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Abstract. The characterization of the fracture behavior in the ductile-to-brittle transition for
steels had been a problem for many decades.  Fracture toughness values exhibited extensive
scatter and severe size and geometry effects.  The measured toughness was a strong function
of temperature in the transition with the toughness values increasing rapidly over a relatively
narrow temperature range.  The toughness results would usually have a large range of values
at a given temperature and therefore could not be easily used to evaluate integrity in
structural components because of the uncertainty in how to handle these test results.
Attempts to solve the transition fracture toughness problems began over 30 years ago, often
without much success.  However, in the past decade a methodology has been developed to
handle all of these problems.  The original concept for describing the complex character of
transition fracture toughness behavior was to attribute transition behavior to constraint
effects.  Test results on different sizes and geometries showed a difference in the toughness
that might be rationalized by a constraint argument; however, this did not account for the
extensive scatter in results.  A new look at the transition toughness character came with the
suggestion that the behavior could be described by considering statistical influences.  The use
of weakest-link statistical models could handle the scatter as well as explain the size effect
observed on proportionally sized specimen.  After more than ten years of study, the statistical
models were developed to the point that they could be applied universally to all transition
fracture toughness results for ferritic steels using a three parameter Weibull distribution with
two prescribed constants.  What remained to be shown was how the temperature distribution
of toughness could be characterized.  The suggestion of a “master curve” that would describe
the transition fracture toughness of all ferritic steels gave the basis needed to finally develop
a complete methodology for characterizing transition toughness.  This methodology can
explain the scatter, size and temperature effects and provides some basis for differentiating
between statistical influences and constraint effects.  The master curve concept with Weibull
statistics has revolutionized the approach used to characterize transition fracture behavior
and has given a rationale for transferring test results to structural evaluation. This approach
was several decades in the development stage.  This paper will review some of the early
models that were used to describe transition fracture behavior and highlight some of the
important steps that went into the development of the current approach for handling
transition fracture behavior.  It is a companion paper with one to follow that will present the
experimental verification of the present Master Curve approach for transition fracture.
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1. INTRODUCTION

Transition fracture toughness characterization had been a particularly difficult problem
for the fracture mechanics technology.  The fracture toughness in the early days of fracture
mechanics was characterized by a KIc value (E399, 1970).  This value had to meet a size
limitation so that essentially linear-elastic and plane strain behavior would prevail during the
KIc test.  In the transition the toughness increased rapidly with an increase in temperature.
One attempt to meet the size requirement for a KIc test used specimens that were up to 12
inches thick and proportionally sized in the other dimensions (Wessel, 1968).  The result was
that the transition fracture toughness was measured to a fairly high level but the toughness of
the entire transition region could not be measured in terms of KIc even with these large
specimen sizes.

The development of the elastic-plastic fracture mechanics methodology provided a
method for extending the measurement of the transition fracture toughness up to the point of
purely ductile fracture (Begley and Landes, 1972).  This was called the “upper shelf” fracture
toughness regime from a similar result found in Charpy testing.  The fracture toughness for
elastic-plastic conditions was characterized either by a J value, from Rice’s J integral (Rice,
1968) or a crack-tip opening displacement, CTOD, value (Wells, 1961).  A schematic
illustration of the transition toughness behavior for steels is given in Fig. 1 showing a fairly
narrow and smooth toughness trend with temperature.  When actual fracture toughness data
are measured in the transition, the result is much different.  This is illustrated in Fig. 2
(Landes, 1992). Here fracture toughness results from five different steels in the transition
shows the transition toughness problem; there is extensive scatter with no well defined trends
through the transition.  Besides this scatter, the toughness measured in the transition has size
and geometry effects so that it was difficult to tell what value of toughness to use at a given
temperature for the prediction of failure behavior in a structural component.

There were several reasons suggested for the fracture behavior observed in the transition.
One argument attributed the size and geometry effects to constraint differences (Milne and
Chell, 1979). This approach could explain the fracture toughness trends on the average but
could not explain individual results.  A second approach tried to explain the size effects and
scatter by a statistical argument (Landes and Shaffer, 1980).  This approach seemed to give a
rationale for transition fracture toughness behavior that gained the interest of several new
investigators.  The development of new statistical approaches was a great help in explaining
the transition fracture toughness behavior and led to the present scheme used for organizing
the results. Based on this modern approach an ASTM standard test method was written that
allows a complete characterization of the transition fracture toughness for ferritic steels (E
1921, 1997).  In this paper some of the methods that led to the modern development of
transition fracture toughness characterization are discussed starting with the constraint-based
arguments and going through the statistical development and the master curve formulation.

