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Abstract. Aerodynamic flow simulations over a typical sounding rocket are presented. Sounding rocket configurations usually 
require fairly large fins and, quite frequently, have more than one set of fins. In order to be able to handle such configurations, the 
present work uses a novel methodology which combines both Chimera and patched multiblock grids in the discretization of the 
computational domain. The flows of interest are modeled using the 3-D Euler equations and the work decribes the details of the 
discretization procedure, which uses a finite difference approach for structured, body-conforming, multiblock grids. The method is 
used to calculate the aerodynamics of a sounding vehicle currently under development. The results indicate that the present 
approach can be a powerful aerodynamic analysis and design tool. 
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1. Introduction 
 

In the present work, the results obtained for the simulation of aerodynamic flow about a typical sounding rocket, the 
SONDA-III, are presented. This work is inserted in the effort of developing the computational tools necessary to 
simulate aerodynamics flows on aerospace geometries, especially those related to the Brazilian Satellite Launcher VLS 
(Azevedo et al., 1995; Azevedo et al., 1996; Azevedo et al., 1997; Strauss et al., 1999) and the SONDA-III. The 
SONDA-III presents a quite complex geometric configuration with four front fins and four back fins around a central 
core. The fins are arranged symmetrically around the central body. An illustrative outline of this configuration is 
presented in Fig. (1). Therefore, mesh generation for the flow simulation can be a very labourious process either with 
structured or unstructured grid technologies. The region shown in Fig. (2) is the most complex to generate quality 
meshes. The fins possess a reasonable thickness, even at the trailing adge. The reseach group has a fair amount of 
experience with Chimera and patched multiblock flow simulations for launch vehicle simulations. But this is the first 
time that the group uses the two techniques in the same code. This is also the first time that the group simulates a 
vehicle with fins. The initial objective of the present effort is, therefore, to demonstrate that the use of the two 
techniques combined will enable the generation of better quality grids for the problems at hand. 

The code for the simulation of the flow over the SONDA-III with Chimera and patched multiblock aproach was 
obtained as a continuation of the development of the code already available for Chimera grid simulations for the VLS 
(Basso et al., 2000), which had already been validated. 

 

 
 

Figure 1. Perspective view of the SONDA-III. 
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The governing equations are assumed written in conservative form and the equations are discretized in a finite 
difference context. Spatial discretization uses second-order accurate, central difference operators. The time march 
method is based on a 5-stage, Runge-Kutta algorithm (Jameson et al., 1981; Jameson et al., 1986), which also has 
second-order accuracy in time. The artificial dissipation terms added are based on non-isotropic, Turkel and Vatsa 
model (Turkel et al., 1994).  

In the present case, Chimera and patched grid techniques are used to simulate flows over the complete SONDA-III 
rocket. Those techniques together provide the capability to use structured meshes for the discretization of the 
calculation domain over truly complex configurations. Moreover, they allow grid refinement characteristics which are 
similar to those achieved with unstructured meshes. The paper will briefly describe the theoretical formulation used 
together with a discussion of the numerical implementation aspects and boundary conditions adopted. Details of the 
current implementation of the Chimera and patched grid techniques are also presented. Results with applicattions to the 
SONDA-III are described and some concluding remarks are presented. 

 

 
 

Figure 2. Detail of the front fin region. 
 

2 Theoretical Formulation 
 
It is assumed that the flows of interest in the present work can be represented by the Euler equations in three 

dimensions. These equations can be written in conservative-law form for a curvilinear coordinate system as 
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where Q  is the vector of conserved variables, defined as 
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In the equations, ρ  is the density, u,v,w are the Cartesian velocity components and e is the total energy per unit of 

volume. The E , F  and G  are the inviscid flux vectors, J is the Jacobian of the transformation, represented as 
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Expressions for the inviscid flux vectors can be found in Vieira et al. (1998), among other references. The pressure can 
be obtained from the equation of state for a perfect gas as 
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A suitable nondimensionalization of the governing equations has been assumed in order to write Eq. (1). In particular, 
the values of flow properties are made dimensionless with respect to freestream quantities, as described in Pulliam et al. 
(1980). 



