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Abstract. A forced singular perturbations (FSP) approach is proposed as a theoretical frame to Bar-Itzhack's multiple time-scale
solution to the problem of terrestrial strapdown navigation. The approach splits the navigation equations into body and local-level
reference frames to reduce the computational workload. The velocity vector is decomposed into two components, each in its own
particular reference frame: the inertial thrust velocity in the body frame, driven by nongravitational input, and the ground velocity
in the local-level frame, affected by the influence of gravity. The dynamics is then forced into two distinct boundary layers and an
outer solution. Thrust velocity dynamics is solved at a fast rate, gravity-influenced ground velocity at an intermediate rate, and
position at a slow rate. Limitations of FSP as a theoretical justification of the approach are indicated in terms of violation of the
matching conditions across the boundary layers. Forcing the dynamics into distinct time scales caused a degradation of the
continuous time solution. The loss of accuracy was not significant in comparison with the covered distance. Discretization and use
of inertial data in incremental form, however, had a significant impact on navigation acuracy. The evaluation of performance in a
variety of conditions indicated that, for given fast inertial data acquisition and slow position update rates subject to constrained
computational throughput, the multirate algorithm showed superior accuracy in comparison with the simultaneous integration of
velocity and position dynamics at the slow rate. The results are valuable in the design of autonomous vehicles expected to
accomplish navigation by purely inertial means for brief periods of time.
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1. Introduction

Forced singular perturbations (FSP) are often used in real-time suboptimal control of nonlinear dynamic systems to
avoid solving a two-point boundary-value problem (Kokotovic et allii, 1976; Shinar, 1983; Sridhar and Gupta, 1980;
Tihonov, 1952). The latter imposes a high computational burden in problems with a large state dimension, yields an
open-loop control law, and does not render a real-time closed-loop synthesis. FSP reduces complexity by artificially
separating the fast state components into distinct time scales (Ardema and Rajan, 1985a, 1985b; Kelley, 1971;
Kokotovic et allii, 1980). It is accomplished by multiplication of the time derivatives by successive powers of a small
positive perturbation parameter ε. Smaller interconnected static optimization problems arise and a distinct solution to
each one of the fast variables is then sought within the corresponding time scale (Calise, 1978; Kelley, 1971, 1973).
Full-order system complexity is reduced; nevertheless, additional algebraic constraints arise. In general, the solution in
a fast time scale does not match the corresponding initial condition of the fast-varying variable. To cope with such
discontinuities, asymptotic expansion methods are employed to match the solutions across the distinct time scales, as
the composed boundary layer and stream solution in fluid mechanics (Ardema, 1976; Kelley and Edelbaum, 1970;
Wasow, 1965; Freedman and Granoff, 1976). The composed solution to the singularly perturbed system is expected to
be uniformly valid across the boundary layers. For that purpose, the solution of the reduced-order problem is corrected
across consecutive boundary layers, and suboptimal closed-loop control is attainable (Shinar, 1983; Calise, 1981;
Shinar, 1985). The approach calls for an appropriate ordering of the state components according to how fast they
behave relative to one another. This ordering is frequently based on the observation of the physical problem.

The objective in the present application of FSP is not the synthesis of a suboptimal closed-loop control law. Rather,
one seeks the order reduction that occurs within each boundary layer to reduce the computational workload of real−time
integration of the navigation equations, while concurrently avoiding significant errors. Recent advances in autonomous
robotic vehicles motivate this research. The vehicle is assumed to be equipped with strapdown inertial sensors that
provide the capability of determining its position and velocity for a period of time. It is expected to accomplish its goals
autonomously with limited computational resources, and resort to external aids only when required to limit the
navigation errors that arise from processing purely inertial data. Among the advantages of a strapdown inertial
navigation system (SDINS), one can point out that it is self-contained, obviates irradiation to and/or collection of energy
from the environment, is suitable for autonomous navigation of robotic vehicles, and is naturally hardened to external
interference.

By looking into SDINS dynamics, the vehicle maneuverability indicates that the motion of the body coordinate
frame Sb should be accounted for in the fastest boundary layer. Contrastingly, the local-level reference frame Sl used to
describe terrestrial velocity estimates - East, North and Down components of ground velocity, rotates at a much smaller
rate. This observation suggests that Sl motion should be considered in an intermediate boundary layer. Finally, ground
position coordinates - latitude, longitude and altitude, evolve at an even slower rate. Hence, it is reasonable to group
ground position coordinates in the reduced-order problem, also known as the outer solution.