2. CONSTRAINT ARGUMENTS

The first argument for the differences in fracture toughness were attributed to the
constraint encountered in the different sizes and geometries (Milne and Chell, 1979).  Larger
sized specimens had higher constraint than smaller specimens; bending loaded specimens had
higher constraint than tension loaded ones. It could be shown from existing data that these
effects did exist. The toughness results showed trends on the average that would suggest that
constraint differences were causing some of the problems in transition toughness
measurement.  Figure 3 shows the different trends that are observed for relatively high and
low constraint levels.  On the average the more highly constrained geometries and sizes have



lower toughness and have a higher transition temperature than the lower constrained
geometries and sizes.
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Figure 1 - Schematic showing region of transition fracture
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Figure 2 - Transition toughness results for five steels

 Temp, °C

J, 
kJ

/
m

2



2001000-100
0

200

400

600

800

1000

Figure 3 - Transition fracture toughness data with constraint trend lines
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Constraint differences were always observed on the average of results, but individual
results did not always show these trends.  Sometimes the lower constrained specimen showed
lower toughness at a given temperature than the higher constrained specimen (Iwadate, et. al,
1983), the reverse of the average trend that was observed.  This raised the question of why
constraint effects appeared to cause one toughness trend on some results but the opposite on
another one.  The extreme scatter in the transition caused confusion so that the exact role of
constraint could not be separated from the scatter.  It was obvious that more than just the
constraint effects were controlling the transition fracture toughness behavior and additional
modeling was needed.   This additional modeling was based on statistical distributions.  It was
not until the statistical aspects of the transition problem were quantified that the constraint
issues could be studied in a more logical manner.

3. ORIGINAL STATISTICAL STUDIES

The first suggestion that transition fracture toughness problems could be handled with
statistical arguments came about 20 years ago (Landes and Shaffer, 1980).  The statistical
approach was based on a two-parameter Weibull distribution.
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Here p is the probability that fracture will occur below a value of Jc, m is a shape parameter,
also called Weibull slope, and Jo is a scale parameter related to the mean of the distribution.  It
was suggested that fracture occurred when a weak link in the material was ruptured, hence
triggering global fracture in the specimen or structure.  This failure of a weak link was a
random event and depended on the availability of such a feature near the crack tip as well as a
crack tip stress value large enough to trigger the weak link failure.   The statistical argument



for size effects suggested that the greater the size of the specimen the more likely it is to
contain such a weak link and the easier it is to obtain a global fracture event.   This makes it
more likely to have a low fracture toughness value.

The two-parameter Weibull parameters could be determined from a fit of test results
showing the characteristic transition scatter.  The toughness results for a single test condition,
temperature and specimen size, are organized going from lower to higher values of toughness.
A probability is assigned to each toughness value using a distribution law.  Originally the law
was
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Where N is the total number of tests and i is the individual ranking of a test.  The Weibull law
was written as 1 – p
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which is the probability that a toughness value is greater than Jc.  The exponent, m, is a slope
determined when the toughness results are plotted on Weibull paper, Fig. 4.  This is a plot of
Eq. (3) with logarithms taken twice on both sides.
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Figure 4 – Weibull plot for transition toughness of a steel at two temperatures

The statistical model was used to explain size effects by assuming that the larger
specimens had more volume to produce a weak-link site that would produce a fracture than
the smaller specimens.  A schematic of the rationale is shown in Fig. 5.  Comparing the
probability of fracture on a size Y specimen with a unit size. The probability that a weak link
exists in size Y is that many times more likely than that a weak link exists in the unit size.
The probability from Eq. (3) becomes
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The 1 – pY probability of Eq. (4) is similar to the unit size 1 – p1 probability of Eq. (3) except
that Jo is divided by a factor on Ym.  Since Jo is related to the mean of the distribution, the
mean in size Y is changed by the factor (1/Y)m compared to the unit size.
A value of Y larger than unity would lower the mean and visa versa.  In this way the
statistical model clearly predicts a size effect.  Preliminary results from the first work on
statistical modeling showed that the model prediction of size effect was essentially the same
as that observed from the data (Landes and Shaffer, 1980).  Therefore, the statistical model
could both characterize the large scatter in transition toughness results as well as predict the
observed size effects.  Although the two–parameter Weibull distribution had some conceptual
difficulties and was not the approach ultimately chosen, it did give a new methodology for
studying transition fracture toughness behavior.  This study ultimately led to a more
satisfactory approach.

