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Abstract. Aiming at contributing to the development of a robust computer vision traffic surveillance system, in this work
a method for vehicle identification and tracking that applies the Scale Invariant Feature Transform (SIFT) and a Kalman
filter is proposed. The SIFT algorithm extracts keypoints of the moving object on a sequence of images and the Kalman
Filter provides a priori estimates of vehicle position and velocity which are used to improve the said algorithm. This
strategy allows reducing the amount of pixels to be tested for matches within the whole image scenario by dynamically
redefining the ROI (Region of Interest). Using algorithms from OpenCV Library to compose the required computer vision
tracking method, a prototype system was constructed and submitted to off-line experiments based on a series of grabbed
traffic image sequences. From the results, it is possible to assert that the joint use of SIFT and Kalman filtering techniques
is able to improve the overall algorithm performance concerning quality of matches between the images of the object and
the scene, since it reduces in 50% the total number of false positives, one the main limitations of the pure SIFT algorithm.
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1. INTRODUCTION

Tracking salient objects, being people, vehicles or other objects in outdoor image frames is a good challenge within
the Computer Vision research community. Moreover, it is also important to observe, detect and track vehicles within
traffic surveillance systems in order to better operate the traffic itself, raise tickets, observe abnormal behavior or if one
needs only to collect general information, like average speed, jams, collisions and other issues.

There are several approaches to perform object detection within the computer vision research. Some of those are
widely used and applied in a variety of applications. For example, the Background Subtraction (Ballard and Brown,
1982; Forsyth and Ponce, 2002; Nixon and Aguado, 2008) is a very well known technique suitable to detect objects in
a fairly static background. Because of its low computational costs and easy implementation, this technique is broadly
used to segment salient objects. Mean-Shift, Optical Flow (Ballard and Brown, 1982; Bradski and Kaehler, 2008) and
Lucas-Kanade (Bradski and Kaehler, 2008; Comaniciu et al., 2003) are other instances of algorithms used for general
object tracking.

It is also possible to recognize and track objects by applying feature extraction and matching algorithms. The SURF
(Speeded Up Robust Features) algorithm (Bay et al., 2008) claims to be a very robust algorithm for object detection, even
after some image transformations. In fact, since Harris Corner Detector (Harris and Stephen, 1988) and Moravec Operator
(Moravec, 1980), the studies on interesting keypoints detection became more developed and used within specific object
detection algorithms. The work of Shi and Tomasi (1994) also shows an approach to detect keypoints with features more
suitable for object tracking applications.

Under the context of searching for objects in sequences of images, video surveillance and camera monitoring, some
new requirements must be attended in order to continuously detect objects along all frames. Another interesting approach
is SIFT (Scale Invariant Feature Transform) developed by Lowe (1999, 2004) which presents considerable potential, due
to its promised robustness for different scales and under low level of affine transformations (like rotation and warp).

The SIFT algorithm extracts keypoints that should to be matched against a template reference object along a sequence
of image frames. The match process in every frame would provide itself the partial tracking process, but due to the
distortions and transformations that are inbuilt in the video capture, the pure SIFT strategy reduces the matches rate while
increase the number of false matches after a few frames.

Jiang et al. (2010) presents a SIFT-based strategy for tracking living cells in a videos captured from a differential
interference contrast (DIC) microscopy. In the proposed approach, SIFT points are detected around live cells and a
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structure locality preservation (SLP) scheme using Laplacian Eigenmap is proposed to track the SIFT feature points along
successive frames. By assuming that living cells cannot fly from one side to another in consecutive frames, matches with
large displacement is filtered out as false matches. On the other hand, to reduce feature vectors dimensionality, the authors
compared the wide-used PCA-SIFT against Laplacian Eigen Values, showing an improvement around 115% to 130% for
the six different motion cells tested. The authors also claims that the improvements achieved by Eigen-Laplacian-SIFT
approach was suitable for the DIC microscopy imagery due to motion characteristics of the living cells.

