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Abstract. In this paper is purposed a development of a computational device applied in the system identification 
process in industrial environments. The device is composed by a data acquisition hardware, linked a computer. This 
hardware is responsible by the get the experimental data that is generated by the industrial plant, and send to 
computational application. After the data acquisition, the data are processed by the software kernel that is responsible 
to prove the system identification process. The final step, a computational module computes the relatives errors 
between the identified model output and the real output. If the identified model is valid, this model is used in others 
steps, like process control tools development and others. One of the main objectives of this project is to provide a 
support for a students in the classes that involve process control and automation on the university, where there is a 
need to bring the industrial reality to the students. 
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1. INTRODUCTION

Dynamic modeling techniques comprehend a class of mathematical modeling, used to describe the dynamic
behavior of a physical system. These techniques are considered important on the development of control systems 
(IWASE et al., 2002). 

Mathematical models can be obtained by two methods: the analytical method, also named theoretical modeling, is 
based on models derived from one or more differential and/or algebraic equations. The second method, named 
experimental method is based on mathematical models obtained from experimental information where the relationship 
between input and output data of a dynamic process is recorded. Such model is represented by difference equations 
(COELHO, 2004).  

An analytical model is composed by the system physical descriptions, in other words, the model is described upon 
theoretical laws (mechanical, thermo dynamical and electrical laws, etc.) and necessary empirical laws to describe the 
dynamic behavior of a given system, and such approach permits the description of internal dynamic relationships, 
besides the input-output relationship (RODRIGUES, 2000). This modeling technique is also named white-box modeling 
(AGUIRRE, 2004), due to the fact that analytical relations, through constructive equations, describe the dynamic 
behaviors. The main advantage is the fact that the model has a clear physical interpretation. Meanwhile, as stated in 
(SANTOS, 2000), the analytical approach may have a drawback in relation to the structure complexity, that is, the 
model can have up to hundreds of constructive equations, and usually the equations are time-continuous despite of the 
inputs and outputs of a digital control system are discrete. By fact that this modeling technique is more traditional, there 
are some difficulties when one has to apply them to complexes systems, such as non-linear, stochastic or time-variant 
systems. Therefore, the construction of an analytical model for this nature of system is usually a hard task considering 
the computational cost and also the time consume (PAIVA, 1999). 

The process of modeling a system by theoretical laws can become quite complicated for large and complexes 
systems, the more interactions between the parameters, the more complex is the mathematical description. 
Consequently the precision of a given model is gradually restricted as the system complexity increases (RODRIGUES, 
2000). 

Despite of the described limitations, the industry has been demonstrated an increasing interest in attaining autonomy 
on the production processes. Although there are some concerns on the increasing complexity of production processes 
that contradict such autonomy, as stated before (PAIVA, 1999). 
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On the experimental modeling, also named System Identification technique, it is necessary to submit the plant to 
experiments in order to build a mathematical model based on the plant input and output acquired data, in contrast to the 
analytical modeling (LJUNG, 1999). It is not mandatory the theoretical neither the physical understanding of a plant for 
a system identification, once all information is collected from experimental procedures. For this reason, an experimental 
model is classified as a black box model. Internal states or properties of a black box model are ignored, (LJUNG, 1999), 
(SIMANI et al., 2000). 

One meaningful advantage of this technique is the readiness to adjust a model, enabling the formulation and the 
resolution of process control problems. On the other hand, all model parameters do not carry any physical meaning, 
what can be considered as a drawback (SANTOS, 2000).  

2. SYSTEM IDENTIFICATION

In concept, the system identification is a simple procedure: using the discrete input signal u(k), where k is the time
instant, and the output signal y(k) of a given plant, a mathematical model is obtained and this model maps entirely or 
partially the behavior of the original plant (AGUIRRE, 2004), as represented on Fig. 1: 

Figure 1. System Identification Technique 

The sequence of stages for system identification can be presented (AGUIRRE, 2004), (RODRIGUES, 2000), 
(LJUNG, 1999) as: 

1 – Dynamic tests and data acquisition; 
2 – Test the experimental data for non-linearity detection. 
3 – Mathematical structure selection; 
4 – Model structure determination; 
5 – Parametric Estimation; 
6 – Model Validation. 

