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Abstract. This work shows the application of statistical modeling techniques to the optimum design of rotating machinery. The 
fundamentals of rotor dynamics are reviewed in order to present the physical quantities involved in the statement of an optimization 
problem aiming at improving the configuration of a rotor-bearing system, whose behavior is evaluated in terms of its critical speeds  
and strain energy. Objective and constraint functions belonging to this optimization procedure are represented by means of 
response surface meta-models, whose basic concepts are also briefly reviewed. The optimum values of the design variables (bearing 
stiffness/damping coefficients and inertia values/positions) are determined by several different optimization methods, spanning 
gradient based and heuristic strategies. The results obtained are analyzed, leading to the conclusions and some suggestions for 
future research work.  
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1. Introduction  
 

Opposite to general models such as differential equations and the like, empirical models are intended to represent 
the specific behaviour of a given system with respect to a pre-defined set of parameters. These models are constructed 
from the data gathered by observing the system of interest. So, as far as data provided by numerical procedures and/or 
physical experiments are processed and used to create symbolic models of a physical reality, empirical modeling (also 
called meta-modeling) techniques are being applied. Generally, meta-modeling techniques are developed in four steps: 
 
(1) Experimental design: a design space, including a range of design possibilities, is sampled in order to reveal its 

contents and tendencies. This can be understood as a structured observation of the phenomenon to be modeled; 
 
(2) Choice of a model: the nature of the empirical model itself is determined, tacking into account that the relations 

contained in the data gathered in the previous step have to be mathematically represented, with the highest possible 
accuracy; 

 
(3) Model fitting: the model whose shape is defined in (2) is fitted to the data collected in (1). Differences in fitting 

schemes may affect the efficacy of meta-modeling techniques in the solution of a given problem; 
 
(4) Verification of model accuracy: the three precedent steps are sufficient to build a first tentative model, whose 

overall quality and usefulness have to be evaluated by adequate sets of metrics and tests. 
 

Each combination of design space sampling (1), model choice (2) and fitting procedure (3) leads to the use of 
specific verification procedures (4). A general overview of combination possibilities spanning the four major steps of 
empirical model building is resented in Fig (1), adapted from Simpson et all (1997). 

Figure (1) also mentions some meta-modeling approaches, which are very popular in a variety of applications. 
Response Surface Methods (RSM) are global analytical meta-models. This means they are intended to represent 
physical relationships found in a design space by means of a unique closed form equation whose coefficients have to be 
estimated through statistical (least squares regression) techniques. The analytical form is a considerable advantage of 
RSM over other types of meta-models in terms of physical insight and ease of use, but its global nature can be a 
handicap in the case of highly non-linear design spaces. 

If one searches for more symbolic/abstract empirical models, Bayesian or “krigging”  are of a kind that no longer 
offer analytical representation of the functional relationships pertaining to the design space. When compared to RSM, 
they are more difficult to implement and costly to run, but can cope better with non-linear design spaces due to their 
inherent structure intended to model local behaviour along design spaces. 

Increasing the level of abstraction, highly symbolic, heuristic models such as neural networks operate with 
transformation matrices that lead to the estimate of an output, given the corresponding input. Neural networks, in 
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particular, exhibit a high degree of robustness (Rao et all, 1995; Bishop, 1996) with respect to eventual noise collected 
during the “Experimental Design” phase. 

From the brief comparison outlined in the latter paragraphs, it can be stated that each of the different kinds of 
empirical models have its own advantages and drawbacks, and the choice for one of them will depend upon the 
particular problem to be solved and the resources available for the solution. On the other hand, all meta-modeling 
techniques, regardless of abstraction level, offer two distinguished positive characteristics for simulation and 
optimization purposes: 
 
• Low computational cost: if the meta-model is a response surface, a low order polynomial equation has to be solved 

for a set of inputs. For the case of neural networks, a matrix multiplication operation has to be performed. Once 
they are constructed, meta-models become more and more inexpensive to use in long term basis; 