Rahman et al. (2009) suggest an approach to detect and track walking people also using SIFT. Every person entering
in the image sequence is detected by applying the background subtraction technique, which is very suitable for real time
applications but demands to collect previously one or more clean images of the background. It is also very sensible to
luminance variations, depending on the database of backgrounds. On the other hand, for indoor and well controlled
environments, background subtraction approach is widely used. The authors compared their results against manual
calculations and showed error rates from 2% to 15% for the estimation of geometrical centers.

The project described in this paper presents an approach to track vehicles over outdoor image scenes, which are very
susceptible to noise and distortions, by applying the SIFT algorithm (Lowe, 1999, 2004) associated with the Kalman
Filter. The Kalman filter intends to improve both algorithm performance and SIFT matching results, since it is used to
estimate the a priori position of the vehicle (x and y coordinates).The following sections give a brief overview of SIFT,
Kalman Filter and finally the method used to solve and improve the vehicle tracking.

2. METHODS

2.1 SIFT algorithm overview

The SIFT algorithm developed by Lowe (1999, 2004) claims to be a robust technique for feature extraction which
allows to perform object recognition in different image scenes. Such image scenes can be transformed in regard to their
scale, rotation and warp distortions and the reference object can still be detected by matching the scale invariant features.
This algorithm can be better described as a 4-steps script: keypoints detection, keypoints filtering, orientation assignment
and finally, compute feature vectors to describe each keypoint.

2.1.1 Detecting keypoints in a scale-space

The generation of interest points can be done by the space scale filtering method, like described in Witkin (1983)
and extended by Lindberg (1994). Such a method gives rise to a Gaussian pyramid (Forsith and Ponce, 2002) where the
image layers, hereafter named "octaves", are constructed by successively reducing in 50 % the image scale and applying
a Gaussian filter to the resultant scaled image. Lowe (Lowe, 2004) suggests to generate smoothed images for each
octave, using Gaussian filters increasing progressively, in the interval [σ, 2σ], where σ is the standard deviation of the first
Gaussian mask considered.

Figure 1: Gaussian Pyramid - smoothing and subsampling; (b) Selection of extrema from their 26 neighbors. Source:
van den Linden et al. (2009)

As the Difference of Gaussian (DoG) function is a good estimative of the Laplacian of Gaussian (LoG) edge detector
(Gonzalez and Woods, 2002; Lowe, 2004), a correspondent DoG pyramid is constructed by subtracting pairs of successive
Gaussian pyramid image levels. The resulting images have only the borders of the objects, as shown in figure 2. After
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Figure 2: Image generated by a DoG filter

the DoG images are created (2), one must select the local maximum and minimum. These pixels detected are keypoints
for further filtering. Hence, searching for local extrema points in all DoG image scales provides a set of possible interest
points. Such points are identified by comparing the intensity of a scale-space point (x, y, σ) with that of the points in its
3 × 3 × 3 (3D neighborhood), encompassing the eight neighbor points in the same scale image and the eighteen points
in the neighbor scale planes (nine in the upper, nine in the lower). The positions of the extrema points in the scale-space
must be determined, preferably, with sub-pixel and sub-scale precisions, as presented in Brown and Lowe (2002), where
a quadratic function is fitted to the scale-space of the DoG function by expanding it in a Taylor series up to the quadratic
term, i.e.,

D(X) ' D(Xp) +
∂D(X)

∂X
|Xp(X −Xp) +

1

2
(X −Xp)

T ∂
2D(X)

∂X2
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where Xp = [xp yp σp]
T is the reference point in the scale-space, D(Xp) is the DoG value in the reference point,

X = [x y σ]T is a point in the scale-space, and D(X) is the DoG estimated value in X .
Therefore, the extrema points of the DoG function can be found with sub-pixel precision, through:
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2.1.2 Filtering out non-robust keypoints

Once the keypoints were collected, one must filter out pixels with low level of intensity since such pixels are more
susceptible to the noise interference. Lowe (2004) suggests cutting of pixels with less than 0.03 of intensity.