The stages listed are used for both linear and non-linear systems, and the main differences among those are 
variations on how each stage is performed and implemented. The technique described on this work is applicable just on 
linear systems; applications of the described technique on non-linear systems can be referred on (RODRIGUES, 2000), 
(LJUNG, 1999), (AGUIRRE, 2004). 

The listed system identification stages are described on the following subsections. 

2.1 Dynamic Tests and Data Acquisition 

This stage consists in perform the data acquisition of the dynamic system to be identified. Therefore it is very 
important to define the experiment characteristics, like values of input signals, sampling time, number of samples, 
experiment time interval and pre-processing of samples. The input signals must be defined in order to have a desirable 
frequency bandwidth able to excite some important plant modes, guaranteeing, this way, well representative 
experimental data (RODRIGUES, 2000). 

2.2 Test the experimental data for non-linearity detection 

All plants are in practice non-linear, if one considers that there is always non-linearity even in a very smooth 
presence. In this case it is possible to represent a non-linear system by a linear model. The author (RODRIGUES, 2000) 
describes techniques to test non-linearity of a system based on the method of non-linear cross-correlation, however in 
this paper this stage will not be completed due to presented technique restriction to linear structures. There is not a 
specific literature on non-linear systems identification, what emphasizes the importance for the non-linearity test 
procedures. 
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2.3 Mathematical structure selection 

The selection of a mathematical model to describe the plant dynamics is done in this step. Such decision must be 
justified on the knowledge of the identification process and also on the a-priori knowledge of the dynamic system. In 
fact, the mathematical, as stated before, are used to describe the properties of a given system, which can be eventually 
partially described. This fact justifies the relation between the mathematical structure and the experimental data 
(AGUIRRE, 2004). This step, therefore, has great importance for the identification process. 

A polynomial linear model can be represented by the following structure: 
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Where: 
- θi is an array or a matrix with the parameters that must be estimated according to the chosen structure; 
- e(k) is the prediction error, consists in the difference between the outputs of the real system and the identified 

model. 
- φi is the regression vector or matrix that containing the experimental input and output data of the system to be 

identified. 

Therefore, the following equation is obtained from the system identification method: 
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Considering the Eq. (2), y(k) and u(k) are respectively the output and input samples on the discrete time k, na is the 
number of output regressors and nb is the number of input regressors. The prediction error is given by the Eq. (3): 

)(')()( kykyke  (3) 

Where y(k) is the experimental data obtained from the didactic plant and y’(k) is output that was predicted by the 
identified model. The steps of the system identification are given on the next subsections. 

2.4 Determination of the model structure 

After the selection of the representation for linear systems, some aspects must be defined: the number of poles, 
number of zeroes and the response time delay. For non-linear systems, on the other hand, the number of terms of the 
polynomial model must be verified, once the number of such terms increases with the observed non-linear behaviours. 
In this work an ARX model MISO (Multiple Inputs and Single Output) is used to characterize system behaviour.  

2.5 Parametric estimation 

With the mathematical structure defined, the parametric estimation stage provides the parameters that will be used 
on the mathematic model. In this stage, the Least Square algorithm is used to evaluate the parameters θ at each sample 
of output (y(k)) based on the samples acquired during the system operation condition, and processed off-line in batches 
afterward the operation condition. 

2.6 Model Validation 

To validate the model it is necessary to check whether the model incorporates or not the main characteristics of the 
original system. If possible, it is desirable to compare different model and make a decision for an eventual more 
appropriate (AGUIRRE, 2004). 