 
• Superior numerical conditioning: this is a key characteristic in many fields of engineering. For example, if one 

intends to optimize a structure subject to impact loadings, it is virtually impossible to directly couple a numerical 
optimizer with a finite element solver due to the highly non-linear nature of the analysis. Instead, a response surface 
based on analysis results can be easily optimized (Yang et all, 1999). With the availability of low cost and well 
conditioned predictive tools, sophisticated design approaches can be adopted;  

 
In this paper the authors intend to take advantage of these features in order to obtain the optimal design of a rotating 

machine, as described in sections 4 and 5. Details of the optimization algorithms (gradient based and heuristic search 
methods) used for achieving this goal appear in section 3. Response surface empirical models of the optimality metrics 
are developed, and the data needed for their generation are obtained through a finite element model of the rotor, 
according to the mathematical foundations presented at section 2. 

 

 
 
Figure 1. Empirical modeling schemes. 

 
 



 

2. Mathematical model for rotating machinery 
 

The rotor model is obtained by using the Finite Element Technique and is composed of three basic elements that 
are: disk, shaft and bearings. Figure (2) shows the inertial frame (X,Y,Z) and the frame (x,y,z) that is fixed to the disk. 
 

 
 

Figure 2. Rotor reference frames. 
 
To obtain the equations of motion Lagrange’s equations are used and for that purpose the kinetic energy, strain 

energy and the virtual work of the external forces have to be calculated. Damping is included in the bearing model. 
Besides, it is possible to include modal damping in the equations by analogy with a single-degree-of-freedom system. 
According to Lalanne and Ferraris (1998) the system equation of motion is written as: 
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where q = N order generalized coordinate displacement vector; K  = stiffness matrix which takes into account the 

symmetric matrices of the beam and nonsymmetrical matrices of the bearings;  C  = matrix consisting of 
skewsymmetrical matrices due to gyroscopic effects and nonsymmetrical matrices due to bearing viscous damping;   
F1  = constant body force such as gravity; 32,FF  = forces due to unbalance; F F4 5,  = forces due to nonsynchronous 
effects; and a = coefficient. 

The modal base of the associated non-gyroscopic system is used to reduce the number of degrees-of-freedom in 
order to calculate the system eigenvalues and eigenvectors and to obtain the response to force excitations. Natural 
frequencies and critical speeds are obtained from Eq. (1), which is rewritten for the homogeneous case. In the present 
contribution only unbalance forces are taken into account. 

For optimization purposes, dynamic characteristics of the rotor-bearing system are considered, namely: critical 
speeds, unbalance responses and strain energy. Strain energy is considered as given by: 
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3. Optimization overview 
 

Numerical optimization techniques have been widely used in general design of mechanical systems. More 
specifically, in the field of gyroscopic mechanical systems dynamics, automatic design modifications have led to many 
applications: resonance and critical speed avoidance, vibration level reduction, model updating and the like. 

Such methods take advantage of computer automation capabilities through a set of mathematical methods. The 
standard mathematical formulation of the optimization problem is as follows (Vanderplaats, 1998): 
 

{ }( )[ ]XFminmax,      (3) 

 
that is, find the best possible (minimum or maximum) value of a function that represents a performance criterion, 
subject to 

 
{ }( ) 0≤XG j      (4) 

 
standing for a set of threshold values to j aspects of system performance 
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that is, a set of target values to k aspects of system performance, and 
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which are bounds to the values of the elements contained by the vector {X} . These elements are called design or 
decision variables (whose initial values are denoted as X 0), and all the functions (F,G and H) involved in the 
optimization problem depend upon these variables. 

 
3.1. Gradient based optimzation methods 
 

These are the most traditional and widely used design optimization methods, due to their reliability and efficiency 
in a wide range of engineering applications. Three fundamental steps are usually necessary to their implementation: 
 
• Definition of the search direction – This procedure is the optimization algorithm itself. Gradients (∇) of the 

objective function (in the sequential methods) and both objective and constraint functions (in the direct methods) 
are manipulated in order to establish search directions along the design space. 