In a well-posed problem, the full-order solution with ε=1 is in the neighborhood of the zeroth-order outer solution
obtained by setting ε=0 (Tihonov, 1952). Besides reducing the computational burden, the zeroth-order solution does not
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require knowledge of the value of ε used to force the fast state variables into distinct boundary layers. In practice, the
reduced-order solution is valid when it is consistent with the physics of the full order problem.

Next are derived the velocity equations in body and local level frames, Sb and Sl, respectively. Assumptions are
made to force the problem dynamics into distinct time scales and to assure the linearity of the velocity equations, so that
the superposition principle applies. Eigenvalue analysis is used to qualitatively justify the casting of the strapdown
terrestrial navigation equations into an FSP formulation. Because suboptimal closed-loop control is not pursued here,
the boundary layers contain more than one fast scalar variable. Limitations of the FSP approach as a theoretical
background to a multirate algorithm are pointed out in terms of violations of the asymptotic matching conditions across
the boundary layers. An ad-hoc modification based on an Euler approximation to the continuous-time multirate scheme
proposed by Bar-Itzhack (1977, 1978) results in a discrete-time algorithm with vertical channel damping. The dynamics
of the thrust velocity represented in the body frame Sb is integrated numerically using the fastest computational rate.
The ground velocity represented in the local-level frame Sl is integrated using the intermediate rate, and likewise in the
slowest rate the reduced outer problem describing geographic position dynamics represented in the earth-fixed frame Se.
A numerical investigation of the impact of physical separation into distinct time scales on navigation error is carried
out, and the results compared with those obtained from the simultaneous integration of the navigation equations at the
slowest rate.

2. The navigation equations in the body frame

Consider a vehicle that moves relative to frame Se fixed to the rotating earth. Following the notation in Bar-Itzhack
(1977 and 1978), one is interested in having estimates of position vector R relative to the center of the earth, and of

ground velocity vector 
e
RU = . The superscript indicates the reference frame in which the time derivative vector is

observed. The accelerometers are fixed to the vehicle's body frame Sb and measure the specific force f acting on the
vehicle relative to the inertial frame Si:
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where gm represents the local gravitation vector. Accelerometer output is often given as a velocity increment between
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Rearranging Eqs. (1) and (2) yields:
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Damping of the unstable vertical channel is accomplished by adding an altitude-dependent term s(h) derived from
altimeter data to that channel's dynamics (Siouris, 1993). To describe the vector quantities in Eq.(3) in the body frame,
one can write:
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The gravitation term represented in the body frame relates to the local-level gravity model according to:
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where g(λ,h) is given by the U.S. Department of Defense World Geoid System WGS-84 model (Siouris, 1993) and l
bD

is the direction cosine matrix (DCM) from Sl to Sb. The initial condition to solve Eq.(4) is determined by:
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where e denotes the earth-fixed coordinate frame, and Ul(0) is the known initial ground velocity represented in the
local-level frame [VN(0) VE(0) VD(0)]T. The initial direction cosine matrices are assumed available from an initial
alignment procedure. Regarding earth-fixed position, the following relation holds:
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After expressing the last equation in the earth-fixed frame, it is possible to compute the earth-fixed position as
follows:
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where Re(0) is the known initial ground position. The above differential equation of the ground position is solved
simultaneously with Eq. (4). Local-level and earth-fixed representations of ground velocity are related as follows:
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where e
lD  is determined from the estimated latitude and longitude. As an alternative to the integration of Eq. (8),

latitude, longitude and altitude coordinates in the earth-fixed reference frame can be computed from:
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where s'(h) is a vertical-channel altitude-dependent damping term (Siouris, 1993), and RN and RE are the earth's
curvature radii in the north-south and east-west directions, respectively (see Table I). One is interested in determining
real-time estimates of VN, VE, VD, λ, Λ, and h by integration of Eqs. (4) and (9) with sampled incremental data provided
by strapdown rate gyros and accelerometers. The direction cosine matrix l

bD  in Eq. (5) is required at a high update rate,
which imposes a significant computational workload.

