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Abstract. Traditional methods for monitoring practical rotating machinery are usually based on Fourier transforms, such as, 
spectral analysis, cepstrum and time-frequency analysis. It is well known that some machine faults produce representative spectral 
lines and one can try to associate these spectral lines to the faults. However, machine faults may have virtually the same spectral 
representation and hence, one can find difficulties to distinguish one fault from another. Recently, evidences of nonlinear behavior 
have been reported in rotor systems with rub or clearance, which suggest the use of nonlinear methods for condition monitoring 
and fault detection. In this paper the pseudo-phase portrait (PPP) is used for condition monitoring of a practical rotating 
machine. The PPP is based on eigenvalue-eigenvector decomposition of the reconstructed phase-state. The diagrams visualized in 
PPP preserve the most important characteristics of the trajectory, and also have advantages over conventional methods, such as 
its robustness to signal noise and its sensibility to small variations of machine conditions. The PPP analysis obtained under 
different machine conditions demonstrates that it is possible to detect major differences in system dynamics. A vertical machine 
with a tilting pad thrust bearing was used to investigate the PPP method and the preliminary results showed that the method is 
appropriate for detecting small variations in bearing loads and also it is capable of detecting bearing faults. It is promising, 
therefore, that PPP can be successfully used for fault detection in rotating machinery.  
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1. Introduction 
 

The rotating machinery used for electric generation such as hydraulic generator or gas turbines have fundamental 
importance, not only for industrial use, but also for improving the quality of life in any community. In this context, the 
machine condition monitoring is an indispensable task for lowering the maintenance costs and also for avoiding any 
undesirable interruption in energy supply. Most methods for practical machinery monitoring are based on Fourier 
transforms or fast Fourier transforms (FFT), such as spectral analysis, cepstrum and time-frequency analysis. The 
common approach for practical applications is to use vibration sensors, such as accelerometers, which are positioned on 
the bearings and on-line data acquisition software is used for monitoring the machine operational conditions. The main 
drawback in this conventional approach is the fact that an incipient fault usually has negligible spectral representation 
and this can be interpreted as signal noise or regular variations of machine conditions. Also, different rotating machine 
faults may have virtually the same spectral representation, and this complicates the task of fault diagnosis.  

To overcome the limitations of these conventional techniques, new monitoring methods have been proposed for 
practical applications in large rotating machinery (Lucifredi et al., 2000; Chen, 1995). The most desired characteristics 
of these new methods are: sensibility to small variations of machine conditions, the capacity of distinguishing different 
faults and robustness to signal noise. The conventional methods are based on machine symptoms and therefore, initially 
the fault patterns have to be developed and stored in the computer. Then they are compared to the current pattern and 
some classification method indicates the presence of anomalies. The extraction of fault features and diagnostic indices 
are particularly important in these methods once few analytical models can satisfactorily describe the behavior of a large 
rotating machine.  