 

• Definition of the step in the search direction – Once a search direction {S}  is defined in the previous step, the 
general optimization problem is restricted to a one – dimensional search. The quantity α in Eq. (7) is the size of the 
optimizer’s move along the search direction in order to update the design configuration from {X} i to {X} i+1. 
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• Convergence verification – Convergence is achieved for the design variable set {X*}  upon the satisfaction of the 

Kuhn – Tucker conditions, expressed by Eqs. (8) to (10): 
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where λj are the (non-negative) Lagrange multipliers. 
 
3.2. Heuristic optimization methods 
 

Also known as “ random” and “ intelligent”  optimization strategies, this group of optimization methods varies the 
design parameters according to probabilistic rules. It is common to resort to random decisions in optimization whenever 
deterministic rules fail to achieve the expected success. 

On the other hand, however, heuristic techniques tend to be more costly, sometimes to the point that certain 
applications are not feasible unless alternative formulations, designed to spare computational resources, are introduced. 
Such formulations comprise the response surface meta-modeling method that is used in this paper to represent system 
responses to be optimized by heuristic methods, as well as the deterministic (gradient based) ones. 
 
3.2.1. Genetic algorithms 

 
Genetic Algorithms are random search techniques based on Darwin’s “survival of the fittest”  theories, as presented 

by Goldberg (1989). Genetic algorithms were originated with a binary representation of the parameters and have been 
used to solve a variety of discrete optimization problems. A basic feature of the method is that an initial population 
evolves over generations to produce new and hopefully better designs. The elements (or designs) of the initial 
population are randomly or heuristically generated. 

A basic genetic algorithm uses four main operators, namely evaluation, selection, crossover and mutation 
(Michalewicz, 1996), which are briefly described in the following: 

 
• Evaluation – the genetic algorithms require information about the fitness of each population member (fitness 

corresponds to the objective function in the classical optimization techniques). The fitness measures the adaptation 
grade of the individual. An individual is understood as a set of design variables. No gradient or auxiliary 
information is required, only the fitness function is needed. 

 



 

•  Selection - the operation of choosing members of the current generation to produce the prodigy of the next one. 
Better designs, viewed from the fitness function, are more likely to be chosen as parents. 

 
• Crossover – the process in which the design information is transferred from the parents to the prodigy. The results 

are new individuals created from existing ones, enabling new parts of the solution space to be explored. This way, 
two new individuals are produced from two existing ones. 

 
• Mutation – a low probability random operation used to perturb the design represented by the prodigy. It alters one 

individual to produce a single new solution that is copied to the next generation of the population to maintain 
population diversity. 

 
3.2.2. Simulated annealing 
 

Annealing is a term from metallurgy used to describe a process in which a metal is heated to a high temperature, 
inducing strong perturbations to its atoms positions. Providing that the temperature drop is slow enough, the metal will 
eventually stabilize into an orderly structure. Otherwise, an unstable atom structure arises. 

Simulated annealing can be performed in design optimization by randomly perturbing the decision variables and 
keeping track of the best resulting objective value. After many tries, the most successful design is set to be the center 
about which a new set of perturbations will take place. 

In an analogy to the metallurgical annealing process, let each atomic state (design variable configurations) result in 
an energy level (objective function value) E. In each step of the algorithm, the atoms positions are given small random 
displacements due to the effect of a prescribed temperature T (standard deviation of the random number generator). As 

an effect, the energy level undergoes a change .E (variation of the objective function value). If .E δ 0, the objective 
stays the same or is minimized, thus the displacement is accepted and the resulting configuration is adopted as the 
starting point of the next step. If E > 0, on the other hand, the probability that the new configuration is accepted is given 
by Eq. (11): 
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where kb is the Boltzman constant, set equal to 1. 

