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Abstract

Intergranular pressure-solution (IPS) represents a major mechanism of deformation in sedimentary basins dur-
ing diagenesis. The aim of the present contribution is to provide a comprenhensive 3D framework for modeling
both mechanical and chemo-mechanica compaction is sedimentary basins. Extending concepts, previously
proposed for the modeling of purely mechanical compaction in finite poroplasticity, deformation by IPS is
addressed by means of additional vicoplastic terms in the state equations of the porous material. Resorting
to both micromechanical reasonings and phenomenological arguments, the primary focus is on the analysis of
the effects of large irreversible porosity changes on the poromechanical properties of the sediment material.
The last part of the paper is intended to illustrate, through the analysis of a simplified compaction model, the
main features of the proposed theoretical constitutive model.

Keywords: sedimentary basin, chemo-mechanical compaction, Intergranular Pressure-Solution, poroplasticity,
poroviscoplasticity.

1 Introduction

Simulation of sedimentary basins is a complex multidisciplinary problem involving geological, chem-
ical and mechanical aspects. Due to potential applications in the field of geoscience, which include
petroleum exploration, reserve assessment and production, reconstructing the stress and deformation
history of a sedimentary basin still remain a challenging and important problem in geoscience. In this
context, compaction behavior of sediments material is one of the key elements controlling the sed-
imentary basin deformation, such as diagenetic densification, poromechanichal properties evolution
over geological time and its implications on the reservoir formation to hydrocarbon production.

Actually, the mechanical response of a sedimentary basin is the consequence of complex processes
involving mechanical, geochemical, geophysical and geological aspects. As far as the mechanical analy-
sis at the macrocopic scale is concerned, two principal deformation mechanisms contribute to the com-
paction of sediments: (1) purely-mechanical compaction which originates mainly from rearrangement
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of the solid particles during burial, and (2) chemo-mechanical compaction resulting from intergranular
dissolution-precipitation mechanisms, generally induced by stress and referred to as pression-solution
[1–3]. Purely mechanical phenomena prevail in the upper layers, whereas chemical compaction domi-
nates for deeper burial as stress and temperature increase (e.g. Schmidt and McDonald [4]).

The paper deals with the theoretical modeling of both mechanical and chemo-mechanical compaction
in sedimentary basins.

As regards mechanical compaction, the basic models are still based on phenomenological relation-
ships relating porosity to effective vertical stress. At this respect, one may refer to Bernaud et al. [5]
where a review of the state of art on this topic is given. Furthermore, a 3D constitutive model was for-
mulated in the framework of finite poroplasticity, extending previous ideas to a more comprenhensive
description of the mechanics involved in basin simulation.

Evidencies from both field and laboratory studies have confirmed that intergranular pressure-
solution (IPS) represents an important mechanism of bulk deformation and porosity change. It is
a key aspect of deformation in sedimentary basins during diagenesis. From a schematic point of view,
IPS mechanism may be described as follows. Dissolution and diffusion occur at the grain-to-grain con-
tacts subject to elevated stress, precipitation occurs at the free pore walls. The net result is compaction
of the grains and porosity reduction, which in turn implies a decrease in permeability. Dissolution and
precipitation processes are expected to produce time-dependent compaction creep and play therefore
a crucial role as far as compaction of sediments over geological time periods is concerned.

Creep deformation resulting from IPS has widely been investigated since it has been identified as an
important mechanism of rock deformation in the upper crust. The driving force for this deformation
is the difference in effective stress between grain contacts and free pore walls. Two models have been
basically proposed for IPS mechanisms in fluid saturated media, namely the “thin water film” model
and the “island & channel” model (see for instance the review article by Hellmann et al. [6]). They
both assume that the grain-to-grain contacts contain a trapped fluid which cannot be squeezed out
by applied stress [7]. Both of these models are based on three material transfer processes occurring in
series: dissolution of solid material at stressed grain-to-grain contacts, diffusion of dissolved material
through the intergranular fluid, and precipitation on pore walls. The slowest of the three serial pro-
cesses controls the overall deformation. It is primarily the physical nature of the intergranular regions
that differentiates these two models. The “thin water film” is based on the presence of a continuous
thin film of viscous fluid at grain-to-grain contacts [7, 8]. The “island & channel” model posits an
intergranular region consisting of solid-solid contacts at islands that support the imposed stresses.
These islands are surrounded by a network of interconnected channels containg fluid (e.g., Raj [9];
Lehner [10], Schutjens and Spiers [11]).

At the macroscopic scale, the intergranular pressure-solution phenomena are classically addressed
in the constitutive equations by means of viscous terms. This kind of approach will be adopted in this
work.