3. The navigation equations in the local-level frame

The inertial acceleration can be obtained from Eq. (7) as follows:
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where the inertial time derivative of the ground velocity 
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Substitution of Eqs. (7) and (11) in Eq. (10) yields:
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From Eq. (1) and recalling that VR
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= , the ground velocity time rate as observed in the local-level frame is then:

fgRUU m

l
++××−×+−= )()2( ΩΩΩΩΩΩΩΩρρρρΩΩΩΩ (13)

Representing the above vector equation in the local-level frame yields:
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where s''(h) is a vertical-channel altitude-dependent damping term. Time integration of Eq. (14) yields estimates of VN,
VE, and VD. Its solution demands the transformation of specific force measurements from the body frame to the local-
level frame:
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The earth-fixed position estimate can then be obtained from the solution to Eq. (14):
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Alternatively, substitution of lU  obtained from Eq. (14) in Eq. (9) produces the earth-fixed position estimates λ, Λ,
and h. Again, the computation of l

bD  in Eq. (15) is required prior to updating the solution of Eq. (14).

4. Forced Singular Perturbations

Equations (4) and (14) describe the evolution of inertial and ground velocities, respectively, in distinct coordinate
frames − body and local-level frames, respectively. Likewise, Eqs. (8) and (16), or (9), characterize the earth-fixed
position. The coordinate frames rotate at significantly different angular rates and our interest is to make use of this fact
to reduce the computational workload of the numerical solution. The FSP approach is employed to provide a theoretical
frame to a multirate integration scheme. Limitations of the approach are then pointed out along the derivation.

4.1. The Fast Boundary Layer: Thrust Velocity and Body Frame Equations

The description of the navigation equations in the body frame, which is assumed to rotate much faster than the local
level one, is forced into the fastest time scale tb=t/ε2 where ε is a small positive parameter. The local level representation
of the ground velocity is forced into an intermediate boundary layer with time scale tl=t/ε. This is qualitatively justified
by the eigenvalues of matrix b

bi ][ωωωω  in Eq. (4), namely { }biωωωωj,0 ± , the complex pair having a magnitude much larger

than those of l]2[ ρρρρΩΩΩΩ +  in Eq.(14), which are { }ρρρρΩΩΩΩ +± 2j,0 , because the vehicle's maneuverability allows its body
rotation relative to the inertial frame to be much faster than the rotation of its local-level frame. Actually, the
eigenvalues of the coupled position and velocity linearized error equations are close to these ones (Bar-Itzhack and
Berman, 1988). Hence, the assumptions made when forcing thrust velocity dynamics into the fastest boundary layer are
physically meaningful. From the previous inspection of the eigenvalues, however, such forced separation diverges from
reality when the vehicle is resting. A numerical investigation of such condition is later carried out. Now, recalling Eqs.
(4), (8), and (14), the perturbed equations are:
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The zeroth-order solution in the fast boundary layer's time scale tb is obtained by letting ε approach zero, and hence:
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The above shows that both earth-fixed position and ground velocity remain frozen in this boundary layer, which
considers the evolution of Vb dynamics only. Hence, Eq. (18) is linear in Vb and is driven by time-varying input fb,
while gm,b(R(0)) and s(h(0)) become constant input signals. Consequently, Eq. (18) is now analyzed in terms of the
superposition principle valid for linear dynamic systems. The inertial velocity Vb is then partitioned into a sum of two
terms: the thrust velocity Vf,b that arises from all nongravitational forces acting on the vehicle with zero initial
condition, and the ground velocity Vg,b caused by gravitation forces acting on the vehicle in addition to its initial inertial
velocity. Hence:
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where the initial conditions have been selected to eliminate the need to represent the ground velocity in the body
coordinate frame (Bar-Itzhack, 1977, 1978). This boundary layer considers only the thrust velocity Vf,b dynamics
described by Eq. (19). Its numerical integration should be performed at the fast computation rate Tgyr that captures the
dynamics of the vehicle's maneuvers. Velocity and angular increments bββββ∆∆∆∆  and bφφφφ∆∆∆∆  from the inertial sensors will be
employed in a straightforward manner in the discrete-time solution. In the fast boundary layer, Vf,b is expected to evolve
from Vf,b(0)=0, and then converge to its initial value Vf,b

l(0) at the onset of the intermediate boundary layer. The
asymptotic matching condition from the fast to the intermediate boundary layers is written from Eq.(19) as:
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It will be seen later that the above condition is violated. In the following, the gravitational effects on the vehicle´s
motion are considered in the intermediate boundary layer.

