighboring neurons and a 
bias whose value is equal to one. Each of the inputs has a weight (gain) wji connecting between the ith and the jth units. 
The weighted sum of the inputs determines the activity of a neuron, and is given as: 
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A simple function is now used to provide a mapping from the n-dimensional space of the inputs into a one-

dimensional space which comprises of an output value a neuron sends to its neighbors. The output of a neuron is a 
function of its activity: 
 

( )netfy =                         (10) 
 
Many types of neural networks have been proposed by changing the network topology, node characteristics, and 

learning procedures. In this study, we use a multi-layer feed-forward neural network topology with one hidden-layer as 
shown in Figure 5.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 - Multi-layer feed-forward neural network 
 
The training method used in this works is based to the Levenberg-Marquardt algorithm, this method  is a 

modification of the Newton method, it uses second order terms to calculate the Hessian matrix (H) , and guarantees a 
convergence faster than the methods based on the descending gradient. However, the necessity to calculate the Hessian 
matrix can be an unsurmountable difficulty for some applications of Neural Networks (Masters, 1993). 

To prevent these inconveniences methods have been developed that create an array which aproximates the H 
matrix. There methods are known as Quasi-Newton methods (Vanderplaats, 1993). In this case, the Levenverg-
Marquardt method uses an approximation of the Hessian matrix  based on the product of Jacobeans. Also, the 
Levenberg-Marquardt method minimizes the errors presented for ill-conditioning of the approximate Hessian matrix. 
The modified equation of the Newton method used in the Levenberg-Marquardt algorithm is: 
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with: 

tX = vector of variables in the t-th iteration 
( )tXH  = Hessian matrix for tX  
( )tXF  = Function to minimize for tX  

( )tXF∇  = Gradient function of ( )tXF  
 
In equation (11) I is the identity matrix. The value tµ determines the trend of the algorithm, then, if tµ is zero, 

equation (11) is reduced to the Newton method, but if tµ is large, the value of ( )tXH  will be worthless with regard 

to It ⋅µ . In this case the value: ( )[ ] ( )ttt XFIXH ∇⋅⋅+− −1µ  represents a small advance in the opposite direction of the 
gradient and the algorithm will have a behavior similar to the descending gradient method. 
 
3.2 Genetic Algorithms  
 

Genetic Algorithms constitute an iterative optimization procedure. Instead of working with a single solution in each 
iteration, a genetic algorithm works with a number of solutions (collectively know as a population). A flowchart of the 
basic principle of a simple Genetic Algorithm is shown in figure 2. In the absence of any knowledge of the problem 
domain, a Genetic Algorithm begins its search form a random  population of solutions. As shown in the figure, a 
solution in Genetic Algorithms is presented by using a string vector of fixed length (it depends on the coding 
representation chosen). In each iteration, if the termination criterion is not satisfied, three different genetic operators 
(reproduction, crossover, and mutation) are applied to update the population strings. One iteration is called generation in 
the parlance of Genetic Algorithms. The representation of a solution in artificial Genetic Algorithms is similar to a 
natural chromosome and Genetic Algorithms operators try to mimic natural genetics. In the following subsection a brief 
description of the Genetic Algorithms is presented: 

• Reproduction: is usually the first operator applied on the population. Reproduction selects good strings from a 
population and form a mating pool. There exists a number of reproduction operators in Genetic Algorithm 
literature, but the essential idea is that above-average strings are picked up form the current population, 
duplicates of them are inserted in the mating pool and these strings continue to the next generation. The 
commonly used reproduction operator is the proportionate selector operator, in which a string in the current 
population is selected with a probability proportional to the string’s fitness. 

• Crossover: is applied next to the springs of the mating pool. Similarly to the previous operator, there exists a 
number of crossover operator in the literature, but the main idea is that two springs are picked up from the 
mating pool and mixed, to produce two offsprings that keep some genetic characteristics from both ancestors. 