The paper is organized as follows. Section 2 describes the micromechanics-based constitutive model
for the sedimentary model within the finite poro-visco-plasticity framework. Special attention is
devoted to the influence of microstructure modifications on the poromechanicals properties of the
sediment material. The principle of finite element implementation is then briefly presented. In section
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3, the main features of the proposed constitutive equations are illustrated through the analysis of
simplified compation model which is intended to represents the represents the local response of the
sediment particle under oedometric conditions of compaction.

2 Theoretical aspects

During compaction process, the sediment material is subjected to large volumetric strains resulting in a
significative porosity reduction, exceeding in some basins 50% as burial goes [12]. In turns, this porosity
change affects the physical and mechanical properties of the sediment material. In addition to the
constitutive non-linearitie, a comprenhensive modeling of the basin response should thus also take into
account both the geometric non-linearities induced by large strains. In this context, a 3D constitutive
model for sediment materials has been formulated within the framework of finite poroplasticity in
a recent paper by Bernaud et al. [5]. Disregarding chemical aspects, this constitutive modeling was
dedicated to purely mechanical compaction in sedimentary basins. At many aspects, this contribution
represented an appreciable improvment with respect to predecessor works which are mainly formulated
within a 1D setting, basically through phenomenological relationships relating porosity to effective
vertical stress The purpose of this section is to provide a mechanical framework aiming to extend the
model proposed in Bernaud et al. [5] in order to account for both mechanical and chemo-mechanical
compaction.

2.1 Constitutive equations

At the macroscopic scale, the intergranular pressure-solution phenomena are classically addressed
in the constitutive equations by means of viscous terms (see for example Laubsher [13], Fletcher
[14], Schneider et al. [15, 16], Schneider and Hay [17] or Lehner and Leroy [18], to cite a few). The
fundamental idea consists in relating measured strain rates resulting from dissolution-precipitation
mechanisms induced by stress to porosity change. Assuming a phenomenological relationship (propor-
tionality under certains conditions) between the latter and the vertical effective stress, a viscous law
type is therefore derived for chemo-mechanical compaction.
The sedimentary rock is modelled as a fully saturated poro-elasto-visco-plastic material undergoing
large strains. The anisotropy induced be compaction on the mechanical properties of the sediment
material is disregarded. In addition, the elastic part of the deformation gradient of the skeleton parti-
cles is assumed to remain infinitesimal. Large strains involved during compaction process are only of
irreversible nature.
The constitutive behavior formulated in Bernaud et al. [5] was based on the theoretical framework of
finite poroplasticity proposed in Dormieux and Maghous [19, 20] and Bernaud et al. [21]. The above
mentioned formulation is extended herein to finite poro-visco-plasticity. Denoting by σ and p respec-
tively the Cauchy stress tensor and the pore pressure, the first state equation relates the stress rate
σ̇ and pore pressure rate ṗ to the strain rate tensor d. The proposed form for the first state equation
writes

DJσ′e

Dt
= σ̇′e + σ′e · Ω− Ω · σ′e = c∼ : (d− dir) + ċ∼ : c∼

−1
: σ′e (1)
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where dir stands for the irreversible strain rate

dir = dp + dvp (2)

dp (resp. dvp) is the plastic (resp. viscoplastic) strain rate, while Ω is the rotation (spin) rate tensor
which aims at taking the large rotation of the elementary volume into account. This equation involves
a rotational time derivative DJ/Dt of the Biot effective stress tensor σ′e = σ+b p 1, where b is the Biot
coefficient. It also includes a term relatd to the particulate derivative ċ∼ of the tensor of drained elastic
moduli c∼, which aims at capturing the evolution of the elastic properties with the microstructural
changes due to large irreversible strains.
Relationship (1) represents a generalization of the rate form formulation provided in Bernaud et al.
[5].
In view of the derivation of the second state equation which relates the pore volume change to the
rate ṗ of the pore pressure and to the strain rate d, it is convenient to introduce the jacobian J of
the transformation of the elementary volume, defined as the ratio between its volume in the current
configuration and its initial one. Similarly, the irreversible part J ir of the jacobian is defined as the
jacobian in the unloaded configuration of the elementary volume. It my be split into its plastic part
J̇p and viscoplastic one J̇vp. The rates of these jacobians are given by

J̇ = J trd ; J̇α = Jα trdα with α ∈ {ir, p, vp} (3)

Let us denote by φ the lagrangian porosity in the current configuration of the elementary volume
and by φir the lagrangian porosity in the corresponding unloaded configuration. Starting from the rate
form derived in finite poroplasticity by Bernaud et al. [21], the second state equation is generalized as

ṗ = M

�
−b tr(d− dir) +

φ̇− ˙φir

J ir

�
+

Ṁ

M
p−Mḃ tr( c∼

−1
: σ′e) (4)

M is the Biot modulus. The terms involving Ṁ and ḃ in (4) are related to the influence of large
irreversible strains on the poroelastic properties.

