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Abstract. It is known that both actuation and kinematic redundancy promote, among other benefits, a significant 

reduction in the singularities and homogenization on the actuation forces. However, evaluating if the redundancy is a 

good solution to increase dynamic performance of a robotic system is not trivial, because this solution means not only 

that there is more available torque, but also that the inertia of the system has been considerably increased. In this 

paper, a numerical study is performed to realize whether kinematic redundancy can be a good alternative for planar 

parallel manipulators to achieve high dynamic performance. Three kinematically redundant configurations of the 

3RRR planar manipulator are evaluated through cinematic and dynamic models: the (P)RRR+2RRR, the 

2(P)RRR+RRR and the 3(P)RRR. The main objective of this paper is to evaluate numerically the modifications on the 

workspace and singularity regions due to reconfiguration capabilities caused by this kind of redundancy. Moreover, 

insights on the trade-off dynamical analysis have been explored. Based on the numerical results, one can conclude that 

kinematic redundancy has been capable of reducing the maximum required torque to perform a predefined trajectory 

enhancing the dynamic performance of the manipulator.  
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1. INTRODUCTION

For over a decade, parallel kinematic machines (PKM) have attracted the attention of academic and industrial 

communities due to their advantages over serial architectures. Among these advantages, it can be mentioned the 

lightness, the high speed/acceleration, the rigidity and the load capacity (Merlet, 1996). The most promising industrial 

application for these alternative architectures is the pick-and-place operation required in the food, pharmaceutical and 

electronic industries. Another possible application is the use of haptic PKMs that require high performance, low inertia, 

high stiffness, low friction, gravitational balancing, multiple degrees of freedom, high compression, among others 

(Merlet, 1996). 

Although providing precision, high stiffness and good dynamic properties, the PKMs suffer from the presence of 

singularities in their workspace (Conkur and Buckingham, 1997). As a result, the ratio between the useful working 

space and physical space occupied by the equipment is rather low. Recent results (Kotlarski et al., 2009 and 2011, 

Mohamed and Gosselin, 2005) have suggested that the use of redundancy can be a good alternative for minimizing the 

presence of singularities. For PKMs, the concept of redundancy can be classified into (Merlet, 1996): 

• Sensor redundancy which occurs when the number of sensors is higher that the number of degrees-of-freedom.

This methodology is mainly used for calibration of robotic systems or control purposes. 

• Actuation redundancy happens when there is the introduction of a kinematic chain in the mechanism.

• Kinematic redundancy corresponds to the introduction of an actuator in a kinematic chain. Due to the

kinematic redundancy, the mechanism can reconfigure itself to avoid the singularities as explored by Kotlarski et al. 

(2009). 

In order to illustrate the differences between actuation and kinematic redundancies, Fig. 1 depicts the planar parallel 

manipulator 3RRR, the redundantly actuated planar parallel manipulators 4RRR and the kinematically redundant planar 

parallel manipulator (P)RRR+2RRR, where R and P stand for revolute and prismatic joints, respectively. The underline 

letters indicate the joints that are actuated and the letter between parentheses indicated the redundancy.  

The aim of this work is to study whether the kinematic redundancy can be a good alternative for parallel planar 

manipulators to achieve high accelerations. Mohamed and Gosselin (2005) affirmed that redundancy can, in general, 

improve the ability and performance of parallel manipulators. According to these authors, using the extra degrees of 

freedom, the redundant mechanism will not only execute the original output task but also additional tasks such as 

eliminating singularities, increasing the workspace, improving dexterity and obstacle avoidance, optimizing force 

transmission, and/or compensating for unexpected impact. The main reason behind these benefits is that a predefining 

task can be performed in several manners; therefore a cost function can be defined to treat all the conflicting objectives 

in an interesting fashion. The use of actuation redundancy in planar manipulators has been recently studied by Rocha 

and da Silva (2013). In this work, it has been concluded that actuation redundancy have been capable of enlarging the 

usable workspace since the singularity region has been considerably reduced and that in spite of having more available 

torque, the added inertia limited the dynamic performance of the redundant manipulators. 
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In this way, regarding conflicting objectives, evaluating if the kinematic redundancy is a good solution to increase 

dynamic performance of a robotic system is not trivial, because this solution means not only that there is more torque 

available, but also that the inertia of the system has been considerably increased. In order to infer about this quest, 

kinematic and dynamic models of different configurations of a planar parallel manipulator are developed. Based on 

these models, workspace and singularity analyses are carried out. The studied configurations are the planar parallel 

manipulator 3RRR and the kinematically redundant planar parallel manipulators (P)RRR+2RRR, 2(P)RRR+RRR and 

3(P)RRR, shown in Fig. 2. 