4.2. The Intermediate Boundary Layer: Gravitation Effects and Local-Level Frame Equations

The time scale is tl=t/ε in the intermediate boundary layer. The time-varying nature of the nongravitational force f
has been taken into account in the fast boundary layer, and hence f=f l (tl) is considered to be constant in this time scale.
The same rationale is used to assume a constant body angular rate ωωωωbi, l(tl). On the other hand, the ground velocity Ul is
assumed to fully develop within this time scale. The zeroth-order solution in this boundary layer's time scale tl is
produced by perturbing Eqs. (4), (8), (14), and by letting ε approach zero in the tl time scale:
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Vf,b
l(tl) represents the solution of the fast thrust velocity variable in the intermediate boundary layer, and should be

obtained from the constraint in Eq.(22b). The ground velocity Ul is now decomposed into a sum of two terms: Uf,l,
arising from all nongravitational forces acting on the vehicle, and Ug,l, caused by gravitation forces. Position Rl is
analogously separated into components arising from gravitation and nongravitational forces, Rf,l and Rg,l, respectively
(see Bar-Itzhack, 1977, Eq.(32)). In order to linearize the ground velocity equation described by Eq. (23), it is assumed
that ρρρρ=ρρρρ(R,U) is constant within time scale tl. This assumption is physically justified because R is frozen in this
boundary layer, and U remains practically constant within a short computation interval. Hence, the angular rate ρρρρ of the
local-level frame relative to the rotating earth does not change significantly in this time scale. The linearity assumption
allows the use of superposition in the intermediate boundary layer and simplifies the analysis of the effect of gravitation



on ground velocity. Under this assumption, Eq. (23) is linear in Ul, whereas gm,l(R(0))-[ΩΩΩΩ]l
2Rl(0)=gl(R(0)), fl 

l (tl), and
s”(h(0)) are constant input signals in this time scale. Hence:

)t()0(][]2[
dt

d l
,

2
,l

, l
llfllfl

lf fRU
U

+−+−= ΩΩΩΩρρρρΩΩΩΩ (24)

[ ] [ ] ))0(h(''))0(()0(2
dt

d
,,

2
,l

, sRgRU
U

lmlgllgl
lg ++−+−= ΩΩΩΩρρρρΩΩΩΩ (25)

e
e
llflgllflgl RDRRRUUU =+=+= ,,,,           ;

The initial conditions of the local-level position components are chosen as (Bar-Itzhack, 1977):
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Regarding the initial conditions of the ground velocity components, one recalls from Eq. (7) that:
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Only Ug,l dynamics is to be considered in the intermediate boundary layer. Because of its slower dynamics relative
to Vf,b in the fast boundary layer, the numerical integration of Eq. (29) uses a computation rate Tint slower than Tgyr.

The algebraic constraint in Eq. (22b) shows that Vf,b
l(tl) cannot be determined because b

bi )]t([ lωωωω  is singular and, in
general, f l(tl) spans the 3-D space. Hence, the asymptotic matching condition seen at the end of the previous Section
cannot be met because Vf,b

l(0) cannot be determined from constraint (22b). This is a limitation of casting the navigation
problem into an FSP formulation to yield a multirate scheme. It does not imply, however, a limitation of the multirate
scheme itself. Rather, it shows that the FSP formulation − suggested here as a theoretical foundation to justify intuitive,
appealing approximations used in Bar-Itzhack´s ad hoc split b-l multirate scheme, has limitations when applied to this
problem. Hence, in practical terms, the violation of the matching condition across boundary layers does not affect the
numerical implementation of the multiple time-scale navigation algorithm. As before, the asymptotic matching
condition from the intermediate boundary layer to the outer solution is given by:
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where Ug,l
o(0) is the outer solution of Ug,l at the onset of the normal time scale.

4.3. The Reduced-Order Problem:

In the present FSP formulation, position Re has its dynamics evolving in the normal time scale, and its integration
yields the outer solution. From the perturbation of Eqs. (8), (16), (19), and (29), the following is obtained when
parameter ε approaches zero:
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where Vf,b
o(t) and Ug,l

o(t) represent, respectively, the outer solutions of thrust and ground velocities in the reduced
problem. Position dynamics are taken into account here, and thus gl

o(Re) and s''o(h) vary in time. However, Equations
(31a) and (31b) show that Vf,b

o and Ug,l
o cannot be determined because both b
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Therefore, the above contraints do not determine the outer solution of the fast variables. In other words, in spite of its
attractiveness in terms of a theoretical background to multirate navigation algorithms that reduce the computational
burden of real-time numerical integration, the FSP formulation produces mathematical constraints that violate
asymptotic matching conditions across the boundary layers.