The complementary equations prescribe the flow rule during the irreversible transformation of the
elementary volume. Within the present framework, the latter deals with the irreversible strain rate dir

and with the rate of the irreversible part of the lagrangian porosity φ̇ir. As regards the plastic strain
rate, we introduce a plastic potential gp(σ′) depending on σ and p through the so-called Terzaghi
effective stress σ′ = σ + p 1:

dp = χ̇
∂gp

∂σ′
(5)

where χ̇ is a non-negative plastic multiplier.
The time-dependent (viscoplastic) component of the strain rate is formulated adopting the following
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generalized viscoplasticity model [22]:

dvp =
1
η

¬
fvp(σ′, ζ)

¶n ∂gvp

∂σ′
(6)

where η is the viscosity coefficient, n the viscosity exponent, fvp the viscoplastic yield function, gvp(σ′)
the viscoplastic potential and ζ the set of hardening variables. It should be recalled that the presure-
solution deformation described by the viscoplastic component dvp of the strain is generally addressed
in basin engineering by means of by explicit relationships of the from (see for instance Raj [9]; de
Meer and Spiers, [23, 24] or Zhang and Spiers [25])

dvp = F(σ′) (7)

where expression of F depends on the rate-limiting process during intergarnular pressure-solution and
incorporate microstructural data of the sedimentary material as well as temperature and physical
properties of the solute in the itergranular regions. Actually, these models attempt to account in a
simplified way for available measures obtained from laboratory tests which are generally performed in
a 1D setting. The ingredients of the theoretical model described by (6), should therefore be consistent
with the above mentioned experiment-based models.

It should be emphazised that the theoretical descriptions of the process of intergranular pressure
solution in terms of creep laws can explain features such as grain-size dependence of creep rates.
However as pointed out in Lehner [26], a significant shortcoming of the creep laws proposed in the lit-
terature is their limited applicability to macroscopically closed systems, with no solution transfer over
long range transport in the pore fluid phase, as may be expected during diagenesis or metamorphism
[27].

Since the irreversible part of the strain rate is given by (2), the conjunction of the plastic and
viscoplastic flow rules (5) and (6) achieve the prescription of the the flow rule (direction) for dir.

To complete the formulation of the flow rule, we need to precise the flow rule for the rate of
irreversible porosity φ̇ir. A simple way to achieve this formulation relies upon the assumption of
incompressibility of the solid phase during the irreversible transformation of the elementary volume.
This implies that the irreversible part of the pore volume change is equal to the total volume change
and yields identity φ̇ir = J̇ ir. Owing to (3), it is further obtained that

φ̇ir = J ir trdir (8)

which indicates that the flow rule for φ̇ir stems directly from the flow rules (5) and (6). It is worth
noting that because the irreversible strains in a sedimentry basin reduce to plastic strains in the upper
layers, incompressibilty of the solid phase during the irreversible transformation of the sediment par-
ticles means either plastic or viscoplastic incompressibility.

The above model requires to specify:
• the dependence of the elastic moduli ċ∼ as well as the poroelatic coefficients M and b on large
irreversible strains;
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• the influence of large irreversible strains on the plastic and viscoplastic properties of the sedimentary
material.

These issues are addressed in the next section within the similar framework adopted in Bernaud et
al. [5].

2.2 Poromechanics properties versus microstructural changes

The question of the influence of large plastic strains on the poro-elastic and plastic properties of the
sediment material has been amply investigated in Dormieux and Maghous [20], Bernaud et al. [21]
and Deudé et al. [28].

Since incompressiblity is assumed for the solid matrix in the irreversible range, large irreversible
strain are expected to induce significant sigificant porosity and pore shape changes. A micromechanics-
based reasoning is used in order to capture the influence of the plastic strains on the poroelastic prop-
erties. In the subsequent analysis, the anisotropy induced during compaction process is disregarded.
This means that the pore space is entirely characterized by its volume fraction in the current config-
uration of the representative elementary volume, namely the eulerian or classical porosity ϕ = φ/J .
The Hashin-Shtrikman upper bounds which are adopted as estimates for the elastic properties of the
isotropic porous media. Accordingly, the bulk K and shear µ moduli of the porous medium appear as
functions of the porosity as well as of the elastic properties of the solid phase:

K(ϕ) =
4ksµs(1− ϕ)
3ksϕ + 4µs

; µ(ϕ) =
µs(1− ϕ)(9ks + 8µs)

ks(9 + 6ϕ) + µs(8 + 12ϕ)
(9)

where ks and µs are bulk and shear moduli of the solid phase. It is recalled that the Biot coefficient
and modulus are connected to K through

b(ϕ) = 1− K(ϕ)
ks

and
1

M(ϕ)
=

b(ϕ)− ϕ

ks
(10)

In a second step, the porosity change will be connected to the irreversible strain underogone by the
porous material. It can be first observed that the condition of incompressibility of the solid constituent
during the irreversible transformation of the elementary volume reads

J ir − φir = 1− ϕo (11)

where ϕo denotes the initial value of the porosity. In the framework of infinitesimal elastic strains,
it is possible to neglect the variation of the pore volume and that of the total volume between the
loaded and the unloaded configurations of the elementary volume, since these variations are reversible
by definition. This justifies the following approximations

J ir ≈ J ; φir ≈ φ (12)

Introducing (12) into (11) yields :

ϕ ≈ 1− 1− ϕo

J
≈ 1− 1− ϕo

J ir
(13)
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In view of (13), Eqs. (9) show that the macroscopic stiffness tensor c∼ is a function of the (total or
irreversible) jacobian : c∼ = c∼(J ir). The same conclusion holds for the poroelastic coefficients b and
M . Neglecting the induced anisotropy therefore amounts to consider that the elastic-plastic coupling
is only governed by the plastic volumetric strains.

We deal now with the evolution of plastic properties of the sediment material. As regards the plastic
yield surface f corresponds to the standard modified Camm-Clay (e.g., Muir Wood [29]):

f(σ′ = σ + p1 , pc) =
3
2
s : s + M2

cs p′(p′ + pc) (14)

where s = σ − 1
3 trσ 1 is the deviatoric stress tensor, p′ = 1

3 tr σ′ is the mean effective stress. pc is
the consolidation pressure and represents the hardening parameter of the model. The constant Mcs

represents the slope of the critical state line. The plastic flow rule is associated, i.e. g = f .
It is assumed in the sequel that the shape of the yield locus is not affected by large irreversible strains.
In contrast, the hardening law, that is the influence of large irreversible strains on the consolidation
pressure, is a crucial feature of the model. In the framework of finite poroplasticity, a micromechanics-
based model for the hardening law has been proposed by Deudé et al. [28], and implemented later by
Bernaud et al. [5]. Unlike the classical Cam-Clay hardening law, the micromechanics-based one avoids
the development of negative porosities under high isotropic compression. We adopt in the sequel the
heuristic approach which consists first, in considering that only the plastic part of the irreversible
strains affect the parameter pc, and then, that the same law can reasonably model the hardening
law within the present framework, which is characterized by both plastic and viscoplastic strains.
Accordingly

pc(Jp) =
pco

ln ϕo
ln
�

1− 1− ϕo

Jp

�
(15)

As regards the viscoplastic properties, the simple way to proceed is to adopt or extend the phe-
nomenological models which are schematically described by (7). Indeed, these models already account
in some extent for the morphology of the sediment microstructure through the value of porosity. Clearly
enough, there is still a need for a comprehensive micromechanical approach specifically devoted to the
formulation of a viscous law for deformation by pressure-solution. In this context, works had already
been developed in the objective to relate, for specific microstructures, the macroscopic viscous behav-
ior to the chemical phenomena occuring at a smaller scale (see for instance Lehner [26]; Renard et al.
[30]; Ghoussoub and Leroy [31]).

3 A simplified compaction model

This section is intended to illustrate the main features of the theoretical model proposed in the previous
sections, as well as its capabilities to simulate the stress and deformation of the sediment material
during burial. A simplified framework is adopted for this purpose.
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3.1 Statement of the problem and basic assumptions
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Figure 1: Geometry and loading of the simplified model

The geometry of the representative elementary volume (r.e.v) of the sedimentary material is depicted
in Fig. 1a. In its initial configuration, the r.e.v is a parallelepipedic domain Ω0 of high h0 and horizontal
sides transversal l0. The r.e.v refers herein to the macroscopic particle of the sediment material which
is undergoing compaction during burial. The loading of the r.e.v consists in one-dimensional compres-
sive sollicitation, i.e., oedometric compression, as indicated in Fig. 1b. The vertical faces parallel to
direction e3 ares kept in contact with smooth and fixed walls, while the lower and upper horizontal
are placed between two rigid and smooth rams. The lower one is kept fixed whereas the upper one
has a downwards vertical displacement of magnitude δ > 0. In terms of displacement, the boundary
conditions read as follows: 8><>: ξi = 0 on the vertical faces xi = 0, l0

ξ3 = 0 on the lower face

ξ3 = −δ on the upper face

(16)