The proposed setup is composed of 3 linear motors (the redundant actuators) and 3 rotational motors. If the linear 

motors are going to be actuated or not define the redundancy of the system, as illustrated in Fig. 2. For instance, if only 

one linear motor can be actuated, the system has an extra degree-of-freedom yielding to the (P)RRR+2RRR 

configuration.  

Figure 1. 3RRR: planar parallel manipulator, 4RRR: redundant actuated planar manipulator and (P)RRR+2RRR: planar 

kinematically redundant planar manipulator 

Figure 2. 3RRR: planar parallel manipulator, (P)RRR+2RRR: one redundant actuator, 2(P)RRR+RRR: two redundant 

actuators and 3RRR: three redundant actuators 
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The redundant actuator can be considered generally in two manners: the offline and the online (Kotlarski et 

al.,2011). The offline manner is the simplest way to use the redundant actuator since its position is modified before the 

performance of the desired trajectory. This position is selected according to singularity avoidance and performance 

indexes. According to Kotlarski et al. (2011), this approach leads to satisfactory results in the case of repeated and 

simple trajectories. The online manner exploits the full capacity of the redundant actuators updating their position while 

the trajectory is being performed. This strategy requires a dynamic optimization strategy which may lead to very 

efficient alternatives to perform the desired strategies. Nevertheless, this strategy demands higher computational effort. 

In this manuscript, the offline strategy is adopted. In order words, a search for the most adequate positions for the 

linear redundant actuators is carried out before the performance of the desired trajectory. A consequence of this choice 

is that the redundant configurations can be evaluated by using the 3RRR kinematic and dynamic models by modifying 

the position of the linear redundant actuators. 

The numerical methodology employed to model the 3RRR manipulator is described in Section 2. The numerical 

results regarding the modifications on the workspace and singularity regions regarding the addition of the redundant 

actuator are treated in Section 3. Also in Section 3, a desired trajectory is selected and the required torque to perform it 

is calculated by the non-redundant and redundant manipulators. Finally, in Section 5, conclusions are drawn. 

2. NUMERICAL ANALYSES

Numerical analyses have been carried out using the inverse kinematic and dynamic models of the 3RRR in order to

evaluate the different configurations regarding cinematic, dynamic, workspace and singularity analysis. Theoretical 

aspects are treated hereafter. Figure 3 illustrates the parameters used to evaluate the 3RRR numerical model. As it can 

be seen, the mechanism is composed by 3 kinematic chains (links) containing 1 active rotational joint (motor) and 2 

passive joints. A similar methodology has been employed by Rocha and da Silva (2013). 

Figure 3. 3RRR geometrical characteristics: (a) length of the links and (b) joint angles 

2.1 Cinematic Analysis 

As suggested by Wu et al. (2011), the base coordinate system O-   is fixed on the active revolute joint A1 and the 

moving coordinate system C-  ̅̅ ̅ is connected at the center of the end-effector (see Fig. 2). The inverse kinematic 

models of the 3RRR manipulator can be solved by evaluating the positions of the passive joints and the end-effector. 

This can be performed by describing the position of the passive joints by    through the variables    and the known 

positions   and   . In this way, the vector     , which has a fixed length   
 , can be found by knowing that     

              and          
 : 

                                
 (1) 

where    and    are rotation matrices and   
  is a vector described by: 

   [
         
        

]              [
           

          
]              

  [   
 

 
] (2) 

According to Fig. 2, Eq. (2) can be rewritten as: 
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Using the relation |    |
      

   , Eq. (3) can be described by the following set of equations: 
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It can be observed that Eq. (4) depends only on the following variables  ,  ,   and the mechanism dimensions. 

Equation 4 can be solved by using the Weierstress substitution (Mabie and Reinholtz, 1987): 

      
    

            
  

         
  

 
      (7) 

Substituting Eqs. (7) into Eq. (4), the angles    can be calculated: 

         (
     √   

     
     

 

       
)           (8) 

Based on the angles   , one can calcutate the angles    (see Fig. 3) through the vector      given by Eq. (3): 

        (
     

     
)         (9) 

According to Eq. (8), each angle    can assume two different values. In this way, there are several possible 

combinations of considering these different values. Therefore, considering all possibilities for the 3RRR planar 

manipulator, a single end-effector position (      and    can be obtained by 8 distinct combinations of the angles   . 