 

The governing equations were discretized in a finite difference context in structured hexahedral meshes which 
would conform to the bodies in the computacional domain. Since a central difference spatial discretization method is 
being used, artificial dissipation terms must be added to the formulation in order to control nonlinear instabilities. The 
artificial dissipation terms used here are based on Turkel and Vatsa’s scalar model (Turkel et al., 1994). This model is 
nonlinear and non-isotropic, with the scaling of the artificial dissipation operator in each coordinate direction weighted 
by its own spectral radius of the corresponding flux Jacobian matrix. In the present implementation, the residue operator 
is defined as 
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Here, the ξδ , ηδ  and ςδ  terms represent mid-point central difference operators in the ξ , η  and ς  directions, 

respectively. The numerical flux vectors are defined as 
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The artificial dissipation operators, kjid ,,2/1± , kjid ,2/1, ±  and 2/1,, ±kjid , are defined precisely as described in Turkel et 

al. (1994). 
Since steady state solutions were the major interest in present study, a variable time step convergence acceleration 

procedure has been implemented. In the present case, the time step is defined as 
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The characteristic velocity kjic ,,  is defined as 
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where a is the speed of sound and U, V and W are the contravariant velocity components. 

The time march is performed based on a 5-stage, 2nd-order accurate, hybrid Runge-Kutta time-stepping scheme, 
where 
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It should be emphasized that only the convective operator inside the RHS term indicated in Eq. (9) is actually 
evaluated at every time step. The artificial dissipation term is only evaluated in the first and second stages of the time-
march procedure. It can be shown that this provides enough damping to mantain nonlinear stability (Jameson et al., 
1981) whereas it yields a more efficient numerical scheme. 

 
3 Computacional Grid Topology  

 
The SONDA-III rocket possesses a central body where four front fins and four back fins are mounted. In order to 

save computacional resources, 1/8 of the complete configuration in the azimutal direction was simulated. This 
simplification is valid in the present work because only simulations with zero attack angle were considered. This way, 
taking advantage the symmetry of the problem, the configuration is reduced to 1/8 of the central body in the azimutal 
direction, 1/2 front fin, and 1/2 back fin. In total, 13 meshes with relatively simple geometry to model the rocket and the 
fins were used. These meshes are distributed in the following way: 



  

- 7 meshes for the front fin, denominated 1m , 2m , 3m , 4m , 5m , 6m  e 7m , Fig.(3); 

- 3 meshes for the back fin, denominated 9m , 10m  e 11m , Fig. (4); 

- 1 mesh for the central body, denominated 13m , Fig. (5); 

- 1 “background” mesh for front fin, denominated 8m , Fig. (5); 

- 1 “background” mesh for back fin, denominated 12m , Fig. (5). 
 

  
Figure 3. Front fin meshes. 

 

  
Figure 4. Back fin meshes. 

 
The computational meshes used in the present work were all generated by algebraic methods within each block. In 

particular, the multisurface algebraic grid generation technique described by Fletcher (1988) has been implemented in a 
fairly general code for the present configurations. The code allows grid clustering at various regions and a fair amount 
of control on the grid point distribuition along the normal direction. Both hyperbolic tangent and exponential grid 
stretching functions are used to obtain the desired grid clustering and coarsening over the body. The meshes generated 
by that method are 2-D. The mesh that discretizes the central body is rotated around the longitudinal axis, obtaining a 3-
D mesh. Initially, for the fins, 2-D meshes are generated for the superior and inferior surface. The inferior surface is 
deformed through a mathematical transformation to conform to the cylindrical and conical sections of the central body. 
Finally, intermediate surfaces are obtained through an interpolation of the superior and inferior surfaces previously 
calculated (Fig. (6)). 

The code for the VLS used only Chimera grids. However, during the initial mesh planning phase for SONDA-III, 
the study group noticed that, due to the geometric characteristics of the new problem, using only Chimera meshes 
would not be viable. The adopted solution was to use Chimera in conjunction with patched grids. This procedure made 
possible to generate the meshes in a much simpler way, in comparison with other proposals that just used one technique 
or another. The Chimera subroutines of the original solver for the VLS were adapted and it was implemented additional 
subroutines for the use of patched grids. It was also implemented routines for the control of the flow of information 
among the meshes, and all the particularities of the original code for the configuration of the VLS were eliminated. 
With that, the study group developed a somewhat general code, that can work with Chimera and patched grids, in 



 

complex configurations. The number of meshes that the code can manage is just limited by the amount of memory of 
the machine. 

The flow of information among the meshes can be seen in Fig. (7). Basically, the 1m  to 7m  meshes, that involve 

the front fin, change information amongst themselves using the technique of patched meshes. These 7 meshes change 

information with the 8m  mesh (one of the two "background" meshes), and finally, the 8m  mesh changes information 

with the central body mesh, 13m . For the back fins, the process is similar. The "background" mesh has the function of 

serving as transition among the fin meshes (that possesses a large number of points) and the central body mesh (that 
possesses few points). Besides, the background mesh hides the complexity of the configuration, since the central body 
mesh does not see the fin meshes. In case the "background" meshes were not used, the central body mesh would need to 
have a lot more points in order to communicate in an efficient way with the fin meshes. 
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Figure 5. Central body mesh (left), 13m , and the background meshes (right), 8m  and 12m . 