Since the probability distribution in Eq. (11) is chosen, the system evolves into a Boltzman distribution. The 
random numbers r are obtained according to a uniform probability density function in the interval (0,1). If r < P(∆E) the 
new configuration is retained. Otherwise, the original configuration is used to start the next step. 

The temperature T is simply a control parameter in the same units as the objective function. The initial value of T is 
related to the standard deviation of the random number generator, whilst its final value indicates the order of magnitude 
of the desired accuracy in the location of the optimum point. 

Thus, the annealing schedule starts at a high temperature, which is discretely lowered (using a factor 0 < rt < 1) 
until the system is “ frozen” , hopefully at the optimum, even if the design space is multi-modal. 
 
4. Description and development of an illustrative case study 
 

As for demonstrating the application of the techniques outlined in the previous sections, this work develops a case 
study based on the optimization of the rotor depicted in Fig. (3). Its left hand part is a picture of the rotor prototype 
(used for the experimental identification of structural parameters, such as described in Oliveira, 1999), while its right 
counterpart is a dimensional sketch highlighting the most important dynamical elements of the rotor structure.  

This rotor system is supposed to operate at an angular speed of 200 rpm. Finite element analysis of an initial 
proposed design point out that the first and second critical speeds are equal to 223.00 rpm and 246.67 rpm, respectively. 
Therefore, the following optimization problem can be devised: 

 
Maximize: first and second critical speeds (so that they are safely above the typical operating speed of 200 rpm) 
Subject to the constraint: strain energy at the operating speed is minimum 

 
by manipulating design variables listed in Tab. (1). It should be noted that, regarding the design objective and 
constraint, the optimization problem could have been stated conversely: 

 
Minimize: the strain energy when operating at 200 rpm 
Subject to: safe separation between each of the critical speeds and the operating speed 
 
All in all, this means that the task of optimally designing this rotor system is a multi-objective problem. Its 

optimum solution can be influenced by the formulation, so special measures are to be taken to address its multi-criterion 
nature.  



  

  
  
Figure 3. Rotor chosen for the case study development.  

 
Table 1. Design variables descriptions and bounds. 
 

Variable Description Lower Bound Upper Bound 
V1 Damping of Bearing 1 [N.s/m] 66.4 83 
V2 Damping of Bearing 2 [N.s/m] 66.4 83 
V3 Stiffness of Bearing 1 [N/m] 6880 8600 
V4 Stiffness of Bearing 2 [N/m] 6880 8600 
V5 Diameter of Disc 1 [m] 0.16 0.2 
V6 Thickness of Disc 1 [m] 0.0016 0.002 
V7 Diameter of Disc 2 [m] 0.096 0.12 
V8 Thickness of Disc 2 [m] 0.0016 0.002 
V9 Diameter of Disc 3 [m] 0.12 0.15 
V10 Thickness of Disc 3 [m] 0.0016 0.002 

 
The first step for solving the optimization problem thus stated is to build empirical models that describe the 

variation of the key physical quantities (objective and constraints) with respect to the ten design variables of interest. If 
the response surface method is chosen, objective and constraint functions will be available in low order polynomial 
closed form, allowing for the use of gradient based and/or heuristic optimization algorithms in an automatic design 
process.  

In the development of empirical models, it is crucial to screen which design variables really influence the responses 
involved. The importance of this action is twofold: a) For better understanding and judgment regarding the design 
process and b) For sparing the use of computational/experimental resources aimed at collecting data for the construction 
of higher fidelity empirical models. 

Table (2) is an excerpt of the 3102 −
=VR  two level fractional factorial design implemented to select which design 

variables are statistically significant with respect to the responses considered. It should be noted that the combination of 
ten design variables in two levels gives rise to up to 210 = 1024 different configurations. The fraction of 210-3 = 27 = 128 
combinations strongly reduces the computational effort necessary for the design variable screening procedure, while 
still having sufficient resolution (“R = V”  stands for “Resolution = 5” ) to allow for the regression of adequate linear 
models (since each factor is varied in only two levels). Box and Drapper (1987) provide in-depth explanation on how to 
balance the experimental design effort in view of important aspects such as resolution and model accuracy.  
 