4.4. The discrete-time modified b-l split-coordinate multirate algorithm

A closed-loop realization of the forced dynamical separation called for the numerical integration of the navigation
dynamics in distinct time scales, with computations sharing the time-varying state values across the boundary layers.
Thus, Vf,b dynamics in the fast boundary layer was numerically integrated with the short computation period Tgyr, Ug,l
dynamics in the intermediate boundary layer with the intermediate period Tint, and position dynamics in the outer layer
with the large period Tnav. The computations in the fast boundary layer were restarted at the end of each computation
cycle of the outer solution, with Vf,b reset to its zero initial condition. Moreover, by selecting a sufficiently fast
computation rate for the outer solution, Rf,l remains essentially unchanged from its null initial condition seen in Eq.(26),
and thus:
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Thus, at the end of each Tnav computation cycle of the outer solution, Ug,l was reset to the updated Ul, and the
computations in the intermediate boundary layer were restarted. Finally, position dynamics given by Eq. (30) was
written as in Eq.(9), with Ul obtained from Eq.(32). Table (1) depicts the discrete-time multirate scheme, termed the
modified b-l split-coordinate computation scheme after Bar-Itzhack, 1977, with the inclusion of vertical channel
damping. The algorithm used an Euler approximation to the derivative operator in each time scale of Eqs.(19), (29), and
(9). Consequently, when solving for Vf,b, the inertial velocity and angular incremental measurements bββββ∆∆∆∆  and bφφφφ∆∆∆∆ ,
respectively, were used in a straightforward manner. In what follows, a discrete-time algorithm is presented that
determines the direction cosine matrix b

lD , which describes the vehicle's attitude relative to the local level.

Table 1 – Discrete-time modified b-l split-coordinate computational scheme
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5. Attitude Determination: Computation of b
lD

So far, the computation of the direction cosine matrix (DCM) relating body and local-level frames was assumed to
be ideal. Attitude determination is required to transform the specific force measurements from the body frame to the
local-level navigation frame. Rate gyro data is often output as sampled incremental angles of body rotation relative to
inertial space. These samples are processed here with a relative quaternion discrete-time algorithm derived via an
alternative approach (Waldmann, 2002). As described earlier in its continuous-time version (Bar-Itzhack, 1977), it
obviates the need to represent the earth angular rate in the body frame. The algorithm is given by the following
equations, where ( )T

zyxgyr )kT( ρρρλ=l
bq  is the ordered quadruple representation of the rotation quaternion that

aligns the local-level frame with the body frame:
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where Tgyr is the sampling time associated with the incremental angle samples bφφφφ∆∆∆∆  provided by the rate gyros, and lφφφφ∆∆∆∆
is updated at the end of every slow Tnav-cycle used in the solution of position dynamics. The DCM transforming from
the local-level frame to the body frame was then computed from the rotation quaternion computed with Eq.(33)
(Siouris, 1993; Waldmann, 2002).

6. Results

The multirate scheme in Tab. (1) was compared with a simultaneous integration approach shown in Tab. (2).
Sensors were assumed to be perfect because the motivation was to compare the impact of FSP's forced dynamical
decoupling of Eqs. (19), (29), and (9) with the simultaneous integration of corresponding Eqs.(14) and (9), the latter
approach using the slow Tnav-cycle due to limited navigation computer throughput. Both schemes updated the
quaternion solution at the fast Tgyr-cycle rate. Two situations were investigated. In the first case, the reference trajectory
assumed the vehicle's CM was resting relative to the ground, with the inertial measurement unit (IMU) located 1m
ahead of the vehicle's CM. In the second case, the reference trajectory of the CM relative to the ground was:

   ]s/m)[1200/t2(sin 200VN π==== ]s/m)[1200/t2(sin 150VE π=    ]s/m)[300/t2(sin 5VD π=    ]s][300,0[t ∈∈∈∈