The value of the displacement δ imposed to the r.e.v accounts in some extent for the depth level of
the particle within the sedimentary basin. Indeed, the quantity Λ = 1 − δ/h0 represents the vertical
stretch of the particle, which is obviously related to the depth within the basin. In other words, the
response of the r.e.v for increasing values of δ is supposed to simulate the stress and deformation of
particles located at increasing depths along the basin.
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The problem is treated in drained conditions (no overpressure). The material assumptions will be
decribed in the sequel. The constitutive material of the r.e.v is homogeneous with isotropic elastic,
plastic and viscous mechanical properties. Besides, effects of large strains on these properties, such as
stiffness increase and hardening induced by large plastic volumetric strains, are disregarded [20, 28].
Accordingly, the elastic Lamé coefficients λ and µ are in particular considered as constant.

Plasticity is modeled by a simplified cap model with associated flow rule, where the straight-line
corresponding to positive hardening is defined by

fp(σ , pc) = −1
3
tr σ − pc (17)

pc is identical to the consolidation pressure of the Cam-Clay model (e.g. Muir Wood [29]; Charlez
[32]). In addition, the hardening modulus m = −dpc/dJp is taken constant (i.e., linear variations of
pc with respect to the plastic volumetric strains):

pc(Jp) = m (1− Jp) + pco (18)

pco is the initial value of pc. If plastic yielding occurs, the plastic part of the strain rate writes

dp = χ̇
∂fp

∂σ
= − χ̇

3
1 (19)

As regards the viscous behavior, which macroscopically models the effects of pressure-solution phe-
nomena, a simplified viscoplastic criterion similar to that controlling plasticity is adopted:

fvp(σ) = −1
3
trσ − pvp (20)

Unlike pc, the viscoplastic threshold pvp is assumed as constant. In addition, its value complies with
condition

pvp > pco (21)

in order to ensure that only plastic compaction occurs for moderate values of the loading δ (i.e., in
the upper layers of the sedimentary basin). The corresponding viscoplastic strain rate is derived from
the “thin water film” model [33]. If diffusion is the rate-limiting process, the strain rate resulting from
intergranular pressure-solution is classically taken as [25, 34]

dvp =
3
η

¬
fvp(σ)

¶ ∂fvp

∂σ
=

1
η

�
1
3
tr σ + pvp

�
1 if fvp(σ) ≥ 0 (22)

where 〈 X 〉 = X+|X|
2 is the positive value of the scalar X, and η is the viscosity coefficient of the

sediment. It incorporates the different fundamental parameters governing the creep law for pressure-
solution (see for instance Rutter [7, 8]; Durney [35]), such as the characteristic grain size, the diffusitiv-
ity of the solute in the grain contact or the equlibrium concentration of the dissolved solid in the pore
fluid. This macroscopic viscosity is taken as constant in the present analysis. It should however be
observed that a more realistic modeling should in particular account for the effects of temprature
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[1, 16] and of the microstructural changes due to large irreversible strains.

This simplified framework obviously corresponds to a highly academic situation. It should be recalled
that the purpose herein is only to provide a qualitatif insight on the reltive contribution of both the
mechanical and mechano-chemical compaction on the local evolution of the stresses and strains.

3.2 Stress and strain in the r.e.v: elasto-visco-plastic analysis

Starting from δ = 0 at time t = 0, the loading process of the r.e.v consists in prscribing the continuously
increasing function t −→ δ(t) (i.e., δ̇(t) > 0). The initial state of stress in the r.e.v is natural:
σ(t = 0) = 0. The mechanical response of the r.e.v is determined in the sequel at any stage of the
compaction level δ/h0. Under oedometric loading, the strain rate is homogeneous in the r.e.v and
reads

d = d e3 ⊗ e3 with d = − δ̇/h0

1− δ/h0
(23)

and the jacobian of the associated transformation of the r.e.v, which characterizes the volume change
of the r.e.v is J = 1− δ/h0. The rate form of the constitutive equation reduces to

σ̇ = 2µ (d− dir) + λ tr (d− dir) 1 (24)

A) Infinitesimal elastic response: 0 ≤ δ ≤ δe (0 ≤ t ≤ te)

Because of the elastic strains are assumed to remain infinitesimal, this phase corresponds to a small
range of the loading δ ≤ δe ¿ h0, where the expression of the elastic limit δe will be specified below.
In basin engineering practice, purely elastic compaction prevails along a very thin upper layer, and
should not therefore affect the global response of the whole basin.