 



 

Table 2. Excerpt of 3102 −
=VR  two level fractional factorial design for decision variables screening. 

 
Combination V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 

1 99.6 99.6 10320 10320 0.24 0.0024 0.144 0.0024 0.18 0.0024 
2 99.6 99.6 10320 10320 0.24 0.0024 0.096 0.0016 0.18 0.0024 
. 
. 
. 

. 

. 

. 
127 66.4 66.4 6880 6880 0.16 0.0016 0.144 0.0016 0.18 0.0024 
128 66.4 66.4 6880 6880 0.16 0.0016 0.096 0.0024 0.18 0.0024 

 
Table (3) shows the statistically significant design variables for each of the responses of interest. 

 
Table 3. Statistical significance table, at the 5% significance level [(S) – Significant; (NS) – Not Significant]. 
 

Response V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
First Critical Speed NS NS S S S S S S S S 

Second Critical Speed NS NS S S S S S NS S S 
Strain Energy NS S NS S NS NS S NS NS NS 

 
And the linear response surface empirical models resulting from the linear standard least squares regression 

analysis of this 3102 −
=VR  two level fractional factorial experimental design are given by Eqs. (12) to (14): 
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with adjusted squared multiple correlation coefficients equal to 81.22%, 75.88% and 73.90% respectively. Based on 
these explained variances values, linear empirical models can be assumed as satisfactory representations of the 
responses of interest for the purpose of optimizing the rotor system of Fig. (3). Although better accuracy could possibly 
be achieved with higher order response surface equations, this potential gain has to be balanced against two relevant 
issues: a) the additional computational effort needed to generate higher fidelity models and b) Eventual numerical 
difficulties for the optimization of models based on non-linear equations. 

Particularly with respect to the critical speeds empirical models, the signs of the coefficients present an additional 
evidence of consistency with the expected physical behaviour. Positive coefficients for the stiffness terms indicate that 
the critical speeds assume higher values when they are increased. Conversely, critical speeds drop when the inertias 
augment, as indicated by the negative coefficients associated to disk thickness and diameters. Besides, it should be 
noted that the grand average value of the second critical speed (307.18) is smaller than that of the first critical speed 
(318.79). This fact serves as a warning with respect to optimization procedures, since it indicates that within the design 
space being considered the first and second critical speeds have the potential to overlap or even shift their positions 
along the angular speed spectrum. 

The responses represented by equations (12) to (14) reflect the three criteria that ultimately measure the optimality 
of any given rotor design. In order to simultaneously account for the three of them, Eq. (15) is defined as a global 
optimality functional whose minimization ensures the best compromise solution among all of the participating 
optimality criteria: 
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where: 
 
• Φ({X}) is a compromise objective function 
• Fk is the k-th response of interest, in a total of K . K = 3 in the present case, and each of the F functions is replaced 

by its corresponding response surface model among Eqs. (12) to (14) 
• F*k is the target value for the k-th response 



  

• Fpk is the worst value accepted for the k-th response 
• Wk is the weighting factor applied for the k-th response of interest 

 
This formulation is well accepted because it considers engineering specifications through F*k and Fpk, which helps 

in keeping a practical insight over the optimization problem. It should also be noted that the optimization problem 
defined through Eq. (15) is unconstrained because the K responses encompass both objective and constraint functions. 
This is particularly useful when heuristic optimization techniques are used because most of the times it is not trivial to 
implement the handling of explicit constraints when such methods are used. 