The influence of attitude determination errors caused by angular incremental data was assessed by rotating the
vehicle according to a coning motion about its CM to maximize the noncommutativity of finite rotations (Bortz, 1971).
The following coning motion relative to the local-level reference frame was used:
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where θ and Ωp were the cone half-angle and the precession rate of body axis zb about the local vertical, respectively.
Inertial data samples bββββ∆∆∆∆  and bφφφφ∆∆∆∆  were acquired once in every fast computation cycle Tgyr=Tnav/N, and N={12,120}
were values used in the simulation. Hence, the fast boundary layer's rate, used to compute the body-frame thrust
velocity Vf,b dynamics, matched the inertial data acquisition rate. The intermediate layer, where the gravity-driven
local-level ground velocity Ug,l evolves, had its computation cycle given by Tint=Tnav/P, P={4,40}. It is emphasized that
Vf,b was reset to zero and Ug,l to the updated Ul at the end of every slow Tnav-cycle, as shown in Tab. (1). In the
alternative integration scheme, shown in Tab. (2), Eqs. (14) and (9), and the DCM that resulted from the fast solution of
Eq. (33) were simultaneously solved employing the slow Tnav-cycle.

Table (3) indicates the root sum of square (RSS) errors in the horizontal plane at the end of the trajectory. The
results indicate a significant impact of discretization error on navigation accuracy in comparison with that attained in
the continuous-time solution, not shown here due to space limitations. In both discrete-time schemes, the navigation
error was attenuated at the expense of a heavier computational burden, i.e., by decreasing Tnav. To be effective, it had to
be accompanied by a suitable reduction of Tgyr, a step analogous to a reduction of the fixed-time step used to
numerically solve the continuous-time differential equations. Higher data acquisition rates better captured motion
dynamics, and thus improved accuracy. No relevant change in performance resulted from varying the intermediate-
cycle period Tint. Table (3) shows that for the multirate scheme with a given Tnav, accuracy was much improved after the
fast cycle Tgyr was reduced tenfold. Improving accuracy by means of faster data acquisition, however, is limited by
available computer throughput. Hence, it is recommended to keep an adequate balance between the reset interval and



data acquisition rate for a desired accuracy. In  the case of moving vehicle's CM, Table (3) shows significant
improvement in the simultaneous approach at the expense of a heavier computational burden with Tgyr=8.33×10-4s,
when Tnav=9.996×10-2s was reduced tenfold to yield an accuracy comparable to that of the multirate scheme.

For a given fast-to-slow cycle ratio that properly captured the dynamics of the motion, the multirate scheme
consistently developed less navigation error at the end of the trajectory. This is because incremental velocity data were
processed at the fast rate, whereas in the simultaneous approach, on the other hand, a constant specific force was
assumed during the slow Tnav-cycle.

6. Conclusion

Forced singular perturbations (FSP) were investigated as a theoretical frame to justify a linearized split-frame
multiple time scale solution to the strapdown navigation problem. It is motivated by the existence of limited
computational resources in autonomous vehicles. Limitations of FSP as a theoretical frame were pointed out in terms of
violations of asymptotic matching conditions of the zeroth-order solution across the boundary layers.

Numerical tests were carried out to compare the performance of a variation of the b-l split coordinate multirate
computational scheme proposed by Bar-Itzhack with that of a simultaneous approach to the integration of the
navigation equations. Both used the same discrete-time relative quaternion update algorithm for attitude determination.
Sensors were assumed to be perfect to evaluate the errors caused exclusively by the computational schemes. The results
indicated that discretization and use of incremental inertial data had a relevant influence on the attained navigation
accuracy. A balanced ratio between the reset interval and the acquisition rate should be selected, while taking into
consideration the limited computer throughput, expected motion dynamics, and desired navigation accuracy. The results
are valuable in the design of autonomous vehicles expected to accomplish navigation by purely inertial means for brief
periods of time.

Table 2 – Discrete-time simultaneous l-coordinate computational scheme
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Table 3 – Navigation error performance with vehicle undergoing coning motion.

Vehicle's CM at rest Vehicle's CM in motion
Tnav[s] 9.996×10-2 9.996×10-2 9.996×10-2 9.996×10-2 9.996×10-3

Tgyr[s] 8.33×10-3

(N=12)
8.33×10-4

(N=120)
8.33×10-3

(N=12)
8.33×10-4

(N=120)
8.33×10-4

(N=12)
Simult. RSS[m] 7 1 119 45 11
Mult. RSS[m] 17 1 79 15 9
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