unit size, one chance
to find a weak link

Y size, Y chances to find a weak link

Figure 5 - Schematic showing how the statistical model works

4. NEW STATISTICAL MODELS

With the development of a statistical approach more investigators began the study of the
transition fracture toughness trends with the goal of applying the results to the prediction of
structural fracture behavior.  The two-parameter Weibull distribution was not entirely
satisfactory.  The two-parameter Weibull distribution gave a probability of fracture toughness
ranging from zero to infinity.   This did not seem realistic because the minimum toughness
value that could ever be encountered in ferritic steels in terms of a J value, should be about 3
to 5 kJ/m2, not zero.  To give toughness a nonzero minimum, a three-parameter Weibull
distribution was suggested (Landes and McCabe, 1984).
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Here, Jmin is the third parameter and is a nonzero minimum value of toughness that could be
part of the Weibull distribution.  This equation with three fitting parameters was a more
realistic description of the distribution of fracture toughness values at a fixed temperature but



also as much more difficult to fit to the data.  The original methods for fitting the three-
parameter Weibull distribution of Eq. (5) gave a lot of scatter in all of the fitting constants.
The problem was that it would take a very large database to get a good characterization of a
complex fitting law like Eq. (5).

One suggestion for simplifying Eq. (5) was to convert the elastic-plastic J toughness
parameter to the equivalent linear-elastic parameter, K.  This would put the analysis in a
framework that could be more easily applied to structure evaluation.  The plane stress K
equivalent of J, labeled, KJc was used where KJc = √JcE, where E is the elastic modulus of the
material. KJc was then introduced into the Weibull distribution and it became
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where the three constants, Ko, Kmin and n are the analogous constants from Eq. (5).  To help
with statistical modeling a large quantity of data were generated and the various parameters in
the three-parameter Weibull model were calibrated (Wallin, 1989).  It was found that fracture
toughness results for ferritic steels did not go below 20 MPa√m, so that was chosen as the
lower limit for the data, the third parameter, Kmin.  Theoretical arguments for the probability
of finding a flaw in a volume of material ahead of the crack gave a value of four for the slope,
n.  The results of many tests showed that the slope of four was approached when a large
database was generated.   Therefore, a Weibull slope of four was chosen. Then  Eq. (6)
became
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Along with this change, the distribution of probabilities was given a new equation to
spread the ends of the distribution.  It was
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where i and N have the same definitions as in Eq. (2).
The resulting Weibull distribution in Eq. (7) had only one parameter to be fitted from the

test results, Ko.  This could be done with a least squares fit on a Weibull plot, similar to Fig. 4,
were the fit is forced to have a slope of 4.  To make the analysis of the data easier, a statistical
method called “least likelihood” was used to fit the data (Wallin, 1994).  This gave the
following expression to find Ko from a series of N fracture toughness tests conducted on
identical specimens at a fixed temperature.
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The value of Ko is related to the average of the distribution.  Actually it occurs at the 63%
probability.  To base the analysis on a median probability value the 50% probability was used,
p = 1- p = 0.50.  This median value was labeled KJc(med).
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The temperature distribution of the KJc(med) value was studied for several heats of ferritic
steels with yield strength levels ranging from 275 to 825 MPa.  It was found that this
temperature distribution fit on a common curve for all ferritic steels in the transition
(Steinstra, 1990 and Wallin, 1989).  This common curve was given the label “master curve”.
The master curve was fitted with an equation that is given by
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where the K values are measured in MPa√m and temperature in °C.  The master curve fit of
Eq. (11) gives is based on a reference temperature To.  To is the temperature where the
KJc(med) on the master curve reaches a value of 100 MPa√m.  An example of the master curve
trend is shown in Fig. 6.
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Figure 6 - Master Curve of KJc(med) values in the transition
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Since there is a size effect that is predicted by the statistical distribution, this had to be part on
the methodology used for the new Weibull statistical modeling.  Whenever a unit size
specimen was tested, defined as 25 mm thick with other dimensions being proportional, the
toughness result could be directly entered into the analysis method of the above equations.
However, if a larger or smaller size specimen was tested the toughness result must be given a
size adjustment that comes from the statistical model.  A specimen of thickness BX, not 25
mm, is adjusted by
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where BX is the thickness of the specimen and Bunit is 25 mm.  For this and all of the analysis,
the units must be SI, that is K in MPa√m and temperature in °C.  The size adjustment can be
applied to individual test results or it could be applied to the Ko or KJc(med) values if these
were generated from a single specimen size, not unit thickness, at a fixed temperature.