In the elastic range dir = 0, the stress reads

σ = σ
�
λ (e1 ⊗ e1 + e2 ⊗ e2) + (λ + 2µ) e3 ⊗ e3

�
with σ = ln(1− δ/h0) ' −δ/h0 (25)

The conjunction of (17), (20) and condition (21) implies that plasticity occurs at the end of the elastic
phase. This means that the elastic phase holds for interval t ∈ [0 , te] such that

δ(te) = δe with
δe

h0
=
�
1− exp

−pco

K

�
' pco

K
(26)

where K = λ + 2µ/3 is the elastic bulk modulus. At the end of this elastic phase, the stress is

σ(te) = σe = −pco

K

�
λ (e1 ⊗ e1 + e2 ⊗ e2) + (λ + 2µ) e3 ⊗ e3

�
(27)

Time t = te characterizes the end of the elastic phase and the activation of plasticity.
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B) Elasto-plastic response: δe ≤ δ ≤ δp (te ≤ t ≤ tp)

In this situation t ≥ te, dir = dp is given by (19). It comes from (25) and the consistency condition
ḟp = 0 the following expression for the plastic multiplier

χ̇ =
δ̇/h0

(1− δ/h0)(1 + mJp/K)
≥ 0 (28)

Owing to (28), relation J̇p = Jp tr dp leads a differential equation governing the evolution of Jp

J̇p

Jp
+

m

K
J̇p +

δ̇/h0

1− δ/h0
= 0 (29)

which solution is

Jp(δ) =
K

m
W
�

m

K

1− δ/h0

1− δe/h0
exp

m

K

�
=

K

m
W
�m

K
(1− δ/h0) exp

m + pco

K

�
(30)

where W(x) is the LambertW function defined by W(x) exp W(x) = x. It is recalled that this function
satisfies W(x exp x) = x.

The stress field within the r.e.v results from the integration of the constitutive equation (24)

σ = σe + m (Jp − 1) 1 + 2µ
�
ln(1− δ/h0) +

pco

K

� �
e3 ⊗ e3 −

1
3

1
�

(31)

Jp = Jp(δ) being given by (30). This elasto-plastic phase prevails as long as fp(σ , pc) ≤ fvp(σ). This
condition may be expressed by

pc = pco −m (Jp − 1) ≤ pvp (32)

whic by virtue of (30) leads to

δ(t) ≤ δ(tp) = δp with
δp

h0
= 1−

�
1− pvp − pco

m

�
exp

−pvp

K
(33)

The end of the phase is chraracterized by the following strain and stress related quantity values:

Jp(tp) = Jp(δp) = 1− pvp − pco

m
; pc(δp) = pvp (34)

σ(tp) = σ(δp) = σe − (pvp − pco) 1 + 2µ
�
ln(1− pvp − pco

m
)− pvp − pco

K

� �
e3 ⊗ e3 −

1
3

1
�

(35)

Time t = tp corresponds to characterizes the end of the elasto-plastic elastic phase and appearance
of viscous strains.
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C) Elasto-visco-plastic phase: δp ≤ δ ≤ δvp (tp ≤ t ≤ tvp)

If the loading is continued beyond δp, the v.e.r will a priori undergo viscoplastic strains due to pressure-
solution phenomenon. In this case, dir = dp +dvp. The plastic and viscoplastic parts of the irerversible
strain rate are given respectively by (19) and (22). Introducing (19), (22) and (23) into the constitutive
equation (24) leads to

tr σ̇/3 = K

�
− δ̇/h0

1− δ/h0
+ χ̇− 3

η
(tr σ/3 + pvp)

�
(36)

On the other hand, the plastic condition fp = 0 implies that trσ = −3 pc while the consistency
condition ḟp = 0 reads

tr σ̇/3 = −ṗc = m J̇p = m Jp tr dp = −mJp χ̇ (37)

The combination of (36) and (37) yields

χ̇ =
1

1 + mJp/K

�
δ̇/h0

1− δ/h0
− 3

η
(pc − pvp)

�
(38)

Observing that the beginning of the phase corresponds to pc(tp) − pvp = 0, (38) indicates that the
plastic flow rule χ̇ ≥ 0 is satisfied at t = tp. Consequently, provided that the compaction rate δ̇/h0

remains positive, there will exist a non-empty time interval tp ≤ t ≤ tvp such that the plastic flow rule
shall be fulfilled. Clearly enough, the quantity pc(t) − pvp is an increasing function during this time
interval.
Eq. (38) and the identity χ̇ = −J̇p/Jp, which can readily be deduced from (37), lead to

J̇p

Jp
+

m

K
J̇p − 3

η
(pc − pvp) +

δ̇/h0

1− δ/h0
= 0 (39)

By substituting expression (18) of pc = pc(Jp) in the above equation, one obtains the differential
equation governing the evolution in time of the plastic jacobian