In order to evaluate the velocities and the accelerations of the passive and active joints of the manipulators, one can 

express the end-effector position using the following equation:  

   [
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It is useful to the define the terms     and     in the following way 

[
  

  
]  [

      
            ̅     ̅          
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]  [
   

   
]         (11) 

Equation 11 can be rewritten considering all the mechanism legs: 

[
  

  
]  

 

 
[
           

           
]
    

               (12) 

Taking the time derivative of Eq. (12) and rearranging the terms, one can yield the following expression: 

 ̇  [

  ̇

  ̇

 ̇

]     [ ̇  ̇  ̇  ̇  ̇  ̇  ̇]      ̇         (13) 
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The matrix     is known as Jacobian and can be non-squared. Therefore, in order to obtain the relation for  ̇ from 

 ̇, the pseudo inverse matrix      should be calculated and employed in the following relation: 

(   
    )

  
   

  ̇       ̇   ̇        (14) 

The accelerations can be easily calculated by time deriving Eq. (13), yielding: 

 ̈       ̈    ̇   ̇         (15) 

2.2 Dynamic Analysis 

The inverse dynamic model consists in obtaining the required torques and forces to move the manipulator according 

to a predefined trajectory. Some important issues should be considering when dynamic modeling PKMs. A major issue 

is related to singular points in the workspace (Siciliano and Khatib, 2008). This issue is treated in the following 

sections. One can use different methodologies to formulate the dynamic model. Among them, we would like to 

highlight the Principle of Virtual Work and the Lagrange Formulation (Merlet, 1996). Considering the later 

methodology, the general equation of motion of a PKM can be described by (Siciliano and Khatib, 2008):  

  ̈    ̇                     (18) 

where  ̈,  ̇ and q are the acceleration, velocity and position vectors, respectively,   and   are the inertia and the 

Coriolis related matrices, and  ,   ,    and    are the force vectors related to the actuators forces, gravitational force, 

spring and damping forces and joint forces (associated to the closed kinematic chain), respectively. For a planar 

manipulator,    and     can be considered null. One strategy to solve Eq. (18) is to rewrite this equation considering the 

constraints’ equations (      ). Taking the time derivatives of the equation of constraints, one can obtain the 

Jacobian matrix    : 

 ̇      ̇    (19) 

 ̈      ̈    ̇  ̇ (20) 

where          . The forces related to the joints can be expressed in terms of the Lagrange multipliers   (Rao, 

2009), according to Eq. (21): 

      
   (21) 

In this manner, Eq. (18) can be rewritten in the following way: 

  ̈    ̇       
 (22) 

The most straightforward way to solve this equation is to rewrite it considering the Jacobian matrix    , which correlates 

 he   me der v   ve   f  he ge er l zed    rd    e    d  he    u   r ’   gul r p           ̇      ̇ and  ̈      ̈    ̇  ̇): 

     ̈  (   ̇      ) ̇        
     (23) 

Pre-multiplying Eq. (23) by    
 , one gets the following expression: 

   
      ̈     

 (   ̇      ) ̇      
      

    
     (24) 

From Eqs. (19) and  ̇      ̇, one can infer that     ̇         ̇   , where  ̇ can assume any value. In this way, it 

can be concluded that          and    
    

     Defining    
         ,    

 (   ̇      )     and    

   
  , it is possible to express the actuators’ torques    in terms of   ̈  ̇ e  : 

   ̈     ̇    (25) 

It is important to highlight that Eq. (25) is only valid when the relation  ̇      ̇ is clearly defined, i.e., the 

manipulator is not on a singularity position. Singularity analysis is treated hereafter. 
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Considering the 3RRR manipulator the constraints’ equations (      ) can be determined observing the closed-

loop connections A1A2 and A3A2 (see Fig. 3). From these closed-loop connections, four equations of constraints can be 

derives:  

         
         

                                     
         

               (26) 
         

         
                                     

         
                   (27) 

         
         

                                    
         

               (28) 
         

         
                                     

