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Summary

This lecture reviews the basic of multiple-input/single-output (MI/SO) techniques that provide

an accurate practical method to analyze and identify the dynamic properties of nonlinear

physical systems. The Direct MI/SO Technique is applicable to nonlinear systems with

specified parallel linear and nonlinear transformations. The Reverse MI/SO Technique is

applicable to nonlinear systems with feedback. Excitation and response properties of

measured random data can have arbitrary probability and spectral features. Each of the

identified nonlinear components can be evaluated at any desired frequency with separate

coherence functions. Thus these techniques represent a significant advance in using real

measured data to help improve the design and understanding of nonlinear physical systems.

Material for this lecture is taken from the latest book by J. S. Bendat, Nonlinear System

Techniques and Applications, Wiley-Interscience, New York, 1998.

1- Features of Direct and Reverse MI/SO Techniques

This presentation states some of the main features of the Direct and Reverse MI/SO

Techniques that are not available in other nonlinear methods such as least-squares time-
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domain procedures or in higher-order Volterra series. In particular, a key result developed in

this work is how to convert single-input / single-output (SI/SO) nonlinear models with

feedback into equivalent multiple-input/single-output (MI/SO) linear models without

feedback. Each of the other features are also important such as requiring only functions of one

frequency and removing restrictions regarding the probability or spectral natures of the

excitation and response data. These practical techniques apply to Gaussian or to non-Gaussian

data with arbitrary spectral density functions. Also, confidence limits on the linear and

nonlinear terms can be obtained easily at each frequency using coherence functions.

The features of Direct and reverse MI/SO techniques are:

1. Single-input/single-output (SI/SO) nonlinear models without feedback can be converted

into equivalent direct dynamic multiple/input/single-output (MI/SO) linear models without

feedback.

2. Single-input/single-output (SI/SO) nonlinear models with feedback can be converted into

equivalent reverse dynamic multiple/input/single-output (MI/SO) linear models without

feedback.

3. An exact nonlinear representation is obtained using a linear frequency response function

of one frequency for each nonlinear component.

4. The nonlinear system amplitude properties can be identified as well as the physical

parameters with frequency-dependent coefficients.

5. There are no restrictions on the probability or spectral natures of the excitation or response

data.

6. All results are easy to compute, simple to interpret, and can be evaluated at every

frequency for both linear and nonlinear terms using appropriate coherence function.

2- Zero-Memory Nonlinear System and Finite-Memory Nonlinear System

A zero-memory nonlinear system is a system that acts on an input x(t) in a nonlinear fashion

g{x(t)} so as to produce an output y(t) at the same instant of time. There is no weighting of

past inputs to give the present output y(t). A simple example is a square-law device where y(t)

= x²(t) as shown in figure 1. A finite-memory nonlinear system is a zero-memory nonlinear

system that is followed or preceded by a linear system. In figure 2 the zero-memory nonlinear

system is followed by a linear system defined by a frequency response function A(f) using A

for “after”. One could also have a zero-memory nonlinear linear system preceded by a linear
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system defined by a B(f) using B for “before”. It turns out that general results for many

nonlinear physical problems can be obtained only for cases where the linear systems follow

the zero-memory nonlinear operations, so these cases are discussed here. Many engineering

applications of these matters are covered fully in Reference {1}.

( ) →tx                                         →  ( )ty  = ( )[ ]txg

                                              Figure 1. Zero-Memory Nonlinear System

( ) →tx    →    →   ( )ty

                                                    Figure 2. Finite-Memory Nonlinear System

3- Volterra Series of Linear, Bilinear and Trilinear Systems

A Volterra series, also called a “power series with memory” is a functional extension of linear

(first-order) systems to bilinear (second-order), trilinear (third-order) and to higher-order

systems as shown in figure 3.  These extensions require knowledge of multi-dimensional

frequency response functions H(f,g) to describe the bilinear system and H(f,g,h) to describe

the trilinear system in place of the simple of the simple one-dimensional frequency response

H(f) for the linear system.  Given the input excitation data and the output response data,

general input/output formulas to identify the linear, bilinear and trilinear frequency response

functions can be solved only for Gaussian input data, see [1].  These higher-order functions

are difficult to obtain in practice because they require large amounts of data are complicated

to interpret.

Zero-Memory
Nonlinear System ( )[ ]txg

( )fA

Zero-Memory
Nonlinear System ( )[ ]txg
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( )tx              ∑      ( )ty

Figure 3. Volterra Series of Linear, Bilinear and Trilinear System

4- Nonlinear System of Linear, Squarer and Cuber Systems

A special Volterra series is shown on this slide consisting of a linear system ( )fA 1  in parallel

with two nonlinear systems: a squarer followed by a different linear system ( )fA 2 , and a

cuber followed by another linear system ( )fA 3  as shown in figure 3.  The squarer path

represents a special bilinear system and the cuber path represents a special trilinear system.