The orbit portrait analysis is another usual method for monitoring rotating machinery. Unlike spectral analysis, 
which is a frequency domain technique, orbit portrait is a time domain technique, which uses the raw time series of the 
shaft displacements. The usual approach for practical computation of orbit diagrams is to use at least two non-contact 
displacement sensors, fixed to the bearing cases in orthogonal axis. The relative shaft motions between bearing case and 
the shaft are measured and plotted in a X-Y co-ordinate plane. The trajectory of the center of the shaft can be observed 
and monitored in on-line equipments. If a fault appears, it is expected some modifications in the orbit diagram and after 
that, some diagnostic routine is employed. The orbit analysis is an effective technique for bearing monitoring, however it 
is difficult to distinguish small machine variations in such type of diagrams. For example, a 
small rotation variation produces usually negligible orbit variation, once the velocity is not used in orbit calculations and 
this could be a serious problem in electrical generators. 
 Recent researches have shown that some rotating machine faults introduce complicated nonlinear vibration 
characteristics. Chaotic motions can be found in large rotating machine with unstable oil film, cracked rotor, rotor-to-
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stator rub or a loose pedestal (Muszinska, 1995; Chu, 1997; Muller, 1994). Hence it is necessary to develop nonlinear 
methods for effective machine monitoring and fault diagnosis. The conventional approaches for nonlinear system 
analysis are based on phase portrait, Poincaré maps and bifurcation diagrams. The phase portrait is an orthogonal vector 
plot of the displacement vector ( )tx  and its temporal derivative ( )tx� . The periodicity of an ideal linear system can be 
easily visualized because the attractors of the trajectory are stable. For a nonlinear motion the attractors become more 
complex and the analysis of this trajectory is not so obvious.  
 In real word, the machine signals are not ideal, because they are inevitably associated with noise. This fact 
introduces an additional problem in the phase portrait analysis, because one has to calculate the derivatives of raw time 
series. The development of nonlinear dynamic has brought new methodologies to investigate complex behavior of 
rotating machinery. Wang (2001) compared three different nonlinear methodologies for fault diagnosis in rotating 
machinery, which are: pseudo-phase portrait, singular spectrum analysis and correlation dimension. The correlation 
dimension of a non-linear dynamical system gives an indication of the number of degrees of freedom excited in the 
system. A fault introduces a modification in system behavior and some variation of correlation dimension is expected 
(Jiang, 1999). The singular spectrum analysis indicates the complexity of the signal. A pair of eigenvalues in the 
singular spectrum corresponds to a line in the conventional spectrum. So, the larger the effective dimension of the 
subspace in a singular spectrum, more complex the signal will be (Wang, 2000).  
 The pseudo-phase portrait is simple to compute and seems to be sensitive to some fault types. Some interesting 
pseudo-phase portraits from a large rotating machine with oil whirl fault and rotor-to-stator rub fault have been reported 
by Wang (2003). By comparing with the phase portrait, the major features of the pseudo-phase portrait theory seem to 
be its robustness to noise and the preservation of geometrical invariants, such as, the fractal dimension of an attractor 
and the Lyapunov exponents of a trajectory. In this work, the pseudo-phase portrait technique was applied to a vertical 
test machine with a tilting pad thrust bearing for condition monitoring. The basic theory of pseudo-phase portrait is 
stated and discussed in Section 2. 
 
2. Pseudo-phase portrait 
 
 The pseudo-phase portrait is an application of the method of delays that was originally proposed by Takens (1981) 
and adapted for practical machine diagnosis by Wang (2003). The main idea of the method of delays is that it is 
unnecessary to know the signal derivatives to form a co-ordinate system in which the phase-portrait diagrams are 
plotted. This approach uses directly the raw time series and its lagged values to construct the state space, avoiding the 
use of derivatives. For a N-point time series { }Nxxx ,,, m21  a sequence of vectors iy , Mi ,,, m21= , can be 
generated to form a trajectory matrix A in the form: 
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where ( )τ−−= 1mNM  is the length of the reconstructed vectors iy . Each vector iy  has the dimension m and 
corresponds to the reconstructed state-space vector. The dimension m is called embedding dimension of the 
reconstructed state space, τ  is the lag time measured in units of sampling interval. The space, which is reconstructed 
from raw time series, is called the embedding space or pseudo-phase space and the trajectory in the pseudo-phase space 
is called pseudo-phase portrait (PPP).  
 The problem of plotting the trajectory matrix in this form is the presence of redundant vectors, which add little 
information about the system. Hence, it is convenient to introduce some linear transformation of trajectory matrix to 
achieve a sequence of linearly independent vectors. In particular, one can calculate the number of linearly independent 
vectors that can be constructed from the trajectory matrix. Mathematically, one can define the singular vectors is , which 
satisfy the condition: 
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where, iσ , mi ,,, m21= , are real numbers and the linearly independent vectors ic  form the desired orthogonal base. 
Broonhead (1986) has demonstrated that the vectors ic  can be found by using the eigenvalue-eigenvector 
decomposition of the covariance matrix B in the following form: 
 
 iii cBc 2σ=  (3) 



 

 
and, 
 

 

( )

( ) ( ) ( )

