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Abstract

A fully nonlinear geometrically-exact multi-parameter rod model is presented in this work for the analysis of
beam structures undergoing arbitrarily large 3-D deformations. Our approach accounts for in-plane distortions
of the cross-sections as well as for out-of-plane cross-sectional warping by means of cross-sectional degrees-
of-freedom within the rod theory. With such a kinematical description, fully three-dimensional finite-strain
constitutive equations are permitted in a totally consistent way. Proper representation of profile (distortional)
deformations, which are typical of cold-formed thin-walled beam structures, may be attained and we believe
this is a major feature of our formulation. The model is implemented via the finite element method and
numerical examples are shown to assess the performance of the scheme.

Keywords: rods, cross-sectional deformations, finite rotations, finite strains, Finite Element Method.

1 Introduction

The main purpose of this work is to (i) present a fully nonlinear geometrically-exact multi-parameter
rod model that allows for cross-sectional deformations and (ii) develop its finite element implementa-
tion. The formulation can be understood as an extension of our earlier works in [1–4], as presented
in [5], in the sense that the restrictions to a rigid cross-section and to a St.-Venant-type elastic warp-
ing are now removed from the theory. The ideas for the kinematical description were first set by the
authors in [6], however at that time only the general theoretical grounds were discussed and no numer-
ical results were attained. In the present work, we exploit and further develop the concepts presented
therein and derive the complete rod theory, together with its numerical implementation via the finite
element method and related examples.

We follow a cross-section resultant approach and define the cross-sectional quantities in terms of
first Piola-Kichhoff stresses and deformation gradient strains, based on the concept of a cross-section

Mechanics of Solids in Brazil 2009, H.S. da Costa Mattos & Marcílio Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-43-7



146 E.R. Dasambiagio, P.M. Pimenta and E.M.B. Campello

director. Besides practical importance, the use of cross-sectional resultants simplifies the derivation of
equilibrium equations and the enforcement of boundary conditions, in either weak and strong senses.
In addition, the corresponding tangent of the weak form is obtained in a more expedient way, rendering
always symmetric for hyperelastic materials and conservative loadings even far from equilibrium states.

The definition of a cross-section director plays a central role in our formulation. Accordingly, it
allows for the introduction of independent degrees-of-freedom pertaining to the cross-sections to
describe both the in-plane cross-sectional distortions and the out-of-plane cross-sectional warping.
Fully three-dimensional finite-strain constitutive equations can therefore be adopted with no addi-
tional considerations nor condensations. This is a remarkable feature and up to our knowledge makes
our model the first rod formulation as to permit general 3-D material laws for arbitrarily large strains.
Hyperelasticity and finite elastoplasticity are thus made possible in a consistent way within the context
of rods.

The Euler-Rodrigues formula is used to describe finite rotations in a total Lagrangean framework.
We assume a straight reference configuration for the rod axis, but initially curved rods can also be
considered if regarded as a stress-free deformed state from the straight position (see the ideas of [7, 8]).

Altogether, the present assumptions provide a consistent basis to the computational simulation of
profile (distortional) deformations, which are typical of cold-formed thin-walled rod structures. We
believe this is one of the major contributions of our work. For a historical background on the subject,
we address the interested reader to the papers from [1, 2, 9–18] and references therein.

Throughout the text, italic Latin or Greek lowercase letters (a, b, . . . , α, β, . . .) denote scalar quanti-
ties, bold italic Latin or Greek lowercase letters (a, b, . . . α,β, . . .) denote vectors, bold italic Latin or
Greek capital letters (A, B, . . .) denote second-order tensors, bold calligraphic Latin capital letters
(A, B, . . .) denote third-order tensors and bold blackboard Latin capital letters (A, B, . . .) denote
fourth-order tensors in a three-dimensional Euclidean space. Vectors and matrices built up of tensor
components on orthogonal frames (e.g. for computational purposes) are expressed by boldface upright
Latin letters (A,B, . . .a,b, . . .). Summation convention over repeated indices is adopted in the entire
text, with Greek indices ranging from 1 to 2 and Latin indices from 1 to 3.

2 The multi-parameter rod theory with general cross-sectional deformations

2.1 Kinematics

It is assumed at the outset that the rod is straight at the initial configuration, which is used as
reference. Initially curved rods can be mapped by standard isoparametric means, or can be regarded
as a stress-free deformed state from the straight reference position (see [7, 8]).