This comparison is technically a subjective task and the result will depend on the application and the quantity of 
available information concerning the original system. The verification of the candidate model is done by comparing the 
outputs of the model with the outputs of the original system for a defined set of input signal (RODRIGUES, 2000). 
Among several methods to validate a model, the Crossed Test and the Linearity Test can be cited (AGUIRRE, 2004). 
On the Crossed Test, two series of data are applied to the model. A parameter set is estimated for the first data set. The 
outputs are computed for the second data set using the estimated parameters set from the first data set. 
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To validate a model using the Linearity Test, experimental tests must be performed with different input signals 
amplitudes, applying a signal (ex. step or impulse) with positive and negative amplitudes to verify the limits of the 
identified model under different operation conditions. 

3. PROJECT DEVELOPMENT

The system identification process has been applied in a hydraulic didactic plant. The plant operation consists in
pumping water from a lower reservoir to the upper reservoir and one heat even in the latter that provides the water for 
industrial use for didactical example. The plant can representing in a more compact a specific industrial process with the 
same characteristics and situations encountered by professional instrumentation coupled with high-tech features 
available on the market. In this study, we used data from the process of pumping water from the lower reservoir to the 
upper. The Fig. 2 show the plant didactic schematic.  

Figure 2. Plant basic schematic 

The computing device proposed in this work consists of two modules: one interface hardware responsible for the 
integration with the plant instrumentation and data acquisition, and another software part containing the processing 
modules in order to obtain the process model identified.  

The hardware consists of energy conductors, responsible for the activation of the pump motor and the solenoid 
valves. For each element of the power plant is a driver which basically consists in a chopper, a switch operating with 
cutting or saturation, turning on or off. Transistors TIP120 (Darlington) are used to drive inductive loads, and a free-
wheeling diode is inserted to prevent overvoltage generated every time the switch is commanded to open. The drive a 
schematic is shown in the Fig 3. There is also a conditioning circuit responsible for amplifying the output signal from 
the RTD, as we can see in the Fig. 3 below. Thus, the signal output of the resistance equivalent to a range of voltage is 
amplified by a signal amplifier and limited by a zener diode in a range between 0-5V. The voltage Ratio X Sensor 
temperature is given by a curve equivalent to a quadratic equation, and the temperature value ranging from 0 to 100° C.  

This circuit is coupled to a microcontroller Arduino, where all the system signals are mapped plate pins. 

Figure 3. Electronic circuit schematic 
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Figure 4. Circuit board 

Before the data acquisition step, it is necessary to define which variables will be stored and will be used in the 
system identification process. The analyzed variables are shown in Table 1. The Tab. 1 describes the information on the 
variables, if the variable is input or output variable and its description. 

Table 1. Variable’s description 

Variable Type Description 
Water Pump PWM Input Duty cycle controlling the power of 

the pump that feeds the upper tank of 
the plant. It consists of an input 

variable, as is specified by the user of 
the device and its operating unit is 

given in percent of the nominal 
power of the pump. 

Level bottom tank Input Value of the level of the water 
column the tank bottom, that the 
pump which supplies water to the 
supply tank top. It consists of an 

output variable and its unit is given in 
centimeters. 

Level top tank Input Value of the water column the tank 
top, that it is fed by the water pump 

and supplies the same to the 
industrial use. It consists of an output 

variable and its unit is given in 
centimeters. 

Input flow Output Flow of water entering the tank top, 
coming from the water pump to fill 

the tank. It consists of an output 
variable and its unit is given in liters / 

hour. 

The data acquisition module consists of a code Arduino implemented in software that runs on hardware where a step 
is given to the value of the variable pump PWM initially from 0 to 50% and thus the values listed variable output over a 
range of time. We used a sampling rate of 0.5 second and stored for later use these data for analysis thereof via the 
software module. 

The software module, that is responsible to obtain the model, it was developed in the Matlab platform. In this 
module, we have modules that do the data treatment, data processing and the model validation.  
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4. TESTS AND RESULTS

To demonstrate the applicability of the identification module systems, we used data from the sensors used in the 
instrumentation of the bottom tank of the plant. From the experimental data we identified a mathematical model that 
represents the behavior of the process. The model is identified through the process of system identification, which 
provides a mathematical framework for multi-ARX variables. The experiments were conducted by the disturbance of 
the pump power, the PWM, as shown in Fig. 5. 