∑

∑ ∑

∑ ∑

=

= =
τ−+τ−+τ−+

= =
τ−+

























===
M

i M

i

M

i
mimiimi

M

i

M

i
miiii

T
ii

xxxx

xxxx

MM 1

1 1
111

1 1
1

11

m

oo

m

yyAAB T  (4) 

 
where 2

iσ  are the eigenvalues of the covariance matrix and the vectors ic  are the associated eigenvectors. The rank of 
the covariance matrix is equal to the number of its non-zero eigenvalues. The eigenvalues of the covariance matrix form 
a subspace which dimension is equal to the embedding dimension. Hence it is straightforward to use vectors restricted to 
this subspace in the pseudo-phase diagrams. The vectors of the trajectory that satisfy this restriction can be calculated 
multiplying the trajectory matrix by the orthogonal matrix C, whose columns are composed by the eigenvectors ic : 
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 The columns of the rectangular matrix D ( mM ×ℜ∈D ) plotted in an orthogonal plane form the pseudo-phase 
portrait. These diagrams are similar to the phase-portrait diagrams once they are constructed using linear transformations 
of the trajectory matrix. The first problem that arises from the above transformation is the choice of the eigenvectors 

mii ,,,,c �21= , used in the pseudo-phase portrait. For practical machine signals, random or correlated noise is 
always present, and it is expected that some of the eigenvalues of the covariance matrix to be associated with noise. It is 
well known that the eigenvalues and eigenvectors are closely related to the natural frequency and mode shape of linear 
dynamic systems.  
 The eigenvector complexity is an indicator of the dynamic system complexity. If the noise is random and appears at 
low intensity, one can use only the two eigenvectors ( 21 c,c ), which are associated to the two biggest eigenvalues of the 
covariance matrix to form an orthogonal plane defined by the singular vectors ( 21 d,d ). Therefore, only the 
deterministic part of the trajectory matrix is considered for reconstructing the trajectory and the noise-dominated part is 
theoretically eliminated. This is an important aspect for practical machine monitoring, because noise is always present in 
measured signals. However, using only the two largest eigenvalues of the covariance matrix can dissimulate small 
perturbations of machine operational conditions. Small machine modifications may indicate an incipient fault hence, for 
monitoring purposes it is important to develop methodologies that are, both, sensible to small variations of machine 
conditions and also not perturbed by noise.  
 Another question that arises from the above discussion is the reconstruction of the trajectory matrix. The 
reconstruction process is based on the determinations of the optimal lag time and the embedding dimension. The use of 
incorrect lag time or incorrect embedding dimension leads to an inaccurate representation of the true dynamics. There 
are at least two difficulties in applying the PPP method in real machine monitoring, because the lag time τ  and the 
embedding dimension m must be determined before reconstructing the embedding space. These parameters have large 
influence on the PPP method and they must be correctly calculated so that the actual state space and its reconstructed 
form (PPP) are in some sense equivalent. Takens’ theorem states the sufficient condition 12 +≥ nm where n is the 
dimension of the original system. This, however, is of little practical relevance since n is not known a priori. Also, 
Takens’ theorem assumes that infinite amount of noise-free data are available, but it is not the case for practical 
situations, because the data are always time-limited and corrupted by noise. 
 Numerical simulations of non-linear systems, have demonstrated that, if τ  is too small, the reconstructed attractor 
falls on the main diagonal of the co-ordinate system and this result in little information gain. On the other side, if τ  is 
too large, successive reconstructed vectors iy  may become uncorrelated and the reconstruction is no longer 
representative of the true dynamics. This is called irrelevance (Csdagli et al., 1991). It is important to set a lag time to 
assure that the components of ix  are independent and the same lag time must be used for all embedding dimensions. 
There are different methods for estimating the lag time such as autocorrelation function and mutual information (Albano 
et al., 1988, Fraser, 1986). Kugiumtzis (1993), has suggested to set the time window, ( )τ−1m , equal to or larger than 