J̇p

Jp
+

m

K
J̇p +

3 m

η
Jp − 3

η
(pco + m− pvp) +

δ̇/h0

1− δ/h0
= 0 (40)

It is recalled that t −→ δ(t) which defines the loading of the v.e.r is prescribed. Except for very
particular situations, no closed-form solution of (40) can be derived and a numerical procedure is
therefore necessary to solve this differential equation. This may be achieved by making use, for instance,
of the software Maple.
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Interestingly, a direct integration of (40) between t = tp (starting of the elasto-visco-plastic regime)
and the current time t yields

3 m

η

Z t

tp

Jp(τ) dτ =
3 (pco + m− pvp)

η
(t− tp) + ln

1− δ(t)/h0

1− δ(tp)/h0

− ln
Jp(t)
Jp(tp)

− m

K

�
Jp(t)− Jp(tp)

� (41)

with Jp(tp) and δ(tp) given respectively by (33) and (34). The interest of (41) lies in fact that it
provides an alternative way to compute numerically the unknown t −→ Jp(t). This can simply be
achieved through the discretization of interval [tp, t] and evaluating the term integral in (41) by
means of a numerical integration. If, for instance, the trapezoidal rule is adopted together with the
time discretization t0 = tp, ..., ti = ti−1 + ∆t (the time increment ∆t is choosen constant), it can
readily be shown that

Jp(ti) =
1

m
K + 3m

2η ∆t
W
��

m

K
+

3m

2η
∆t

�
exp(Fi)

�
(42)

where

Fi =
3 (pco + m− pvp)

η
i ∆t + ln

1− δ(ti)/h0

1− δ(t0)/h0
+ ln Jp(t0) +

�
m

K
− 3m

2η
∆t

�
Jp(t0)

−3m

η
∆t

i−1X
k=1

Jp(tk)
(43)

Whatever the option choosen to handle with (40), Jp(t) and consequently pc(t) by virtue of (18), can
theoretically be considered as known at the end of the resolution procedure. The plastic multiplier χ̇

can thus be calculated from (38) as well as the plastic strain rate dp = −χ̇/3 1. Finally, the expression
of the viscous strain rate dvp = 1

η

�
1
3 tr σ + pvp

�
1 is deduced from condition fp = 0 which implies

that trσ/3 = −pc.
To complete the analysis, the stress field should also be evaluatued during this regime. It comes

from the constitutive equation (24) that

σ̇ = d
�
2 µ e3 ⊗ e3 + λ 1

�
+ K

�
χ̇ +

3
η

(pc − pvp)
�

(44)

where (19), (22) and (23) have been used. The final expression for the stress rate is derived by
combining the above equation with (37) and (38)

σ̇ = m J̇p 1 + 2 µd
h
e3 ⊗ e3 −

1
3

1
i

with d = − δ̇/h0

1− δ/h0
(45)
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Integration of the above equation between tp and the current time t yields

σ(t) = σ(tp) + m (Jp(t)− Jp(tp)) 1 + 2 µ ln
�

1− δ(t)/h0

1− δ(tp)/h0

�h
e3 ⊗ e3 −

1
3

1
i

(46)

in which δ(tp) is given by (33), Jp(tp) by (34) and σ(tp) by (35).

This phase holds as long as the coexistence of plastic dp 6= 0 and viscoplastic dvp 6= 0 strain rates is
compatible with the plastic flow rule, that is, with the positivity of the plastic multiplier. Consequently,
the end of this regime coincides with time tvp where condition χ̇ ≥ 0 ceases to be valid. Accordingly,

χ̇(tvp) = 0 =⇒ pc(tvp) = pvp +
η

3
δ̇(tvp)/h0

1− δ(tvp)/h0
(47)

As t −→ δ(t) is prescribed and function pc(t) can be computed once Jp(t) is determined, Eq. (47) can
theoretically be solved with respect to tvp. Mathematically, the existence of an effective solution tvp

will obviously depend on both material and loading characteristics.
At time t = tvp, the v.e.r switches from the elaso-visco-plastic regime (dir = dp + dvp) to the

elasto-viscoplastic regime (dir = dvp). It should be observed from (18) and (47) that

Jp(tvp) = Jp(δvp) = 1− pvp − pco

m
− η

3 m

δ̇(tvp)/h0

1− δ(tvp)/h0
(48)

where δvp = δ(tvp). Clearly enough, one should check wether the following restrictions are fulfilled:
Jp(tvp) remains positive and lower than Jp(tp) characterizing the initial value of the plastic jacobian
during the current phase. Owing to (34) and (48), one obtains from (46)