Amongst the extrema points previously retained, those whose intensity is lower than a given threshold are simply
eliminated and the remaining ones are submitted to a test to verify if they exhibit the characteristics of vertices. Following
Lowe (2004), the eigenvalues of the Hessian matrix H(x, y) are determined for each point (x, y) of the DoG filtered
image I(x, y) i.e.

H(x, y) =

[
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂x∂y

∂2I
∂y2

]
(3)

and the pixels for which the ratio between the highest and the lowest eigenvalue is greater than 10, as suggested by Lowe
(2004), are eliminated.

2.1.3 Assign dominant orientations for the keypoints

A rotational invariant descriptor can be constructed, by calculating the magnitude and orientation of the image gradient
level around the position (x, y) of each point of interest according to eqs. 4 and 5.

m(x, y) =
√
λ2 + β2 (4)

θ(x, y) = tan−1

[
β)

λ

]
(5)

with λ = [G(x+ 1, y)−G(x− 1, y)]

and β = [G(x, y + 1)−G(x, y − 1)]

To perform this task it is necessary to construct a histogram of orientations over a circular mask, centered in the interest
point, in which a circular radius is given by:

r = k.2oct (6)
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(a) (b)
Figure 3: (a) Histogram of orientations. (b) Quadratic polynomial fitted around the histogram maxima.

where k is an empirical parameter and 2oct is the image sub-sampling scale, determined by the octave number of the
interest point. The number q of histogram intervals can be arbitrarily set up and the contribution of each orientation is
weighted by its magnitude and by a Gaussian mask with standard deviation equal to 1.5 times the standard deviation of
the DoG image where the interest point has been detected.

After interpolating the histogram with quadratic polynomial curves around their maximum points (figure 3a), the
dominant orientation can be finally determined by searching those local maxima (figure 3b). The remaining keypoints,
like shown in figure 4, should be the most robust ones and less susceptible to noise.

Figure 4: Keypoints detected for the reference object

2.1.4 Describe keypoints with feature vectors

The characteristic vector of each interest point is finally constructed as a set of histograms of orientation gradient
vectors collected in its neighbor rectangular regions and weighted by a 2-dimensional Gaussian function, resulting
from successively applying n 3 × 3 mean-filters. In other words, each component of the characteristic vector is a
three-dimensional histogram defined at a point (Rx, Ry, θ) where (Rx, Ry) is the coordinate of the neighbor region and
θ is the gradient orientation, assuming normalized values in the interval [0, 1] . In the example of figure 5, a 4× 4 region
matrix is generated around a reference point and the local gradients are grouped according to 8 intervals of orientations
giving rise to a characteristic vector of 128 components (= 4× 4× 8). Changes both in the number of regions and in the
number of histogram intervals can affect the performance of SIFT algorithm.

2.2 Kalman Estimation

The identification of the object of interest in a straight manner by tracking each image frame is a deterministic
procedure; however, grabbed images suffer from inaccuracies due to affine distortion, presence of artifacts such as
occlusions and shadows, and sensor (camera) calibration errors which, ultimately, impair the whole identification process.
This drawback could be eliminated once the inaccuracies were precisely quantified. Unfortunately, apart the eventual
possibility of fine-tuning the sensing equipment, the other above-mentioned errors are difficult to quantify. A possible
approach in such instances is to formulate the problem under a stochastic, instead of a deterministic point of view. It
means that inaccuracies are treated generically as noise whose statistics are incorporated in the identification process. In
this work, the Kalman Filter performs the task, as described in the sequel.