Then Eq. (11) gives the transition temperature fracture toughness distribution for all
ferritic steels.  Using this curve a set of fracture toughness tests conducted at a single
temperature can be used to predict the fracture toughness at any other temperature in the
transition.  At a different temperature the distribution would follow the three-parameter
Weibull distribution of Eq. (7) with the value at 50% failure probability KJc(med) given by Eq.
(11).  The testing required to determine the fracture toughness behavior of ferritic steels
throughout the transition is one to determine the value of To.  Given a set of N tests conducted
at a fixed temperature the value of KJc(med) is first determined using Eqs. (9), (10) and (12).
Then  To can be determined from
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The fact that all ferritic steels seem to fit the scheme of the Weibull statistics, Eq. (7), and
the master curve, Eq. (10), is demonstrated empirically by examining transition fracture
toughness data for many heats of steels.  This has been done and virtually all cases where the
strength of the steels lies between 275 and 825 follow this unique master curve trend (Kirk
and Lott, 1999).  The experimental evidence for this statistical approach and master curve
evaluation is given in the companion paper to this one, also presented at this conference
(McCabe and Sokolov, 1999).   With the success of the approach the next step was to write a
standard test method so that the methodology could be given a uniform testing and analysis
procedure that could be followed by all laboratories interested in developing transition
fracture toughness data in the transition for ferritic steels.

5. ASTM TEST METHOD

The method for analyzing fracture toughness in the transition has been standardized in the
ASTM method E 1921 (E1921, 1997).  In that method  six or more fracture toughness tests
must be conducted at a single temperature.  The test results must fit a size criterion to be
valid.  This is given by
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where E is the elastic modulus of the steel, bo is the original uncracked ligament size and σys

is the 0.2% material yield strength.  The process of evaluating the validity of the test results
and handling the invalid results is called censoring the data.  Invalid values are not explicitly
used in the data analysis but the KJc(limit) value is substituted and the total number of
specimens are used to determine N.  The details of data censoring are given in the standard.

The results are analyzed with the Weibull statistical distribution in Eq. (7).  The value of
Ko is determined by the least likelihood analysis of Eq. (9).  From this a KJc(med) value is
obtained and the master curve can be obtained by calculating To, Eq. (12).  Having obtained



the 50% probability of fracture and knowing the statistical distribution then allows one to
determine a failure probability at any temperature in the transition.  The failure probability of
interested usually depends on how critical the design safety requirement is.  For example if a
5% probability of failure is desired, the value of 1- p would be 0.05.  Using a p value of 0.05
in the Weibull equations, a line of this probability can be put on the master curve plot as
shown in Fig.7.  That means that 95% of the toughness values would be greater than the ones
represented by this line.  Here lines representing probabilities of 1%, 5% and 95% are plotted
with the master curve.  Also, the original data that was used to obtain the master curve, six,
specimens tested a fixed temperature is included on this figure.  This illustrates how results
from as few as six tests at a single temperature can be used to predict the toughness
throughout the entire transition, the median toughness as well as any tolerance bound.

The ASTM test method E1921 then gives the organization for handling transition fracture
toughness results for ferritic steels. The goal of understanding and organizing this problematic
behavior has been realized after more than three decades of effort.  Fracture toughness values
for predicting fracture behavior in structural components can now be based on a statistical
probability of fracture. With this method the large scatter in the transition can be organized
and other effects, like the role of constraint can be studied on a more reasonable basis.
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Figure 7 - Master Curve with tolerance bounds
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6. SUMMARY

After several decades of concern about the characterization of fracture toughness in the
transition for ferritic steels, a methodology has been developed based on Weibull statistics
and a master curve.  This method organizes the large scatter observed in the transition with a
three-parameter Weibull probability distribution, gives a rationale based on these statistics for
predicting size effects and allows tolerance bands predicting a given probability of fracture to
be established on throughout the entire transition.  This methodology has been empirically
demonstrated to work for all ferritic steels examined. It has led to the development of an
ASTM standard test method that can be used to characterize toughness in the transition.
With this standard method only six valid test results are required at a fixed temperature to



predict the entire distribution of toughness in the transition and to determine the probabilities
of fracture.  These results can then be applied to the prediction of fracture in structural
components as well as examine other effects like the role of constraint on transition fracture
toughness.
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