 

 
 

Figure 6. Intermediate surfaces obtained by interpolation of the tip and root surfaces of the front fin. 
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Figure 7. Information flow of the Chimera meshes (left) and of the patched meshes (right).  



  

 
 
5 Treatment of Patched Grid Interfaces 

 
In this present work, a patched grid always shares a common face of points with other patched grid mesh. As it will 

be explained ahead, those meshes should be modified and that modification has the effect of increasing the common 
point area. To illustrate this procedure, we will suppose that we have two meshes, denominated A and B, as presented in 
the left side of Fig. (8). Those meshes should be expanded, in order to make possible the implementation of a code with 
the capacity to transfer information through the common faces. It is desirable to maintain the order of the artificial 
dissipation in all points. Taken into account that the artificial dissipation uses 5 points, a possible solution is to expand 
the meshes so that there is an area of 5 rows of points in common, as indicated in the right side of Fig. (8). It can be 
observed that 2 rows of points were added to each mesh, which caused the displacement of the first column of points. 
The following steps are executed: 
- Initially, the properties of all interior points located in the expanded A mesh are calculed, advancing one step in time. 
- The points located in the first column of the B mesh receive the values of the properties of the points of the fifth 

column of the A mesh. 
- The points located in the second column of the B mesh receive the values of the properties of the points of the fourth 

column of the A mesh. 
- All the interior points of the B mesh are calculed, advancing one step in time for that mesh. 
- The values of the points located in the fifth column of the B mesh are transferred for the first column of the A mesh, 

and the values of the fourth column of the B mesh for the second column of the A mesh. 
- The interior points of the A mesh are calculed again and the process repeats itself. 
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Figure 8. A and B meshes before (left) and after (right) the expansion process. 

 
The third column of the two meshes is left "free" and its value is determined by the calculation of the interior 

points, without any imposition of values, as it happened with the first and the second columns. Attempts of imposing 
some value in the third column, as for exemple an average among the two meshes, resulted in a significant decrease of 
the convergence rate. In 3-D, instead of lines or columns, the meshes have planes in common. In the present work, the 
meshes are built with a single face in common, and an additional code takes charge of reading a connection matrix 
(represented graphically in the right side of Fig. (7)) to decide which faces of each mesh should be expanded. An 

interesting fact to be observed is when there are 3 meshes in "L" around a wall, as it happens with the meshes 3m , 6m  

and 7m  in the Fig. (3), a volume of points without physical sense is created in the middle mesh. The code should be 

capable of identifying those volumes and of ignoring them. 
 

6 The Chimera Holecutting Process 
 
The Chimera grid possesses a sobreposition area, but unlike the patched grid, there is no need for the points to 

coincide. Again, that area is responsible for the exchange of information among the meshes. However, as not all of the 
points are necessary for the communication among the meshes, we can logically eliminate some points. Actually, all of 
the points continue to exist in the computer memory. We create an auxiliary matrix that associates to each point of the 
mesh an "on value” or an "off value". The points are eliminated by two reasons. The first one concerns the fact that 
points of a certain mesh are located inside an area without physical sense of another mesh, as a solid area. An example 

would be the points of the 8m  mesh that are located inside the front fin. The left side of Fig. (9) exhibits the mesh 8m  

with the points eliminated, and the outline of the fin. In practice, a virtual volume larger than the solid volume is 



 

created, and all points of the mesh that are inside the virtual volume are eliminated. The creation of the virtual volume 
makes possible the control of the amount of points to be eliminated. The second reason for eliminating points is to 

reduce the sobreposition area. An example would be the central body mesh 13m , that contains the two "background" 

meshes 8m  and 12m . A virtual volume completely contained in a "background" mesh is created and all points of the 

mesh that are inside this volume are eliminated. The right side of Fig. (9) displays the result of this process. 
After the "holecutting" process, the next step consists in identifying the Chimera boundary points. These points are 

the ones that were not eliminated by the previous process, but that possess at least a neighbor that was eliminated. The 
Chimera boundary points are not calculated in the same way that the other interior points. They have the values of their 
properties interpolated. Each Chimera boundary point is located inside of a hexahedron whose vertices are formed by 

points of the other Chimera grid. We will call 1p , 2p , 3p , 4p , 5p , 6p , 7p  and 8p  the distances between a 

Chimera boundary point of the first mesh and each of the eight vertices of the second mesh, respectively. The following 
values are calculated 
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they represent weights that participate in the interpolation process. The property in the Chimera boundary point is 
therefore defined as 
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where iPv  represents the values of the properties in the vertices that contribute to the interpolation of the properties of 

that particular point. In other words, they are the values of the properties in the eight vertices of a certain hexahedron of 
the mesh in which the Chimera boundary point is contained. 
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Figure 9. Detail of the “background” 8m  mesh (left) and central body 13m  mesh (right) after the “holecutting” process. 