 

the mean orbital period from the oscillations of the time series, which is equal to the mean time between peaks (tbp). 
This relation states that the embedding dimension and lag time must be defined not separately and it will be investigated 
further in Section 3. 
 The influence of embedding dimension m is also important in the PPP method. The dimension estimation gives a 
measure of the necessary and sufficient number of state variables necessary to approximate the steady-state dynamics 
from which the time series is realized. One approach for determining the embedding dimension is to increase m 
systematically, until the trajectories no longer appear to intersect (Roux et al, 1983). This is a subjective criterion and 
become inapplicable when the dimension become higher. In the absence of noise, the rank of the trajectory matrix is 
equal to the number of its non-zero eigenvalues, which form the smallest subspace that represents the trajectory. 
However, for practical applications, the number of state variables of a real machine is not known a priori. Broomhead 
(1986) has proposed to define m and τ  as a function of band-limited frequency and set both not separately in the form: 

( ) wnm /π=τ+≥ 212 , where w is the frequency in the Fourier spectrum of time series with the greater power. Using 
this relation one can estimate the system dimension n if the main frequency, w, is known. For practical applications, the 
above relation can be adopted if the main frequency in the FFT spectrum of the time series is clearly visualized. This is 
the case when one is measuring rotor radial vibrations of a healthy machine, because the synchronous frequency is 
always present in the FFT spectrum and usually, it has the greater power. Once the dimension n is estimated, the 
embedding dimension can be calculated by using Takens’ theorem. However, if the reconstruction process is sufficiently 
close to the original system map, the embedding dimension can be as small as the system dimension, nm = , (Casdagli 
et al, 1991). Hence, the lowest limit for the embedding dimension could be: 
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 In this paper the embedding dimension and the lag time are calculated by using the above relation. Once the lag time 
and embedding dimension are defined, the trajectory matrix can be reconstructed directly from the time series. If the 
reconstruction process is perfect, the most relevant characteristics of the original system are preserved in the 
reconstructed trajectory and one can use these characteristics for extracting qualitative information from the system. 
Here, qualitative information means knowledge, which may be obtained from a qualitative analysis of a dynamical 
system. A practical application of the PPP method for machine condition monitoring will be described on Section 3. 
 
3. Monitoring a vertical rotating machine 
 
 In this experiment the orbit diagram, phase-portrait, FFT spectrum and the pseudo-phase portrait method have been 
employed for condition monitoring of a vertical rotating machine. The vertical test machine used in this experiment is 
composed by an electric motor with velocity control and a rotor supported by rolling bearings at its upper side and a 
tilting pad thrust bearing at the lower part of the rotor. A rigid disc is mounted at the end of the shaft and a hydraulic 
mechanism provides the axial load to the bearing. The vertical test machine and a detailed part are pictured in Fig. (1).  
 Tilting pad thrust bearings are usual component in large machinery with vertical rotor. However, only recently the 
influence of an axial bearing on radial vibrations has been reported (Jiang, 1998, 1999). The thrust bearing provides 
additional stiffness and damping of a flexible shaft, increase the first critical speed and also provides a decrease of the 
rotor radial vibration. Berger (2000) has investigated the problem of a manufacturing defect in a thrust bearing and he 
has shown that an angular defect in the stator of the bearing produces a synchronous moment, similar to unbalance 
response. This result shows that different faults in a practical machine can produce similar characterization in FFT 
analysis. The thrust bearing used in the vertical machine was considered in perfect conditions for monitoring purposes. 
By using the hydraulic mechanism it is possible to apply different axial loads to the thrust bearing, and hence, modifying 
the rotor dynamic behavior. The electric motor provides the rotation to the rotor, which can be controlled using a digital 
control system. 
 Two non-contact inductive displacement sensors (Bentley Nevada Proximitor 3300 series) were appropriately 
fixed in X-Y co-ordinate positions to monitor the disc radial vibrations. The Lynx digital signal analyzer was utilized 
for signal acquisition and processing. Matlab software routines were elaborated for calculating the orbit diagrams, 
phase-diagrams and also the FFT spectra. No digital filter was used in all data collected and the sampling frequency was 
set at 1000 Hz. Then, pseudo-phase portraits were calculated for different rotations and also for different axial loads. 
Initially the axial thrust bearing used in the vertical rotating machine was considered fault-free and the rolling bearing 
was also considered in perfect conditions, once all clearances were set to a minimum. 
 