The output ( )tx 2  from the squarer is ( )tx2  and the output ( )tx 3  from the cuber ( )tx3 .  This

model can be used as a third-order approximation for various types of nonlinear

transformations such as ( ) ( ) || txtx , see [ ]1 .

LINEAR ( )fH

BILINEAR ( )gfH ,

TRILINEAR ( )hgfH ,,
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              x1(t)

( )tx 2                          

( )tx              ( )ty

( )tx 3

Figure 4. Nonlinear System of Linear, Squarer and Cuber System

5- General single-input/single-output nonlinear system

A very general single-input / single-output nonlinear system is shown on figure 5, where in

place of the square, there is an arbitrary known or assumed zero-memory nonlinear system

( )[ ]fxg 2  with output ( )tx 2 , and in place of the cuber, there is an arbitrary known or

assumed zero-memory nonlinear system ( )[ ]fxg 3  with output ( )tx 3 .  The nonlinear model

in Slide 5 will fit many more physical nonlinear problems than the nonlinear model in slide 4

and is the one recommended to use in practice.  Given the input excitation data ( ) ( )txtx 1=

and the output response data ( )ty , the system identification problem here is to identify the

three linear frequency response functions ( )fA 1 , ( )fA 2  and ( )fA 3 .  This is easy to solve by

well-established techniques in [ ]3,2  if one recognizes that this nonlinear model can be

replaced by an equivalent three-input / single-output linear model where the three inputs are

the known ( )tx 1 , ( )tx 2  and ( )tx 3  and the output is the known ( )ty .

( )tx 1

( )tx ( )tx 2             ∑          ( )ty

          
( )tx 3

                                                             

Figure 5. General Single-Input/Single-Output Nonlinear System

LINEAR ( )fA 1

( )[ ]txg 2
( )fA 2

( )[ ]txg 3
( )fA 3

LINEAR ( )fA 1

SQUARER ( )fA 2

CUBER ( )fA 3
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6- Multiple-input/single-output linear system with correlated input records and
    Multiple-input/single-output linear system with uncorrelated input records

Figure 6 shows the three-input/single-output linear system with possible correlated input

records that is 100% equivalent to the general single-input / single-out nonlinear system in

figure 5.  The identification of the three linear frequency response functions ( ){ }fA I  requires

one to replace the three correlated input records ( ){ }tx I  in Slide 6 with three uncorrelated input

records ( ){ }tu I  as shown in figure 7, where the notation ”u” is used here to indicate

“uncorrelated”. Also, the three original linear frequency response functions in Slide 6 have to

be replaced by new linear frequency response functions ( ){ }fLi  as shown in Slide 7 so as to

preserve the same output noise data )(tn in both figures 6 and 7.

It is straightforward to compute de uncorrelated input records from the original input records.

The first uncorrelated input record ( )tu1  is the same as ( )tx1 . The second uncorrelated input

record ( )tu2 is the result obtained by removing the linear effects of ( )tx1  from ( )tx2 . The third

uncorrelated input record ( )tu3  is the result obtained by removing the linear effects of both

( )tx1  and ( )tx2  from ( )tx3 . The ( ){ }fLi  system functions can be computed by three separate

simple input/output spectral calculations, and the ( ){ }fA I  functions by algebraic equations.

This is the direct MI/SO Technique for Nonlinear System Identification!

( )tn

( )tx1

( )tx2             ∑       ( )ty

( )tx3

Figure 6: Multiple-input/single-output linear system with correlated input records

LINEAR ( )fA1

LINEAR ( )fA2

LINEAR ( )fA3
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( ) ( )txtu 11 =                       ( )tn

           ( ) ( )txtu 1.22 =
                                                                                                          ∑             ( )ty

             ( ) ( )txtu 1.2.33 =

Figure 7: Multiple-input/single-output linear system with uncorrelated input records

7- Equivalent Forward and Reverse Linear Systems

Figure 8 shows equivalent “forward” and “reverse” linear systems that can represent single-
input/single-output problems. In the reverse linear system, the mathematical input is the real
measured physical response record, and the mathematical output is the real measured physical
excitation record. The linear frequency response function in the reverse system is the
reciprocal of the linear frequency response function in the forward system.

The “forward” single-input/single-output linear system is

( )fX ( ) ( ) ( )fXfHfY =

The “reverse” single-input/single-output linear system is

( )fY ( ) ( ) ( )fYfAfX 1=  where ( ) ( )[ ] 1
1

−= fHfA

( )fX = physical excitations = mathematical output in reverse system
( )fY = physical response = mathematical input in reverse system

Figure 8. Equivalent Forward and Reverse Linear System

8- SDOF Nonlinear Systems and Equations

This figure 9 shows a typical mechanical picture of a SDOF nonlinear system with a nonlinear

restoring force ( )tuup ,, ��  that can be a function of uu �,  and t . Here, )(tF  is a force input and

( )tu is a displacement output. The total restoring force is defined by ( )tuuFR ,, � . Two physical

examples of nonlinear systems are given by;