  

 
7 Results and Discussion 

 
The results presented refer to simulations of the flow over the SONDA-III rocket during its first stage flight. The 

specifc results included here consider only the case with freestream Mach number 0.2=∞M  and zero angle of attack, 
which is representative of the simulations performed so far for the configuration. Moreover, as the flight time in the 
lower atmosphere for these rockets is very short and the vehicle is at supersonic speeds during most of this flight, it 
seems appropriate to select a supersonic flight condition for the present discussion. Furthermore, the purpose of the 
present paper lies mostly in the capability implemented instead than a detailed account of the SONDA-III 
aerodynamics. Within the supersonic speed regime, several interesting aspects of the Chimera and patched grid 
techniques can be analyzed, such as the communication of information across the internal boundaries among blocks 
with discontinuities in the flow properties. As previously mentioned, the major interest in this work concerns the 
evaluation of the joint use of the Chimera and patched grid techniques as a tool for flow analysis on geometries of 
interest for the group. 

As one can observe in Figs. (4) and (5), the afterbody portion of the vehicle has been simplified for the simulations 
here reported. This simplification has been performed because previus experience (Azevedo et al., 1997; Strauss et al., 
1999) with afterbody flows has demonstrated the need for a viscous turbulent formulation for the adequate description 
of such flows. In the future, an accurate description of the aferbody will be included in the vehicle model, but this is 
beyond the scope of the present effort. Furthermore, the added complexity in the afterbody region would not contribute 
to the major interest of the present work. 

Figure (10) exhibits the residue history for all the meshes. The CFL used was 0.9 and approximately 8000 iterations 
were needed to reach machine zero. Mach number contours for the central body, the front and back fins can be observed 
in Figs. (11) and (12), respectively. In these figures, the points which were eliminated from the holecutting process were 
not plotted. Figure (13) exhibits the recirculation zone that is formed in the trailing edge of the front fin. The main 
objective of this work was not to capture phenomena with that level of detail, but even so, in spite of the low resolution 
of the mesh in that area, the results were quite satisfactory. 
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Figure 10. Residue history for all the meshes used in the simulation ( 0.2=∞M  and CFL=0.9). 

 
 



 

 
 

Figure 11. Mach number contours along the SONDA-III central body ( 0.2=∞M and α =0 deg.). 
 

  
 

 

Figure 12. Mach number contours along the front and back  fins ( 0.2=∞M and α =0 deg.). 
 

 
 

Figure 13. Recirculation zone in the front fin ( 0.2=∞M and α =0 deg.). 



  

 
8 Concluding Remarks 

 
The paper has presented results for 3-D Euler simulations of the flow over the SONDA-III, a typical sounding 

rocket. To the authors knowledge, this is the first time that such accurate and detailed simulation for the flow over the 
SONDA-III is performed and presented. A structured multiblock code has been implemented, using a Chimera and 
patched approach for handling the geometric complexity of the configuration. That was the first time that the group 
simulated a vehicle with fins and also a configuration in which there were body intersections (the central body with the 
fins, Figs. (1) and (2)). In spite of not having experimental results for comparison, the results here presented seem 
coherent. All codes used were developed by the research group and represent a powerful aerodynamic analysis and 
design tool. Finally, the presented methodology, using a combination of Chimera and patched approaches, seems to be 
convenient to work on similar problems with the presence of several fins. The main noteworthy advantages were: 
- Flexibility: the use of Chimera and patched grids together allows the generation of meshes with much more ease and 

speed. 
- Modularity: the use of "background" meshes allows hiding the complexity of the meshes that involve the fins. Small 

modifications are simple, because there is no need to generate all the meshes or even to reschedule the flow of 
information. 

- Point concentration: the use of multiblock meshes allowed the refinement of localized areas in a way very similar to 
what can be achieved with the unstructured meshes. 

The power of this combined Chimera/patched grid simulation capability becomes evident when one considers that it 
was possible to simulate the flow over a complete 8.7m long vehicle and, at the same time, to capture details of 
phenomena occurring along the trailing edge of the frontal fins, which have only 1.5cm semi-height. Furthermore, this 
was accomplished with a computational mesh of fairly modest size. 
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