 



 

 
 
 Figure 1. Vertical test machine and a detailed part: a) displacement sensor of X co-ordinate, b) displacement sensor 
of Y co-ordinate, c) axial load cell and hydraulic mechanism, d) rotor, e) motor, f) rolling bearings, and g) tilting pad 
thrust bearing. 
 

 
 Figure 2. Orbit diagrams calculated from X and Y co-ordinates at 996 r.p.m. and phase portraits calculated from X 
co-ordinate. The axial load values are: A) 15 kN, B) 20 kN 
 
 The orbit diagrams and the phase portraits are presented in Fig. (2). The orbit diagrams show approximately the 
trajectory of the center of the rotor. It can be verified in these diagrams that the orbits are not perfect circles, because the 
test machine is not ideal. One could expect to find an increase in the trajectory stability, as an increase in axial load is 
provided. However, it is difficult to distinguish this effect for such a small variation in axial load. Generally speaking the 
thrust bearing hinders the deflection of the shaft and hence at the upper limit of axial load, the amplitudes of rotor radial 
vibrations should be smaller (Jiang, 1999). Observing these trajectories separately one cannot evaluate the health of the 
entire system. As with any other diagnostic method based in machine symptoms, it is necessary to develop, previously, 
the patterns of the healthy system to achieve any fault diagnosis. 
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 Figure 3. FFT spectra of X co-ordinate at 996 r.p.m. The axial load values are: A) 15 kN, B) 20 kN. 
 

 
 Figure 4. Pseudo-phase portraits and respective eigenvectors c1 and c2, calculated from X co-ordinate at 996 r.p.m. 
The axial load values are: A) 15 kN, B) 20 kN. Embedding dimension is 29 and lag time is 0.001 s. 
 
 The phase portraits of the disc radial displacements were also pictured in Fig. (2) for different axial loads. The 
phase portraits show a broader pattern than orbit diagrams and it is easy to identify the sharp corners due to the 
derivatives of raw time series. The axial thrust bearing introduces additional stiffness and damping to the rotor, however, 
these influence is not clearly observed in the phase portrait diagrams, hence it is difficult to correlate each pattern with 
its respective axial load. The phase-portrait derive from perfect trajectories probably due to a series of machine 
imperfection, such as, problems in the manufacturing process of the disc, rotor misalignment, imbalance forces, small 
ball bearing clearances, etc. However, for monitoring purposes, one could not consider these imperfections and hence, 
the orbit diagrams and phase portrait could be considered representative of a fault free machine condition.  
 The FFT spectra for two different axial loads are presented in Fig. (3). An amplitude decrease in the synchronous 
radial vibration was expected in Fig. (4B) due to the action of the thrust bearing, but this influence is almost 
imperceptible. When the axial load increase from 16 kN to 20 kN, the main frequency components of the signal show a 
very small decrease, hence these two different axial loads produce almost the same FFF spectra. Hence, it is difficult to 
diagnose any machine variation considering the FFT spectra separately. In this case, another auxiliary method should be 
used to achieve any fault detection and diagnosis. 
 



 

 
 Figure 5. Pseudo-phase portraits and respective eigenvectors c1 and c2 calculated from X co-ordinate at 2226 r.p.m. 
The axial load values are: A) 15 kN, B) 20 kN. Embedding dimension is 13 and lag time is 0.001 s. 
 