 
5. Case study results and discussion 

 
The minimization of Eq. (15) is pursued by means of the three optimization methods outlined in section 3, that is, 

gradient based (BFGS “Quasi-Newton”), Genetic Search (G.S.) and Simulated Annealing (S.A.). The results yielded by 
these different approaches are summarized in Tabs. (4), (5) and (6) which contain design variable optimal values, 
response surface estimates and finite element results, respectively. The relative differences between the data in Tabs. (5) 
and (6), which ultimately measure the accuracy of the response surface empirical models with respect to the finite 
element original data, are presented in Tab. (7) 

 
Table 4. Optimal design variables sets. 
 

Optimization 
Method 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 

BFGS 99.6 99.6 10320 10320 0.16 0.0016 0.096 0.0016 0.14044 0.0016 
G.S. 84.44 84.23 8601 8599.8 0.1621 0.0016 0.098 0.0023 0.1223 0.0018 
S.A. 78.82 80.84 8846 8303.0 0.1619 0.0016 0.1115 0.0016 0.1321 0.0018 

 
Table 5. Design optimization results obtained with gradient based and heuristic methods (response surface predictions). 
 
Optimization Method First Critical Speed [rpm] Second Critical Speed [rpm] Strain Energy at 200 rpm [J] 

BFGS 270.02 289.35 9.60E-03 
G.S. 259.12 277.47 5.57E-03 

Simulated Annealing 257.7247 273.6743 7.31E-03 
 
Table 6. Design optimization results obtained with gradient based and heuristic methods (finite element predictions). 
 

Optimization Method First Critical Speed [rpm] Second Critical Speed [rpm] Strain Energy at 200 rpm [J] 
BFGS 263.40 289.80 3.26E-03 
G.S. 261.60 273.60 6.82E-03 

Simulated Annealing 262.20 277.20 5.83E-03 
 
Table 7. Response surfaces versus finite element predictions for optimum design performance (relative differences). 
 

Relative (%) Differences Optimization      
Method First Critical Speed Second Critical Speed Strain Energy at 200 rpm 
BFGS 2.51% -0.16% 194.48% 
G.S. -0.95% 1.41% -18.29% 

Simulated Annealing -1.71% -1.27% 25.44% 
 
 

Table (7) shows that the empirical models derived for the critical speeds manage to predict them within a very 
narrow uncertainty range.  

On the other hand, the same does not happen with the strain energy at 200 rpm and this calls for a discussion about 
two aspects. In the first place, the inherent physical nature of the quantity to be meta-modeled has to be considered. 
With the general quadratic form expressed in Eq. (16), where {X}  and [K}  are the displacement vector and stiffness 
matrix respectively, it is unlikely to obtain a reasonable representation for the strain energy by means of a simpler linear 
model. The same is expected for the critical speeds, but Eqs. (12) and (13) happen to behave properly within the 
particular range defined by the design variables side constraints. Therefore, the accuracy of the linear approximations 
for the critical speeds tends to deteriorate if this range is broadened. 

 

{ } [ ] { }XKX T ⋅⋅      (16) 

 



 

The second issue is related to the lack of homocedasticity and normality within the strain energy data, as illustrated 
by the residual plot in Fig (4). Since the strain energy values are very small, an adequate scaling could have improved 
the predictive capabilities of the response surface associated to this physical quantity, acting in this case as a variance 
stabilizing transformation. Alternatively, the weighted least squares approach (with or without data transformation) 
could also result in a better empirical model. 

 

 
 
Figure 4. Uneven and dependent residual distribution indicating lack of homocedasticity and normality within the strain    
                energy experimental design data. 

 
Still based on the data contained in Tabs. (4), (5), (6) and (7), the following issues arise: 

 
(1) There is not enough statistical certainty to comment the strain energy evolution during the optimization process; 
 
(2) It is safe to evaluate the critical speeds evolution during the empirical model based optimization procedure; 
 
(3) The comparison of the three algorithms employed during the optimization procedure reveal that the numerical 

conditioning of the functional given by Eq. (15) is outstanding, since the BFGS method managed to get to the 
global optimum of the available design space by exhausting the ranges defined between the design variables side 
constraints. On the other hand, the heuristic methods seem to have been trapped in local optima, which is probably 
due to inconvenient setup of sensitive parameters such as the initial population size and number of generations (in 
the case of the genetic search) and temperature (in the case of the simulated annealing). Indeed, response surface 
empirical modeling enable the removal of several of the difficulties for gradient based optimization methods, 
reducing or even inverting their eventual handicaps relative to heuristic algorithms. 