         
               (29) 

where    is the angle the vector     and the horizontal line and      |   |. Taking the time derivative of these 

equations, one gets: 

  

  
 ̇  

  

  
 ̇      (30) 

where   [      ]
   and   [       ] . Through this relation, it is possible to define the Jacobian 

matrix    : 

 ̇   
  

  

    

  
 ̇      ̇, de (

  

  
)    (31) 

Equation 30 correlates the velocity of the passive and active joints and the Jacobian matrix    can be used to 

calculate the Jacobian matrix    : 

 ̇  [
  
   

]  ̇      ̇ (32) 

2.3 Singularity Analysis 

Singularity regions are characterized by an important lack of stiffness. The analysis of these regions can be 

performed by evaluating the rank of Jacobian matrix that correlates the output velocities  ̇ with the actuators velocities 

 ̇ (Bonev and Gosselin, 2001): 

   ̇     ̇ (32) 

As described by Gosselin and Angeles (1990), there are three different types of singularities regarding PKM: 

1. The first type of singularity is when de       . This kind of singularity is similar to the ones that usually 

happen in a serial manipulator. It occurs at the workspace boundaries when the legs of the mechanism are 

collinear.  

2. The second type of singularity is when de (  )     In this situation, the end-effector can move even when

the actuators are not acting. In the case of PKMs, this kind of singularity happens when the rank of the

Jacobian matrix    is smaller than the system degrees of freedom. This can be also calculated by

de (    
 )   .

3. The third type of singularity happens when    and    are singular simultaneously. 

In order to evaluate the singularity regions of the PKMs, the matrices     and     should be calculated. According to 

Bonev and Gosselin (2001), this can be done by calculating the amplitude of the vector that describes the link   
  of the 

manipulator:  

    
    (                  

 )
 
(                  

 ) (33) 

Taking the time derivative of Eq. (33) and recalling Eq. (3), one can obtain: 

    
 ([

 ̇ 

 ̇ 
]          ̇    

  ̇      )    (34) 

where    [
   
  

] and    [
 
 
] . Rewritting Eq. (33), one can obtain the matrices     and    for the 3RRR: 
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The singularity points can be obtained by discretizing the workspace in Q points and verifying the rank of the 

matrices     and    . 

2.4 Workspace Analysis 

The workspace area is estimated by the intersection of the ring-shape areas that each leg i can reach according to 

the maximum and minimum lengths that this can leg can reach, which can be calculated according to Eqs. (36) and 

(37): 

|    |      
    

 (36) 

|    |    {
  
    

       
    

   

       
    

   
(37) 

In this way, the maximum and minimum lengths that the leg i can reach considering a fixed end-effector 

orientation,   [    ] .can be calculated by: 
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|    |       
|    |       
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|    |         ̅         ̅       
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]        [
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|    |         ̅         ̅       

] (39) 

The total workspace considering a variable end-effector orientation can be given by the intersection of the ring-

shape areas that each leg i and the end-effector can reach. Therefore, the maximum and minimum ring-shape radiuses 

for a variable end-effector orientation can be found by: 

       
      [

|   |       
|   |       

] (40) 

       
      [

|   |       
|   |       

] (41) 

3. NUMERICAL RESULTS

A pre-defined straight line trajectory within the total workspace area has been selected to evaluate the three 

different configurations. Figure 4 depicts the position, velocity and acceleration profile of this pre-defined trajectory. As 

can be seen in Fig. 4, the manipulator performing the pre-defined trajectory starts and finish the motion with null 

velocity reaching a maximum acceleration of 4 m/s² and angular acceleration of 5.2 rad/s². For sake of illustration Fig. 5 

shows the initial and the final position of the end-effector for the desired trajectory. 

Figure 4. Pre-defined trajectory: initial and final end-effector position 
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Figure 5. Pre-defined trajectory: position, velocity and acceleration of the end-effector 

The nominal positions of the rotational actuators are also shown in Fig. 4 (A1, A2 and A3 in Fig. 3a). Their 

nominal positions are described in Table 1. The stroke of translational actuators is 1m and their arrangements are 

illustrated in Figs. 4, 5 and 6. The length of each link is    and     is also 1m. Each rotational actuator weights 0.4kg as 

well the links.  

Table 1. Rotational Actuators’ Positions. 