Let {er
1, e

r
2, e

r
3} be a local orthonormal system in the reference configuration, with er

3 placed along
the rod axis as depicted in Fig. 1. Cross-sectional planes in this configuration are uniquely defined by
the vectors er

α. The position of the rod material points in the reference configuration can be described
by

ξ = ζ + ar, (1)
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where

ζ = ζer
3, ζ ∈ Ω = [0, `] (2)
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Figure 1: Rod description and basic kinematical quantities.

defines a point on the rod axis and

ar = ξαer
α (3)

is the cross-section director at this point. The axis-coordinate ζ defines the rod length ` in the reference
configuration. Observe that {ξ1, ξ2, ζ} sets a three-dimensional Cartesian frame.

Let now {e1, e2, e3} be a local orthonormal system on the current configuration, with eα attached
to the cross-sectional plane before its warping. The rotation of the cross-section in the 3-D space is
described by a rotation tensor Q = Q̂ (ζ), such that ei = Qer

i . In the current configuration, the
position x of the material points (see Fig. 1) is given by the vector field
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x = z + y , (4)

where z = ẑ (ζ) represents the current position of a point on the rod axis and y the position of the
remaining points on the cross-section relative to the axis. We assume that the cross-sections are first
rigidly rotated from the reference configuration, then undergo an in-plane deformation and then are
warped in the out-of-plane direction, so that the vector y can be decomposed as follows

y = a + v + w . (5)

Here,

a = Qar (6)

is the current cross-section director, representing the rotational part of the deformation,

v = vβeβ (7)

is the vector of in-plane (or transversal) displacements, describing the in-plane distortions of the
cross-section, and

w = we3 (8)

is the vector of out-of-plane displacements, embodying the cross-sectional warping. Notice that first-
order shear deformations are accounted for, since e3 is not necessarily coincident with the deformed
axis.

Several kinematical assumptions are possible for the vector of transversal displacements v. Let
r = r̂ (ζ) be a vector that collects the nv cross-sectional transverse degrees-of-freedom, necessary to
describe the cross-sectional in-plane distortions. We assume here that v is a linear function1 of r such
that

v =
�
eβ ⊗ φβ

�
r , (9)

where φβ = φ̂β (ξα) are two vectors of cross-sectional shape functions describing the transversal
distribution of the components of v on the cross-section. From (7), these components are given by

vβ = φβ · r . (10)

A number of expressions are possible for φβ , according to the degree of refinement desired for the
representation of the cross-sectional distortions. Here we adopt

1Nonlinear relations may be necessary for the modeling of local buckling in cold-formed thin-walled metallic profiles.
This will be addressed in a forthcoming paper.
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φ1 =

2664 ξ1

1/2ξ2
1

ξ1ξ2

3775 , φ2 =

2664 ξ2

ξ1ξ2

1/2ξ2
2

3775 and r =

2664 r1

r2

r3

3775 , (11)

with quadratic functions on the two local directions eβ , as this is the simplest kinematical assumption
valid for both membrane and bending dominated deformations in isotropic materials. Notice that in
this case nv = 3, i.e. three cross-sectional transverse degrees-of-freedom are necessary for the complete
description. It is not difficult to realize that r1 is important for stretching-dominated situations, while
r2 and r3 are imperative for the bending-dominated ones. Other possibilities for φβ are discussed in
detail in [6].

There is also a number of possible kinematical assumptions for the out-of-plane displacements w

due to warping. Analogously to (9), let us write these displacements as

w = (e3 ⊗ψ) p , (12)

where p = p̂ (ζ) is a vector that collects the nw cross-sectional out-of-plane degrees-of-freedom describ-
ing the warping of the cross-section, and ψ = ψ̂ (ξα) is a vector of corresponding warping shape
functions ψw. According to (12) the component w of (8) on the current local system is given by

w = ψ · p . (13)

Consideration of w is of central importance in torsion- and other shear-dominated deformations.
Again, several expressions are possible for ψ and aiming simplicity (but without loss of generality) we
assume here that

ψ = [ξ1ξ2] and p = [p] , (14)

i.e. nw = 1 and p = p̂ (ζ) is the only cross-sectional degree-of-freedom describing the warping defor-
mation. It is not difficult to realize that in this case p represents the warping magnitude and ψ = ξ1ξ2

is the warping shape. Adoption of such a simple shape function for description of the warping may be
understood as the simplest choice possible within the theory, and is valid as a first approximation for
the warping of any type of cross-section (notice that for rectangular sections the choice in (14) corre-
sponds to the St.-Venant warping function from the Saint-Venant’s torsion theory). More elaborated
sets for (14) are discussed in [6].