• Mutation: This operator alter a small percentage of the strings. In the case of Binary Genetics Algorithms, it 
alters a small percentage of bits in the strings. It increases the algorithm’s freedom to search outside the current 
region of parameters space. It also tends to distract the algorithm from converging to local minimum. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 – Binary Genetic Algorithm Scheme 
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4. Identification of balancing rotor weights and their corresponding angular positions 

 
In this research work the goal was to use optimization techniques to identify the unbalance condition of a flexible 

rotor. The method developed consists of using a rotor inverse model that permits the calculation of the rotor unbalance 
from the rotor displacements in he measure planes. For this purpose, two optimization procedures were developed, and 
are presented in the following subsections. 
 
4.1 Using Neural Networks 

 
In this case it is necessary a set of standard input for the neural network training. These inputs are obtained from the 

FEM model by introducing a set of random unbalance weights and collecting the vibration responses at the measure 
plane positions as calculated by the model. The process is shown in figure 3. The following steps are established: 

 
• The experimental vibration response is measured and normalized. 
• The FEM model is created. 
• The input-output training sets are collected by using  the FEM model and then are normalized. The 

normalization is necessary to use the neural networks. Besides the Neural Networks work better when the 
output values are in the polynomial form (the original form of the output of the net is Polar). It is necessary to 
transform this values in Cartesian coordinates.  
Thus, in the case of the displacements (input of the net) are normalized using a linear relation according to 
equation (16): 

 

( ) ( )( )
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yxRyxN                       (12) 

where: 
N(x,y) = Normalized parameter corresponding to the x-th individual at the y-th measure plane. 
R(x,y) = Parameter to be normalized corresponding to the x-th individual at y measure plane. 
min = minimum value of the displacements. 
max =maximum value of the displacements. 
 
The output values of the net (weights and angles) are normalized by changing from replaced Polar to Cartesian 
coordinates, according to figure 3: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 – Coordinate transform 
 

where L is the unbalance moment associated to the concentrated unbalance weight and its corresponding 
eccentricity, and α is the phase angle. 

The main steps to follow in the present case are depicted below: 
• The net architecture is chosen by considering the different variables involved, such as the number of correction 

planes, measure planes and balancing speeds. 
• The net is trained. 
• The net is validated by using input-output training sets not used before in the training process. 
• The experimental vibration response is introduced in the trained Neural Network to obtain a set of equivalent 

unbalance weights and angular positions. 
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• The set of balancing weights is determined, considering that the balancing weights are located at an angular 
position which is 180 degrees out of phase with respect to the set of determined equivalent unbalancing 
weights. 

• The balancing weights are attached to the correction planes of the rotor 
• The residual unbalance is checked 
 

4.2 Using Genetic Algorithms 
 

The basic idea of the procedure using Genetic Algorithms is similar to the one developed for Neural Networks. The 
procedure is presented as follows: 

 
• The FEM model is created and fitted to the experimental data. 
• The experimental response of the rotor is obtained for the balancing speeds. 
• The objective function is defined as the difference between the displacements calculated in the measure planes 

of the model and those obtained from the test rig. That difference is associated with the strain energy (Lalanne 
and Ferraris, 1998), and the formulation of the objective function is: 
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In equation (13), Fob is the objective function, Fmodel is the rotor model response and Fexp are the vibrations 
measured in the rotor test rig. In equation (15), Djid are the displacements calculated by the FEM model, in the 
i-th balancing speed at the j-th measure plane, and d corresponds to the acquisition direction. Rjid corresponds 
to the displacements experimentally acquired under the same conditions. Ie is the vector of design variables 
that is related to the e-th individual. 

• The initial population is created, such a manner that each individual is a vector with 2xh elements, with h is the 
number of correction planes, thus: 

 
[ ]Thhe mmmI ααα ,,,,,, 2211 L=                     (16) 

 
where mi are the unbalanced moments and iα are their corresponding phase angles. 