σ(tvp) = σ(δvp) = σ(tp)− η

3
δ̇(tvp)/h0

1− δ(tvp)/h0
1 + 2 µ ln

�
1− δ(tvp)/h0

1− δ(tp)/h0

�h
e3 ⊗ e3 −

1
3

1
i

(49)

D) Elasto-viscoplastic phase: δvp ≤ δ (tvp ≤ t)

Provided that Jp(tvp) ∈ ] 0, Jp(tp)[, this situation occurs if the loading δ is pursued beyond δvp. The
v.e.r undergoes purely elasviscoplastic strains (dir = dvp). In other terms, no additional plastic strain
appears in the v.e.r after t = tvp (i.e., dp = 0). This means in particular that J̇p(t) = 0 for tvp ≤ t,
which in turn implies identity ṗc(t) = 0. In reason of the particular form (17) of the plasticity criterion,
the situation of plastic unloading (i.e., ḟp < 0) would imply condition tr σ̇ > 0, which is physically
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irrelevant in the perspective of sedimentary basins modeling. We therefeore adopt the assumption that
the v.e.r does not experience any unloading process during this phase. Consequently,

ḟp = −1
3
tr σ̇ − ṗc = 0 =⇒ tr σ̇ = 0 ∀ t ≥ tvp (50)

During this phase, each one of the quantities Jp, pc and trσ keeps a constant value, equal to that
reached at t = tvp. Hence,

trσ(t) = −3 pc(tvp) = −3 pvp − η
δ̇(tvp)/h0

1− δ(tvp)/h0
(51)

and

dvp(t) = −1
3

δ̇(tvp)/h0

1− δ(tvp)/h0
1| {z }

1
3

d(tvp) 1

(52)

The constitutive equation (24) reduces to

σ̇ = d(t)
�
2 µ e3 ⊗ e3 + λ 1

�
−K d(tvp) 1 (53)

The consistency with condition tr σ̇ = 0 leads to the following restriction on the loading

d(t) = d(tvp) or
δ̇(t)/h0

1− δ(t)/h0
=

δ̇(tvp)/h0

1− δ(tvp)/h0
∀ t ≥ tvp (54)

This restriction clearly emphasizes one of the shortcomings of the simplified model analyzed herein.
Integration of (53) between tvp and t yields

σ(t) = σ(tvp)− 2 µ
δ̇(tvp)/h0

1− δ(tvp)/h0
(t− tvp)

h
e3 ⊗ e3 −

1
3

1
i

(55)

3.3 Comments

The purpose herein is to summarize the previous results by analyzing a numerical example. The
model parameter are taken as: Young modulus E = 103 MPa, Poisson’s ratio nu = 0.33, pc0 = 1
MPa, hardening modulus m = 100 MPa, pvp = 10 MPa, viscosity η = 10 MPa×My, where My stands
for million years. The loading rate is constant and equal to δ̇ = 10 m/My. Figure 2 displays the
evolution in time of the jacobian J of the material transformation as well as its plastic part Jp. It is
worth noting that the ratio J/Jp represents within the range t ≥ tp ' 0.010 My, a measure of the
viscoplastic volumetric strains undergone by the material and which refers to the compaction induced
by pressure-solution.
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Figure 2: Transformation of the r.e.v.: time evolution of the total jacobian and its plastic part

As regards the stresses within the r.e.v, the variations of the vertical stress σV = σ33 and of the
horizontal stress σH = σ11 = σ22 during the different phases of the macroscopic behavior are reported
in Figure 3.

4 Conclusion

A 3D theoretical constitutive model has been formulated for sedimentary materials. It incorporates
some of the fundamental coupled phenomena involved in the process of basin compaction by resorting
to either micromechanical reasonings or phenomenological approaches. With respect to the previous
work by Bernaud et al. [5], the main contribution lies in the fact the present model accounts for
deformation by pressure-solution. Due to large porosity changes induced by compaction process, the
model is formulated within the framework of large poro-visco-plasticity. Effect of large irreversible
strains on the stiffness increase, on the hardening law as well as on the viscous law are accounted
for through the reduction of the pore volume. The constitutive model is specifically devised for the
sediment material subjected to mechanical or/and chemo-mechanical compaction.

The main features of the model have been illustrated through the analysis of a simplified compaction
model. Depending on the loading level, different phases related to the response of the representative
elementary volume could be predicted. The study was intended to provide a qualitative insight on
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Figure 3: Evolution in time of the vertical and horizontal stresses in the r.e.v.

stress and deformation of the sediment material during burial.
The theoretical model is now being incorporated within a finite element tool dedicated to simulate

sedimentary basins undergoing 2D evolutions. The extension to 3D situations such as that induced by
tectonic loading is also one of the main issues to be forseen in the future.
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