According to Fig. 1, the displacements of the points on the rod axis can be computed by

u = z − ζ . (15)

The rotation tensor Q, describing the rotation of the cross-sections, may be expressed in terms of the
Euler rotation vector θ, by means of the well-known Euler-Rodrigues formula

Q = I + h1 (θ) Θ + h2 (θ)Θ2 . (16)

In this case, θ = ‖θ‖ is the true rotation angle and
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h1 (θ) =
sin θ

θ
and h2 (θ) =

1
2

�
sin θ/2

θ/2

�2

(172)

are two trigonometric functions, with Θ = Skew (θ) as the skew-symmetric tensor whose axial vector
is θ. Altogether, the components of u, θ, r and p on a global Cartesian system constitute the 3 + 3 +
nv + nw parameters (or cross-sectional degrees-of-freedom) of this rod model.

From differentiation of (4) with respect to ξ one can evaluate the deformation gradient F . After
some algebra one gets

F = x,α ⊗ er
α + x′ ⊗ er

3, (18)

where we have used the notation (•),α = ∂ (•) /∂ξα and (•)′ = ∂ (•) /∂ζ for derivatives. With the aid
of (4) through (8), the derivatives in (18) are

x,α = a,α + v,α + w,α and x′ = z′ + a′ + v′ + w′ , (19)

in which

a,α = Qer
α , v,α =

�
φβ,α · r

�
Qer

β ,

w,α =
�
ψ,α · p

�
Qer

3 , a′ = Q (κr × ar) ,

v′ = Q
��

φβ · r′
�

er
β + κr × vr

�
and

w′ = Q [(ψ · p′) er
3 + κr ×wr] ,

(20)

with

vr = vβer
β = QT v and wr = wer

3 = QT w . (21)

Still in (20), the following vector has been introduced

κr = Γ T θ′ , (22)

in which

Γ = I + h2 (θ)Θ + h3 (θ) Θ2 (23)

and

h3 (θ) =
1− h1 (θ)

θ2
. (24)

Vector κr in (22) can be regarded as the back-rotated counterpart of κ = axial (K) = Γθ′, where
K = Q′QT is a skew-symmetric tensor that shows up in the derivation of expressions (20). One can
understand K as the tensor describing the specific rotations of the cross-sections.

2Singularities in h1(θ) and h2(θ) at θ = 0 are straighforwardly removable.
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Thus, the deformation gradient may be rewritten as

F = Q (I + γr
α ⊗ er

α + γr
3 ⊗ er

3) = QF r , (25)

where F r = I + γr
α ⊗ er

α + γr
3 ⊗ er

3 is called the back-rotated deformation gradient and

γr
α =

�
φβ,α · r

�
er

β +
�
ψ,α · p

�
er

3 and

γr
3 = ηr + κr × yr +

�
φβ · r′

�
er

β + (ψ · p′) er
3 .

(26)

Here,

ηr = QT z′ − er
3 , (27)

and yr is the back-rotated counterpart of y, i.e.

yr = ar + vr + wr = QT y . (28)

It will be clear on next section that vectors ηr of (27) and κr of (22) can be understood as generalized
cross-sectional strains.

The material velocity gradient is given by time differentiation of (25) (denoted by a superposed dot)
as follows

Ḟ = ΩF + Q (γ̇r
α ⊗ er

α + γ̇r
3 ⊗ er

3) , (29)

where Ω = Q̇QT represents the cross-section spin tensor. The spin axial vector ω is obtained in a
similar way as to obtain the axial vector of K, i.e. ω = axial (Ω) = Γ θ̇. Derivatives γ̇r

i of (29) are
computed directly from (26), what yields

γ̇r
α =

�
er

β ⊗ φβ,α

�
q̇ +

�
er

3 ⊗ψ,α

�
ṗ and

γ̇r
3 = η̇r + κ̇r × yr + [(κr × er

3)⊗ψ] ṗ + (er
3 ⊗ψ) ṗ′+

+
��

κr × er
β

�
⊗ φβ

�
ṙ +

�
er

β ⊗ φβ

�
ṙ′ .