The first step in applying the technique is to tailor the problem in a state-space framework. It is assumed that the
kinematics of any moving object in image scenes is constrained to a 2-D environment (Bradski and Kaehler, 2008), in
which case the state is a vector X ∈ R4 containing both displacements and velocities of the geometric center of the
object (see section 3.1for the definition). Once the state is established, it is necessary to define the so called process and
observation models.

It is a fair assumption to consider the object to be tracked as a rigid body. This way, its configuration in a constrained
two-dimensional space can be described by three independent generalized coordinates, namely, the Cartesian coordinates
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Figure 5: (left): Gradients around a reference point; (right): Histogram of regional gradient orientations of a figure caption
(created by the author, based on Lowe (2004))

of its geometrical center, and its attitude about an axis orthogonal to the plane of the movement. However, for the purpose
of the present work, only the coordinates of the geometrical center will be employed in describing the kinematics of
the body. Moreover, since the time-step between successively grabbed images is small (the order of 1/30 seconds),
the velocity of the geometrical center will be considered constant. Under those hypotheses, it is possible to write the
discrete-time state-space model as

Xk = FXk−1 + wK (7a)

Zk = HXk−1 + vk (7b)

where 7a and 7b respectively represent the process model and the observation model, whereas

F ∈ R4x4 is the discrete-time state transition matrix;

wk ∈ R4 ∼ N (0, Q) is the process noise ;

vk ∈ R4 ∼ N (0, Q) is the measurement error;

Zk ∈ R2 is the states collected from real measurements;

Hk ∈ R4x2 is the observation model matrix;

Matrices and vectors in eqs. 7a and 7b were defined as follows:

Xk =


x
y
Vx

Vy

Fk =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , B = 0, p(wk) N(0, Q) Hk =


1 0
0 1
0 0
0 0

 , p(vk) N(0, R)

The state variables for the positions x and y are given in pixels, while the velocities are given in pixels/frame. Finally, it
is assumed that process and measurement noise are white and independent of each other and uncorrelated, a consequence
of the Gaussian hypothesis. Within this framework, both modeling and measurement disturbances can be accounted for
by the estimation algorithm.

Kalman filters are Markovian observers that seek to provide the best estimates of the state in a stochastic least-squares
sense, in two stages. On the propagation stage, based on noise corrupted observations of the coordinates of the geometrical
center of the object (the keypoints matched by the SIFT algorithm) at an instant k− 1 and on the assumed time-evolution
model of the state, the Kalman filter computes optimal estimates of the state x̂−k and of its error covariance matrix, P−

k ,
before the arrival of new measurement data. When new observations are available at instant k, new estimates of the state,
x̂+k , and of the error covariance matrix, P+

k , are calculated considering a correction term, Kk, the Kalman gain, during the
so called update stage. Thus, the complete framework of the Kalman predictor-corrector procedure can be summarized
by the following equations, according to the terminology from Gelb (1974):

x̂−k = Ax̂−k−1 +Bû−
k−1 (8)

P−
k = APk−1A

T +Q (9)

Then, collect the current measurements and compute the update (or correction) equations:

Kk = P−
k H

T (HP−
k H

T +R)−1 (10)

x̂k = x̂−k +Kk(Zk −Hx̂−k ) (11)
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Pk = (I −KkH)P−
k (12)

The ensuing values were admitted as initial conditions:

X0 =


100
100
−3
−3

 , Q =


10−1 0 0 0
0 10−1 0 0
0 0 10−1 0
0 0 0 10−1

 , R =


105 0 0 0
0 105 0 0
0 0 105 0
0 0 0 105


It should be noticed that the values x = y = 100, Vx = Vy = −3 as initial conditions are only arbitrary values, with

the particular characteristic of positioning the initial coordinates close to right side of image scene, according to the street
lanes and direction of movement and considering it a "one way" street. These empiric values affect only the number of
frames needed for the Kalman estimations to converge. Therefore, they should be selected according to applications.