 
6. Conclusions and perspectives for future research work 

 
This paper has demonstrated the use of empirical modeling techniques aimed at representing the behaviour of a 

gyroscopic system so that optimization algorithms can be efficiently applied for design improvement purposes. 
Empirical modeling allowed for considerable flexibility in defining the multi-criterion optimization problem associated 
with the automatic design of a rotor system, enabling the optimization of a functional with useful characteristics: 
inherent good numerical conditioning, implicit constraint handling and possibility to explicitly account for engineering 
design specifications. 

With regard to numerical conditioning and local optima, better results could have been obtained with the heuristic 
optimization strategies, and it would be useful to spend some effort in trying to define better values to parameters such 
as initial population size, number of generations and temperature, as well as rules for their choice. 

Multidisciplinary Design Optimization (MDO) is also an interesting field opened by the use of empirical modeling. 
In the case of the rotor system optimized in this paper, one could imagine other design criteria: construction cost, heat 
transfer issues and others. Of course, these quantities could not be calculated in the same finite element based module 

Uneven and 
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residual pattern 



  

used to obtain the critical speeds and the strain energies. However, data related to them could be easily generated in 
other platforms, and then transformed in response surface equations that could be plugged into Eq. (15) as new criteria 
to be satisfied in the optimization process.     

Another aspect to be further investigated is the robustness of optimal solutions with respect to uncontrollable 
random perturbations that may occur. To illustrate this subject one can consider the data in Tab. (8), which shows how 
the response to imbalance at a given node of the finite element model vary when assembly imperfections shift the disk 
positions of ± 20.00 mm with respect to their “ theoretical”  locations, considering the optimal rotor configurations 
operating at 200 rpm.  

 
Table 8. Response to unbalance (m) of rotor optima considering the influence of assembly imperfections (200 rpm). 
 

Optimization Method “Theoretical”  Position + 20.00 mm offset - 20.00 mm offset 
BFGS 3.49E-06 3.16E-06 3.79E-06 

Genetic Algorithm 4.35E-06 3.98E-06 4.71E-06 
Simulated Annealing 4.36E-06 3.98E-06 4.74E-06 

 
The data in Tab. (8) shows that the effect of assembly imperfections is, at least, noticeable (simulations with 

additional offset values have to be performed in order to verify if the variations are indeed statistically significant). The 
extent of this influence can be checked by an additional factor to the experimental design (i.e., the offset from the 
“ theoretical”  location). If this influence is found to be relevant, it can be controlled through the addition of the 
corresponding response surface to a multi-criterion formulation such as Eq. (15). 

Finally, one of the most critical issues of empirical modeling for the sake of simulation and optimization is the 
equilibrium between the experimental (numerical or physical) cost needed to construct the models and their predictive 
accuracy. Vast data sets do not necessarily result in adequate models, and model sophistication does not always result in 
improved accuracy.  

Considerable research effort (Jin et all, 2000) is being devoted to establish the benefits and drawbacks of several 
different meta-modeling strategies, and the rotor optimization problem developed in this article is suitable for such an 
investigation, specifically if the following approaches are taken into account:  
 
• Use of higher order response surfaces, as already suggested in section 4; 
• Modification of the least squares approach from “standard” to “weighted”, due to the frequent occurrence of 

outliers among the data generated by means of the experimental designs; 
• Use of other metrics capable of capturing the multi-criterion essence of this kind of engineering problem; 
• Use of various types of empirical models, such as those mentioned in Fig. (1):  neural networks, radial basis 

functions, krigging models, splines and others. 
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