 The pseudo-phase portrait for different rotor speeds and axial loads are showed in Fig. (4) and Fig. (5). Observing 
these diagrams one can verify the presence of more stable attractors, which provide an easier visualization of small 
variations of machine conditions. The stability properties of PPP can be attributed to the average possess used for 
computing the singular vectors 1d  and 2d . The operation of the eigenvectors 1c  and 2c  in the trajectory matrix results 
in average values that smoothes the trajectory pattern. The eigenvectors associated to the pseudo-phase diagrams are 
also pictured in Fig. (4) and Fig. (5). The values of the two biggest eigenvectors of the covariance matrix are almost the 
same. The biggest eigenvectors are associated to the main frequencies of the signal, and as verified in FFT spectra, the 
main frequencies variations are almost negligible. Hence, for small variations of axial loads, one can also expect small 
variations on these eigenvectors. 
 The presence of noise in the measured signal has great influence in orbit diagrams and phase portrait, but this 
influence is virtually vanished of PPP computation. This occurs because in the absence of noise, the rank of trajectory 
matrix, which is equal to the number of its non-zero eigenvalues, is the dimension of the embedding space that contains 
the trajectory. If the observations are composed by an additive noise in the form: ( ) ( ) ( )trtxty += , where ( )tr  is a 
random noise, the noise prevents any eigenvalue from vanishing completely. The first largest eigenvalues of the 
trajectory matrix mostly arise from the signal and the remaining eigenvalues arrive from the noise. Hence the 
eigenvalues related to the noise are not used for PPP computation. The computation of PPP using the smallest 
eigenvectors produces random diagrams that are not representative of the true dynamics. 
 In Fig. (4) it is possible to visualize the action of the thrust bearing on the system dynamics. The PPP computed in 
Fig. (4B) is more stable than the PPP computed in Fig. (4A), as expected. In Fig. (5) the PPP was computed using a 
higher rotation (2226 r.p.m). The thrust bearing provides a better rotor stability at this rotation and its influence on the 
system dynamic at 15 kN and 20 kN of axial load is virtually the same. However, the PPP differ from each other, 
allowing the visualization of machine condition variation. From comparison between the phase portraits of Fig. (2) and 
the pseudo-phase portraits of Fig. (4) one can verify that these diagrams preserve some topological similarities. This is 
an important characteristic because the main properties of the system dynamics are preserved in pseudo-phase portrait 
and this facilitates the task of fault detection and diagnostic. 
 The influence of lag time and embedding dimension on the computation of PPP is now discussed. Equation (6) is 
used for estimating the embedding dimension, but firstly, it is necessary to calculate the main frequency of the raw time 
series. The calculation of w is an easy task, once the displacement vectors are recorded on computer and the FFT spectra 
are available. The X or Y co-ordinates can be used for these calculations. The result is 233=w  rd/s, when rotor 
rotation is 2226 r.p.m. and the sampling frequency is 1 kHz. Adopting the lag time equal to the sampling time 
( 0010.=τ s) and using Eq. (6), results in 13≥m . The same method was employed for calculation of the embedding 
dimension for 996 r.p.m and the results is 29≥m . This method for calculating embedding dimension proved to be a 
good estimator, once the stability properties of the trajectory was assured. 
 Figure (6) shows the PPP calculated for two different values of embedding dimensions. In phase space 
reconstruction theory, the attractor has been found to have more irregular appearance when the embedding dimension is 
insufficient. This characteristic is confirmed in Fig. (6A), where PPP was calculated with a small embedding dimension. 



 

When the embedding dimension reach the best dimension calculated theoretically ( 29=m ), the patterns become more 
stable and smooth. In this condition the PPP and phase-portrait preserve some similarities. 
 

 
 Figure 6. Pseudo-phase portraits calculated for different lag times and embedding dimensions. A) 0010.=τ s, 

5=m . B) 0010.=τ s, 61=m . C) 0150.=τ s, 29=m . D) 0300.=τ s, 29=m . The axial load is 20 kN and the 
rotation is 996 r.p.m. Compare with Fig. (4B). 
 

 
 Figure 7. Orbit diagrams calculated from X and Y co-ordinate and phase-portraits calculated from X co-ordinate, 
with a fault rolling bearing (loose bearing cap) at 996 r.p.m. The axial load values are: A) 2 kN, B) 15 kN. 
 



 

 
 Figure 8. Pseudo-phase portraits and respective eigenvectors c1 and c2, calculated from X co-ordinate, with a fault 
rolling bearing (loose bearing cap) at 996 r.p.m. The embedding dimension is 29 and lag time is 0.001 s. The axial load 
values are: A) 2 kN, B) 15 kN. Compare with Fig (7). 