( ) ( )tutuup 3,, =�� , a nonlinear cubic stiffness Duffing force

( ) ( ) ( ) ||,, tututuup ��� = , a nonlinear viscous damping force

( )fH

( )fA1

LINEAR ( )fL1

LINEAR ( )fL2

LINEAR ( )fL3



8

( ) ( ) ( ) ( )tFtuuptkutuctum =+++ ,,)( ����

( )tF ( )tF

( )tu ( )tu

 c       ( )tuuP ,, �

k ( ) ( ) )(,, tumtFtuuFr ��� −=

                 Figure 9: SDOF nonlinear systems and Equations

9- Single-input/single-output nonlinear model with feedback

The single-input/single-output nonlinear model with feedback in this figure10 is the same as

the mechanical system shown in figure 9. This nonlinear model with feedback is quite

difficult to analyze for:

(1) prediction of the system response from knowledge of the force input plus the linear and

nonlinear system properties, or

(2) system identification of the linear and nonlinear system properties from knowledge of the

input and output records.

Complicated time domain iterative procedures are usually employed with restricted

applications due to assumptions that are made on either data or the systems.

( ) ( ) ( ) ( )tFtuuptkutuctum =+++ ,,)( ����

( )tF ∑ ( )tu

( )tuuP ,, �

( )tF = force input                                          ( )tuuP ,, � = nonlinear term
( )tu = displacement output

Figure 10. Single-Input/Single Output Nonlinear Model with Feedback

m m

Linear System ( )fH

Nonlinear System
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10- Reverse single-input/single-output nonlinear model without feedback

The reverse single-input/single-output nonlinear model without feedback is illustrated on this

figure 11 where the previous physical force input )(tF  is now considered to be the

mathematical output, and the previous physical displacement output )(tu  is now considered to

be the mathematical input. The same nonlinear differential equation of motion applies to this

model as before. Now, however, it is simple to solve this model because the nonlinear system

can often be replaced by the general nonlinear system model in figure 5 with suitably defined

nonlinear terms, and then solved by the standard MI/SO procedures outlined in figures 6 and

7. This is the basis of the Reverse MI/SO Technique for Nonlinear System Identification !.

( ) ( ) ( ) ( )tFtuuptkutuctum =+++ ,,)( ����

( )tu ∑           ( )tF

( )tuuP ,, �

( )tu = displacement input ( )tuuP ,, � = nonlinear term

( )tF = force output
Figure 11 Reverse Single-Input/Single-Output Nonlinear Model without Feedback

11- Reverse MI/SO Technique for nonlinear system identification

The Reverse MI/SO Technique for Nonlinear System Identification is illustrated in figure 12

for the Duffing single-input/single-output nonlinear system where the nonlinear restoring

force is given by  ( ) ( )tdutuup 3,, =�� when d is a constant coefficient. This involves the reversal of

the physical excitation force input ( ) ( )tFtx =  and the physical output ( ) ( )tuty = to create the

two-input/single-output linear mathematical model shown, where ( )tx is now the mathematical

force output with ( )ty as the first mathematical input and ( )ty 3  as the second mathematical

input. This two-input/single-output linear model to identify the frequency response functions

( )tA1  and ( )tA2  can be solved easily by the standard procedures in [1,2].

Linear System ( )fA

Nonlinear System
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The Duffing single-input/single-output nonlinear system is

( ) ( ) ( ) ( ) ( )txtdytkytyctym =+++ 3���

where
( )tx = physical excitation = mathematical output
( )ty = physical response = first mathematical input

( )ty 3 =nonlinear term = second mathematical input

The equivalent two-input/single-output linear system is here

( )ty

∑ ( )tx

( )ty 3

This MI/SO linear system can be solved easily by kown procedures
Figure 12. Reverse MI/SO Technique for Nonlinear System Identification

12- Conclusions from computer studies and from laboratory test programs

Some main conclusions from computer studies and from laboratory test programs are stated

on this figure 12. These results prove conclusively that these new practical Direct and Reverse

MI/SO Techniques for Nonlinear System Analysis and Identification are significant

developments to help solve many nonlinear system engineering and scientific problems.

1. Direct and Reverse MI/SO techniques can be implemented using established procedures
and computer programs by changing SI/SO nonlinear models into equivalent MI/SO.

2. These MI/SO techniques can be used with simulated or measured data to identify each
linear and nonlinear term in proposed nonlinear integro-differential equations of motion.

3. Nonlinear system amplitude properties can be determined as well as the frequency
properties of coefficients for the linear and nonlinear system physical parameters. The
spectral contributions from each linear and nonlinear term can be evaluated using
appropriate coherence functions.

4. Computed cumulative coherence functions with simulated or measured  data give
improved results over wider frequency ranges when nonlinear terms are included, and
show the particular frequencies where the nonlinear terms are important. The computed
coefficients with measured data are usually frequency-dependent.

5. These features make the Direct and Reverse MI/SO Techniques the most accurate
practical methods available today to analyze and identify the dynamic properties of
nonlinear physical systems based upon simulated or measured data.

( )fA1

( ) dfA =2
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