• The Genetic algorithm is executed until the stop criterion is satisfied. 
• The set of unbalancing weights are determined using Genetic Algorithms. The balancing weights are located at 

an angular position which is 180 degrees out of phase with respect to the set of determined equivalent 
unbalancing weights. 

• The balancing weights are attached to the correction planes of the rotor. 
• The residual unbalance is checked 

 
5. Numerical Simulations 
 

For testing the balancing procedure presented in the previous section, both methods were simulated by using a rotor 
model shown in figure 4. The geometrical and physical proprieties of the elements used in the rotor discretization are 
presented in the tables 1,2, and 3. The material for shaft and disc elements is considered to be the steel 
(E=2.067x1011N/m2 and ρ = 7800 kg/m3). 



Nós:    1             2         3       4          5         6       7     8       9     10  11 12   13      14    15    16    17     18    19     20     21    22

 
Figure 4 – Rotor Model 
 
Table 1 - Shaft Elements 
 

Number Lenght [m] Diameter [m]
1 1 2 0.048 0.004
2 2 3 0.03 0.005
3 3 4 0.029 0.005
4 4 5 0.033 0.005
5 5 6 0.032 0.005
6 6 7 0.026 0.007
7 7 8 0.022 0.007
8 8 9 0.025 0.005
9 9 10 0.027 0.005

10 10 11 0.015 0.0125
11 11 12 0.014 0.0125
12 12 13 0.024 0.007
13 13 14 0.029 0.007
14 14 15 0.025 0.005
15 15 16 0.023 0.005
16 16 17 0.023 0.005
17 17 18 0.026 0.007
18 18 19 0.024 0.007
19 19 20 0.025 0.005
20 20 21 0.026 0.005
21 21 22 0.026 0.005

Pos

 
 
Table 2 – Disc Elements 

Number Thickness [m] Diameter [m]
1 0.0112 0.075
2 0.0157 0.045
3 0.0107 0.0618

Pos
7

13
 

Table 3 – Bearing Elements 
 

Number pos KX  [N/m] KZ  [N/m] CX  [N.s/m] CZ [N.s/m]
1 2 18750.0 10750.0 10.5 12.0
2 22 14770.0 24770.0 10.5 12.0  

 
The critical speeds are shown in table 4 
 

Table 4 – Critical Speeds 
 

Modes 1 2 3 4 5 6
Critical Speeds [rpm] 639.54 696.05 1120.50 1214.20 2704.30 3029.30  

 
5.1 Simulation using Neural Networks 
 

The procedure using Neural Networks was applied to the rotor shown by figure 4 under two conditions: the first 
condition used two balancing planes and three measure planes; in the second three balancing planes and three measure 
planes were used. In both cases only one balancing speed (700 rpm) was considered. However, more balancing speeds 



could be used with the disadvantage of increasing the computational cost. The parameters used in the Neural Network 
are shown in table 6. 

 
Table 6 – Neural Networks parameters 
 

Layers 3
Training Algorithm Levenverg-Marquart

Stop Criterion  RMS (<0.001)

Layer architecture (6), (8), (6) for 3 balancing planes
(6), (8), (4) for 2 balancing planes

Number of training sets 4000 for 3 balancing planes
2666 for 2 balancing planes  

 
The first simulation required 50 epochs to achieve the stop criterion, while the second simulation used 120 epochs. 

The results between the weights attached in the rotor and the weights obtained using Neural Networks are shown in 
table 7. 

 
Table 7 – Unbalance weights determined by using Neural Networks 

 

Pos Initial Unbalance Identified unbalance (three 
balancing planes)

Identified unbalance    (two 
balancing planes)

Mass [kg] 0.003 0.0034 0.0074
Angle 150.00° 142.22° 127.58°

Mass [kg] 0.006 0.0056 0.0086
Angle 30.00° 32.74° 334.06°

Mass [kg] 0.005 0.0048 ----
Angle 290.00° 292.91° ----

79.16% 89.37%Amplitude Reduction

7

13

18

 
 
The unbalance response obtained at the disc number 2 is shown in the figure 5 for the different situations.  
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Figure 5 – Unbalance Response (before and after balancing) 

 
5.2 Simulation using Genetic Algorithms  

 
The same simulation procedure was used in the case of Genetic Algorithms, for which the parameter are shown in table 
8. 
 