Figure 5. Level values for PWM 50% 

Where: 
L1 = level of the tank top; 
L2 = level of the tank bottom. 
Furthermore, the values of the variables shown above level is given in centimeters. 
For the identification of the studied system was used which has a Matlab toolbox called System Identification 

Toolbox that allows the entry of the variables collected input and output of the plant and provides the user the choice of 
model to be used for identification system, as well as allow the specification of characteristics. Thus the software 
performs the estimation of the parameters of the chosen model and enables the user to compare the model and found 
real value of the measured data. The tests were conducted at each switch input flow behavior of the external tank, 
through the variation of the PWM pump. Thus, two scenarios were considered for this variation, 50% and 60%, with a 
sampling rate of 0.5 seconds. Such behaviors can be observed in Fig. 6 and 7 for the variation of the PWM 50% and in 
Fig. 9 and 10 for the PWM 60%. 

Figure 6. Flow value for PWM 50% 
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Where we have given the unit of flow in liters / hour. 
From this information, a MISO ARX model with two regressors input and two output regressors. Thus, the 

difference equation of the MISO ARX model is: 
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The Fig. 7 shows the response of the system identified in the Eq. (4). 

Figure 7. Model’s response 

To analyze the response generated by the model identified index was used to analyze the feasibility of the model, 
from the responses generated by the identified models and actual responses obtained by plant hydraulics. These factors 
show how the identified model is close to the actual output of the system. The coefficients are: 

- Coefficient of determination (R²): indicates that how much of the observed variability is accounted for by the 
estimate model; 
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Where Pi are the predicted results, Oi are the observed values and N is samples. 

- Correlation coefficient (R): quantifies the global description of the model, and a high value of R implies a 
significant correlation between the observed results and the predicted values. 
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Where Pi are the predicted results, Oi are the observed values, and N is samples. 
Therefore, the coefficients calculated for the first scenario are showed in Tab. 2. 
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Table 2. Validation coefficients 

Factor Value 
R² 0.9307 
R 0.9675 

The same procedure was done for the PWM 60%. Fig.(8) shows its input variables and their corresponding output in 
Fig.(9): 

Figure 8. Levels values for PWM 60% 
Where: 
L1 = level of the tank top; 
L2 = level of the tank bottom. 
Furthermore, the values of the variables shown above level is given in centimeters. 

Figure 9. Flow value for PWM 60% 

Where we have given the unit of flow in liters / hour. 
A new experimental data ARX model is identified, as can be seen in Eq. (7): 
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From the identified model, the following response was generated: 

Figure 10. Model’s response 

The Tab. 3 shows the indices calculated from the response of the identified model and the actual response of the 
system: 

Table 3. Validation coefficients 

Factor Value 
R² 0.9224 
R 0.9559 

From Tab. 2 and the Tab. 3, it is possible to observe that the models identified for the different scenarios have a 
good approximation of the real model. If the values is closer than 1, more reliable is the model. 

5. CONCLUSION

This article proposes the project and development of a computational device that is able to collect experimental
input and output for a didactic industrial plant and find mathematic models that represents a system behavior. 

The device proposed consisting of two modules, the hardware and the software. To demonstrate its application was
done two tests, through the hardware developed, that collect the outputs values for two different inputs values. Thereby, 
through the software proposed, it was done the data analysis and was found the system representation models. Lastly, 
was done the models validation through the validation coefficients. According to these results we can conclude that the 
device managed to find model representation, with experimental data, so close to the real industrial plant. 

Thus, we proved the feasibility of use the system identification method in industrial area, where several times, we do 
not have access to the whole process behavior. So, through the experimental data it is possible to do the process 
identification, and finding the reliable representation models, that is possible to make simulations and to help in the 
controllers conception, to be used in the new controllers that will be used the industrial plants.  
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