3. RESULTS AND DISCUSSION

A set of 80 frames from an upper view surveillance camera was selected (refer to the figures 7 and 9 for examples of
the image set and camera placement). The reference object (a vehicle) was extracted manually within one of these frames
in a way that the object would be well represented across the images sequence. The proposed technique is not restricted
to one specific viewpoint, but the initial conditions for Kalman equations would affect the number of frames to converge
(section 2.2).

Due to the inherent transformations in image process capture, the object is subject to affine distortion (rotation and
scale) which would affect the performance of the SIFT detector. In order to understand how the Kalman filter may help
the tracking process, two experiments were conducted: (a) to detect and track the object applying only the SIFT algorithm
over all image frames and; (b) to detect and track the object applying the SIFT algorithm helped by a Kalman filtering.

3.1 SIFT-only tracking

As described in the section 2.1, the first step is to compute the object descriptors in form of feature space. Each selected
keypoint is described by a feature vector. The same task must be executed for both the scene and object images, i.e.

X = {X1, X2, X3, ..., Xn}, n = number of keypoints detected for the object image

Y = {Y1, Y2, Y3, ..., Ym},m = number of keypoints detected for the scene image

BeingXi, i = 1...n the feature vectors of the object keypoint and Yj , j = 1...m the feature vectors of the scene keypoints,

Xi = [x1, x2, x3..., x128]

Yj = [y1, y2, y3..., y128]

then the Euclidean distance between each pair of feature vector must be computed as follows:

D(X,Y ) =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (x128 − y128)2 (15)

The minimum distance between a pair of feature vectors, each one representing a keypoint, would indicate a possible
match:

Match(X,Y ) = argminX,Y {D(Xi, Yj)} i = 1...n, j = 1...m (16)

In this project, the SIFT algorithm provided 17 keypoints, meaning 17 matches. According to Lowe (2004), at least 3
matches are required in order to identify an object match. For the purpose of avoiding false positives, the first 5 matches
were selected, thus looking for the most "robust" ones. Still, in some frames there remained false positives which had to
be discarded. A second constraint was to limit the area of the keypoints to be equal or less the area of keypoints detected
in the object image.

rectangle(Keypointsscene) ≤ rectangle(Keypointsobject) (17)

It is assumed that the position of the object is represented by its geometrical center corresponding to the best matched
keypoint which, in turn, is the pair of object/scene feature vector bearing the smaller distance. This procedure is iteratively
applied throughout all frames, and the results are shown in figure 6.

For the SIFT-only approach, there is no ROI defined; as a consequence, the SIFT matching process has to be performed
against keypoints collected from the whole image scene. However, as it shown by the frame in 7, an example of the "object
lost" outcome during a tracking sequence, despite some good matches, the false ones jeopardize object recognition. Then,
it is possible to conclude that the fewer keypoints in the background, the better SIFT-algorithm performance.
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Figure 6: SIFT tracking - magnitude of displacement vector in pixels

Figure 7: Tracking the vehicle with SIFT algorithm only

For the SIFT-only approach, there is no ROI defined, incurring the SIFT matching process to be performed against all
the keypoints collected from the whole image scene. By observing such situation, one can assume that the SIFT would
perform better if there is no (or less) keypoints in the background when matching against the vehicle keypoints. The figure
7 shows that despite some good matches, the false matches jeopardize the object recognition. The frame shown in figure
7 is one example of the "object lost" during the tracking sequence.

3.2 SIFT-Kalman Tracking

Under the hypothesis the SIFT tracking can be improved by Kalman estimation, the latter is used to compute a priori
estimates of the vehicle state (position and speed), that are, then, used to reduce the ROI (Region of Interest) within the
image scene, therefore decreasing the computational burden necessary to find the matches. The size of ROI rectangle
was empirically set to double of the object size (figure 4), centered in the position estimated by the Kalman Filter. This
size should be fine tuned to accommodate the errors in estimation and also to allow abrupt changes in the displacement
direction.