 
 
 
 
 
 



Table 8 – Genetic Algorithm parameters 
 

Coding Type Real-Valued representation
Stop Criterion Number of Generations 50 Generations

Selection Function Normalized geometric Selection

Simple crossover Crossover 
probability=0.6

Uniform mutation Mutation 
probability = 0.05

Initial Population

Genetic Operators

500
 

 
ISO 11342 (1998), recommends for the case of balancing flexible rotors in bands enclosing n critical speeds, that at 

least n or, being possible, (n+2) balancing planes have to be used. Following these indications in the first case three 
balancing planes were used for the situation in which the balancing speeds are found in the band between 500 and 1200 
rpm (enclosing three critical speeds). The vibration response was calculated at each 100 rpm interval. In the second the 
balancing speeds are in the range between 500 and 1000 rpm (enclosing two critical speeds). The result are shown in 
table 9. 
 
Table 7 – Unbalance weights determined by using Genetic algorithms 
 

Pos Initial Unbalance Identified unbalance 
(three balancing planes)

Identified unbalance    
(two balancing planes)

Mass [kg] 0.003 0.00311 0.0024
Angle 150.00° 153.04° 70.29°

Mass [kg] 0.006 0.0068 0.0036
Angle 30.00° 29.07° 286.50°

Mass [kg] 0.005 0.005 ---
Angle 290.00° 285.67° ---

95.20% 45.50%Amplitude Reduction

7

13

18

 
 
 The unbalance response obtained at disc number 2 is shown in the figure 6 for different situations. 
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Figure 6 – Unbalance Response (before and after balancing) 

 
6. Conclusions 

 
The implemented procedures demonstrated efficiency for the two optimization techniques used (Artificial Neural 

Network and Genetic Algorithms). In both cases a good reduction in the level of vibration in the measure planes was 
obtained. The limitation in the case of the Neural Networks is represented by the difficulty of working with several 
balancing speeds simultaneously. In this way as more balancing speeds are considered, it is necessary to increase the 
complexity of the net and, consequently the computational time required for the training process together with the 



additional memory space are increased. In the cases studied in the present work only one speed of rotation was 
considered without meanwhile compromising the generality of the method. When more balancing speeds are 
considered, the training algorithm of Levenberg-Marquardt is no longer appropriated, because depending on the number 
of weights considered it can require a too expensive computational cost. It si worth to comment that selection of the 
data sets to train the network was the most time-consuming procedure. In uor case the training process itself was 
straightforward.  

An advantage of the Neural Networks with respect to the Genetic Algorithms is the fact that the correction masses 
required and their respective angular positions are calculated automatically after introducing the vibrations measured in 
the rotor. The process of generating data and the training of the net takes a similar amount of time as for the Genetic 
Algorithms to determine the solution of the problem. Genetic algorithms, differently from the Artificial Neural 
Networks, offers the possibility of working in a band containing several speeds without adding a prohibitive 
computational cost. Besides, it allows to correct unbalancing for several critical speeds simultaneously. Then, it can be 
concluded that, in the case that it is desired to balance the rotor for a wide speed band, the procedure using Genetic 
Algorithms more adequate. However, in the case the objective is only to balance the rotor for its operating speed, the 
procedure involving Neural Network is more efficient. About the Genetic Algorithms the initial population was 
maintained constant (500) for all cases. Crossover probability was 5%. The maximum number of generations was fixed 
to 50, was reached a value of the objective function of 2⋅10-8. Further investigation will use real experimental data to 
validate  the methodology developed. 
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