Rotational 

Actuators 

x y 

A1 0.00 1.33 

A2 1.15 -0.67 

A3 -1.15 -0.67 

3.1 Workspace and Singularity Regions 

Based on the methodology described in Section 2, the workspace and the singularity regions for the non-redundant 

and the redundant manipulators have been calculated. Figure 6 shows these regions for the non-redundant manipulator, 

the 3RRR, considering a constant    . In Figs. 6 and 7, the linear actuators are represented by a line and the 

rotational actuators are represented by a circle. 

In order to illustrate the reconfiguration capabilities of the redundant manipulators, the workspace and singularity 

regions of different configurations are depicted in Fig. 7. In this figure, the position of one rotational actuator has been 

modified by the linear actuator before the actual robot movement to perform a desired trajectory. As it can be seen, the 

understudied regions are adapted when the position of one rotational actuator is modified. In this way, one can decide 

the best configuration for a pre-determined movement. This selection can be done in order to avoid singularities and 

regions out of the workspace. 

Figure 6. Workspace and singularity regions for the non-redundant manipulator 3RRR 
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(a)    (b)  (c) 

(d)                                                   (e)                                                  (f) 

Figure 7. Workspace and singularity regions for the redundant manipulators 

3.2 Dynamic Analisys 

In order to evaluate the system dynamically, the required torque to perform a pre-defined trajectory (see Fig. 5) has 

been evaluated using the methodology described in Section 2. Figure 8a shows the required torque to perform the pre-

defined trajectory by the non-redundant manipulator, the 3RRR illustrated in Fig. 9a. The maximum required torque is 

10.55N.m.  

      (a) (b) 

      (c) (d) 

Figure 8. Required torque for the best configuration of the (a) 3RRR, (b) (P)RRR+2RRR, (c) 2(P)RRR+RRR and (d) 
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The maximum required torque is an important metric for the design of robotic system, since based on this value, the 

motors can be selected. In this way, in order to evaluate the impact of the redundancy on the robot system dynamics, the 

maximum torque value is going to be evaluated for each redundant manipulator. Each linear actuator stroke has been 

subdivided in 10 equidistant positions, from -0.5 to 0.5, and the maximum torque has been extensively evaluated. 

Firstly, the (P)RRR+2RRR has been evaluated. This configuration has only one redundant linear actuator (actuator A1 

from Table 1) and 10 different configurations have been investigated. Modifying the position of this linear actuator to 

+0.4 as illustrated in Figure 9b guarantees a maximum required toque of 9.13N.m.  Figure 8b shows the required torque 

to perform the pre-defined trajectory for this redundant manipulator.  

The same strategy has been employed for the non-redundant manipulators 2(P)RRR+RRR and 3(P)RRR. They 

have two and three redundant linear actuators (actuator A2 and A3 from Table 1), respectively. The evaluation of the 

2(P)RRR+RRR required the calculation of 100 possibilities while the evaluation of the 3(P)RRR, 1000 possibilities. 

The best options are described in Table 2 and illustrated in Fig. 9. For the 2(P)RRR+RRR and 3(P)RRR, the maximum 

required torques have been reduced to 7.47N.m and 7.33N.m, respectively.  

Table 2. The optimal configuration for each redundant manipulator and the maximum required torque 

Manipulator Number of 

redundant 

actuators 

A1 A2 A3 Maximum 

required torque 

(N.m) 

3RRR 0 0 0 0 10.55 

(P)RRR+2RRR 1 0.4 0 0 9.13 

2(P)RRR+RRR 2 0.3 -0.5 0 7.47 

3(P)RRR 3 0.3 -0.5 -0.5 7.33 

      (a) (b) 

      (c)       (d) 

Figure 9. The best configuration of the (a) 3RRR, (b) (P)RRR+2RRR, (c) 2(P)RRR+RRR and (d) 3(P)RRR+2RRR 
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4. CONCLUSIONS

Based on the numerical results, one can conclude that kinematically redundant manipulators have been capable of

adapting to perform a desired task. This adaptation can be performed online, by the actuation of the redundant motor 

during the robot movement, or offline, by the actuation of the redundant motor before the robot movement. The later 

alternative has been exploited in this manuscript. The inclusion of redundant actuators promotes the reduction of the 

maximum required torque to perform a predefined trajectory. For the chosen trajectory and manipulator, a 30% 

reduction has been verified. This results corroborates to the idea that kinematic redundancy can enhance the dynamic 

performance of a manipulator. 
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