(30)

In order to fully evaluate expressions (30), the time derivatives η̇r and κ̇r are needed. From (27)
and (22), after some algebra it is possible to arrive at

η̇r = QT
�
u̇′ + Z ′Γ θ̇

�
and κ̇r = QT

�
Γ ′θ̇ + Γ θ̇

′�
, (31)

where Z ′ = Skew (z′) and

Γ ′ = h2 (θ)Θ′ + h3 (θ)
�
ΘΘ′ + Θ′Θ

�
+

+h4 (θ)
�
θ · θ′�Θ + h5 (θ)

�
θ · θ′�Θ2 .

(32)

Notice that in (32) Θ′ = Skew
�
θ′
�
and
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h4 (θ) =
h1 (θ)− 2h2 (θ)

θ2
and h5 (θ) =

h2 (θ)− 3h3 (θ)
θ2

(333)

are two additional trigonometric functions.

2.2 Statics

Let the 1st Piola-Kirchhoff stress tensor be written as

P = Q (τ r
α ⊗ er

α + τ r
3 ⊗ er

3) . (34)

The quantities τ r
i are back-rotated stress vectors and act on cross-sectional planes whose normals

on the reference configuration are er
i . Expression (34) motivates the definition of a back-rotated 1st

Piola-Kirchhoff stress tensor P r, such that

P r = QT P = τ r
α ⊗ er

α + τ r
3 ⊗ er

3 . (35)

With the expressions for P and Ḟ , it is not difficult to show that the rod internal power per unit
reference volume may be written as

P : Ḟ = τ r
α · γ̇r

α + τ r
3 · γ̇r

3 , (36)

where property PF T : Ω = 0, arising from the local moment balance equation, was utilized. Intro-
ducing (30) into (36) and performing some manipulation with the cross products, one gets

P : Ḟ = τ r
3 · η̇r + (yr × τ r

3) · κ̇r+

+
�
(τ r

α · er
3)ψ,α + (τ r

3 · κr × er
3)ψ

�
· ṗ + [(τ r

3 · er
3) ψ] · ṗ′+

+
��

τ r
α · er

β

�
φβ,α +

�
τ r

3 · κr × er
β

�
φβ

�
· ṙ +

��
τ r

3 · er
β

�
φβ

�
· ṙ′ .

(37)

Integration of (37) over the cross-section providesZ
A

�
P : Ḟ

�
dA = nr · η̇r + mr · κ̇r + π · ṗ + α · ṗ′ + ρ · ṙ + β · ṙ′ , (38)

in which

nr =
R

A τ r
3dA , mr =

R
A (yr × τ r

3) dA ,

π =
R

A

�
(τ r

α · er
3)ψ,α + (τ r

3 · κr × er
3)ψ

�
dA , α =

R
A [(τ r

3 · er
3)ψ] dA ,

ρ =
R

A

��
τ r

α · er
β

�
φβ,α +

�
τ r

3 · κr × er
β

�
φβ

�
dA and

β =
R

A

��
τ r

3 · er
β

�
φβ

�
dA

(39)

are the generalized cross-sectional stresses energetically conjugated to the cross-sectional strains ηr,
κr, p, p′, r and r′. In this case, nr is said to be the back-rotated cross-sectional forces and mr the back-
rotated cross-sectional moments (notice the effect of the in-plane-distortions and of the out-of-plane

3The singularities in h4(θ) and h5(θ) are also removable.
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warping on the definition of mr). Vector π represents the axial bi-shears, α the axial bi-moments, ρ

the transversal bi-shears and β the transversal bi-moments.
It is important to remark that τ r

i , γr
i , nr, mr, ηr, κr, p, r, π, α, ρ and β are not affected by

superimposed rigid body motions and in this sense entirely fulfill objectivity requirements. We now
collect these cross-sectional quantities into three vectors, as displayed below

σ =

26666666664
nr

mr

π

α

ρ

β

37777777775 , ε =

26666666664
ηr

κr

p

p′

r

r′

37777777775 and d =

266664 u

θ

p

r

377775 . (40)