The thicker rectangle in figure 9 suggests that the object was successfully found while the thinner rectangle indicates
the ROI. One can note that only the keypoints inside the ROI was used to perform the match subprocess.

It can be seen from figure 8 that the number of keypoints reduced dramatically when the Kalman estimates converged
to the object position. The criterion to consider that the Kalman estimatives finally converged is based on the distance
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Figure 8: Number of keypoints - whole image and ROI

Figure 9: Tracking the vehicle with SIFT algorithm helped by Kalman estimation

between the "Kalman estimated position" and the "detected geometrical center" , as follows:

err =
√
dx2 + dy2 (18a)

diag =
√
w2

ROI + h2
ROI (18b)

where

dx and dy are the distance between estimated Kalman coordinates and the detected geometrical center, for x and y respectively and;

wROI and hROI are respectively width and height of the rectangle built for Region of Interest and diag is the length of ROI diagonal.

When error ≤ diagonal from equations (18), this error can be neglected and the ROI is applied to the subsequent
frame. Experiments have shown that the Kalman estimation in supporting the SIFT object tracking brings some considerable
advantages, such as the reduction of false positives, as depicted in figure 10. While the SIFT-only approach gives 120
false matches (keypoint matches), the Kalman-aided tracking algorithm reduced the amount of pixels to process and also
the number of errors caused by keypoints located on the background scene.

The Kalman estimation was applied in two different ways. In the first one, the measurement noise and process noise
covariance matrices were kept constant as initially set, thus forcing the estimation towards the model dynamics, since there
is no guarantee that measurements are reliable. When the SIFT algorithm detects an object match, the above-mentioned
covariance matrices are respectively adjusted to values 1.0e−3I4 and 1.0e−2I4 (In is the identity matrix of order n) in
order to continue the estimation procedure. The result of such experiment is shown in figure 11.

In the second experiment, the Kalman filter algorithm was run updating the measurement noise error covariance matrix
R at every iteration, based on new measurement data from grabbed images. The result is shown in figure 12.
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Figure 10: False positives and object matches

Figure 11: SIFT-Kalman tracking and Kalman-only estimation - fixed error and covariance matrices (magnitude of
displacement vector in pixels)

Figure 12: SIFT-Kalman tracking and Kalman-only estimation - updating error covariance matrices (magnitude of
displacement vector in pixels)

From figures 11 and 12, one realizes that, no matter the measurement error covariance update, estimates obtained
with the aid of the Kalman filter avoids loosing track of the object between frames 60 and 70, which represents another
advantage over the SIFT-only method. It should be noticed that the poor results obtained by all methods after around
frame 75 is a consequence of the tracked object leaving the scene.

Concerning figures 11 and 12 it is important to mention that when updates are performed, the convergence time is
slightly higher; nevertheless, it does not represent a drawback, since the overshooting that occurs in the first experiment
is avoided. In practice, this means that if one is not able to ad-hoc fine tune the covariance matrices, the algorithm itself
(SIFT-Kalman with R matrix update) is robust enough to provide good estimates of the state from a totally arbitrary
initial condition. Moreover, the amount of computer work is decreased from about O(n2) = 4002 = 16e4 to about
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O((n/16)2) = 625 cycles to obtain the matches.

4. CONCLUSIONS

Despite of the claimed robustness of SIFT algorithm to track objects over outdoor image scenes, it still suffers from
degradation which reduces considerably the matching performance, and may cause the object loss. In this work, by
using Kalman Filter to estimate the a priori states, it was shown that one could considerably improve the performance of
SIFT algorithm, since the number of keypoints is reduced 16 times and, as a consequence, the number of false matches
is reduced by about 50%. This improvement was achieved because, by knowing previously the most likely position of
the object in the subsequent frames, it was possible to redefine a ROI inside the whole pixel matrix of the image scene.
Therefore, from the above rationale, it can be asserted that the initial objectives are attained.
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