 
 By adopting the embedding dimension: ( ) 1+τ≥ /tbpm  as has been suggested in Kugiumtzis’ s paper, it results in 

61≥m , when the lag time is equal to 0.001 s and the rotational speed is 996 r.p.m. In this case, a larger dimension 
provides little additional information about the system and the PPP is virtually equal to the PPP calculated using 

29=m , as shown in Fig. (6B). However, one can choose the smallest embedding dimension possible, for saving 
computational cost. In practice, it is impossible to decrease the lag time above limit defined by the sampling frequency. 
Therefore, the small lag time will be limited by limitations imposed by the instrumentation used for collecting raw time 
series. The best lag time used for PPP calculation was defined by the sampling interval. The computation of pseudo-
phase portrait with large lag times, tend to produce non-correlated eigenvectors and the pattern is no longer 
representative of the true dynamics. These effects can be seen in Fig. (6C) and Fig. (6D). 
 All calculated diagrams of Figs. (2-6), are patterns of a machine assumed to be fault free. One can now verify the 
advantage of PPP over conventional methods when some machine fault occurs. A loose bearing cap was artificially 
introduced in the bearing and the orbit diagrams, phase-portraits and pseudo-phase portraits were calculated. The fault 
introduces clearances between the rotor and the bearing, and this provides a modification in system dynamics. The 
dynamic analysis of a rotor with loose pedestal has been reported recently by Goldman (1994) and Muszynka (1995). 
These papers show that this type of fault introduces strong nonlinear phenomena and in some cases, chaotic motion is 
observed. The orbit diagrams and phase portrait of Fig. (7) show the trajectory pattern of the rotor with loose bearing 
caps, for different thrust bearing loads. In this condition, the attractors of the trajectories become more instable, when it 
is compared to the non-fault case.  
 The influence of axial load intensity on rotor radial vibrations is visible in the orbit diagrams, because the trajectory 
becomes less irregular with a large axial load, but this effect is not clear in the phase portrait. Figure (8) shows the 
pseudo-phase portrait calculated for this fault condition. The PPP diagrams show small discontinuity points and no sharp 
corners and also, they preserve some similarities with the phase portraits. The action of the thrust bearing is easily 
visualized in these diagrams, because PPP computed at 15 kN is more regular and stable than PPP computed at 2kN of 
axial load. Figure (4A) and Fig. (8B) show the PPP computed for the non-fault case and the fault case, respectively, at 
the same machine rotation and axial load. It is easy to verify the differentiation between the two cases. The extraction 
and classification of fault indices represent an important issue in the PPP method, as well as, in any other fault diagnosis 
method based on machine features. These fault indices can be calculated by using, for example, the mean Euclidean 
distance between the singular vectors of the PPP. The authors are currently working on this subject. 
 
4. Conclusions 
 
 In this work, FFT spectra, orbit diagrams and phase portraits have been studied for monitoring small variations in 
machine conditions. These conventional methods have been compared with the pseudo-phase portrait method by using a 
vertical test machine supported by rolling bearings and a thrust bearing. It was demonstrated that, it is difficult to 
evaluate small variations of bearing axial loads observing the FFT spectra, orbit diagrams or phase-portrait separately. 
The pseudo-phase portrait was compared with the conventional methods and the results showed that PPP are sensitive to 



 

these small variations and its visualization is improved. The pseudo-phase portrait smoothes the trajectories of the 
conventional phase portrait and also preserves its main properties. The main difficulties in applying the PPP analysis in 
practical applications are the definitions of the embedding dimension and the lag time, before reconstructing the 
trajectory matrix. If the embedding dimension is different from the optimum value, the PPP becomes not representative 
of the true system dynamic. The optimum lag time has been set equal to the sampling interval, which is limited by the 
instrumentation utilized in the signal processing. A large increase in this value also produces not representative 
diagrams. A loose bearing cap was also analyzed using the PPP method. The results showed that this fault produces a 
trajectory pattern that is significantly different from the non-fault case. Therefore, the PPP method proved to be a 
promising technique for monitoring real machines and also, for detecting machine faults.  
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