Note that both σ and ε have 6 + 2 (nv + nw) elements, whilst d encompasses the 6 + nv + nw

cross-sectional degrees-of-freedom. Definitions in (40) allow us to write (38) as followsZ
A

�
P : Ḟ

�
dA = σ · ε̇ . (41)

Here, the time derivative ε̇ may be written in a very compact manner as

ε̇ = Ψ∆ḋ , (42)

where

Ψ =

"
Ψ̄ O6×2(nv+nw)

O2(nv+nw)×9 I2(nv+nw)

#
and ∆ =

266666664
∆̄ O9×nw O9×nv

Onw×9 Inw Onw×nv

Onw×9 Inw

∂
∂ζ Onw×nv

Onv×9 Onv×nw Inv

Onv×9 Onv×nw Inv

∂
∂ζ

377777775 (43)

are respectively a [6 + 2 (nv + nw)]×[9 + 2 (nv + nw)] linear operator and a [9 + 2 (nv + nw)]×(6 + nv + nw)
differential operator. In (43) one has

Ψ̄=

"
QT O QT Z ′Γ

O QT Γ QT Γ ′

#
6×9

and ∆̄ =

2664 I ∂
∂ζ O

O I ∂
∂ζ

O I

3775
9×6

, (44)

which correspond exactly to Ψ and ∆ of [1–4].
With (41) at hand, the rod internal power on a domain Ω = [0, `] is then given by
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Pint =
Z

Ω
(σ · ε̇) dζ . (45)

The external power on the same domain Ω = [0, `] can be expressed by

Pext =
Z

Ω

�Z
Γ

t · ẋdΓ +
Z

A
b · ẋdA

�
dζ , (46)

where Γ is the contour of a cross-section, t is the external surface traction per unit reference area and
b is the vector of body forces per unit reference volume. By time differentiation of (4), one has

ẋ = u̇ + ω × y +
�
eβ ⊗ϕβ

�
ṙ + (e3 ⊗ψ) ṗ , (47)

which can be introduced into (46) so that

Pext =
Z

Ω

�
q̄ · ḋ

�
dζ , (48)

where

q̄ =

266664 n̄

µ̄

ᾱ

β̄

377775 . (49)

In this expression the following generalized external forces have been introduced

n̄ =
R
Γ tdΓ +

R
A bdA ,

µ̄ = ΓT m̄ , with m̄ =
R
Γ y × tdΓ +

R
A y × bdA ,

ᾱ =
R
Γ (e3 · t)ψdΓ +

R
A (e3 · b)ψdA and

β̄ =
R
Γ (eβ · t) φβdΓ +

R
A (eβ · b)φβdA ,

(50)

where n̄ is the applied external force, m̄ the applied external moment, ᾱ the applied external axial
bi-moments and β̄ the applied external transversal bi-moments, all per unit length of the rod axis in
the reference configuration.

2.3 Equilibrium

In the same way as to obtain (45), one can have the expression for the rod internal virtual work on a
domain Ω = [0, `] as follows

δWint =
Z

Ω
(σ · δε) dζ , with δε = Ψ∆δd . (51)

The external virtual work on the same domain Ω = [0, `] may be evaluated similarly to (48), i.e.
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δWext =
Z

Ω
(q̄ · δd) dζ , (52)

so that the rod local equilibrium can be stated by means of the virtual work theorem in a standard
way:

δW = δWint − δWext = 0 in Ω, ∀δd . (53)

Introducing (51) and (52) into this expression, and performing partial integration on the terms with
δu′, (Γ δθ)

′
, δp′ and δr′, the following local equilibrium equations in Ω are obtained by standard

arguments of variational calculus

n′ + n̄ = o , (54a)

m′ + z′ × n + m̄ = o , (54b)

α′ − π + ᾱ = o and (54c)

β′ − ρ + β̄ = o . (54d)

Here,

n = Qnr and m = Qmr (55)

are the true cross-sectional force and couple resultants with respect to the current configuration.
Equations (54a) and (54b) could be obtained by Statics as well.

The essential boundary conditions emanating from (53) are prescribed in terms of d, i.e. u, θ,
p and r. On the other hand, the natural boundary conditions are prescribed in terms of the static
quantities n, µ = Γ T m, α and β. We draw the attention of the reader to fact that the pseudo-moment
µ = Γ T m must be prescribed, and not purely m as one would expect.

2.4 Tangent of the weak form

The Gateaux derivative of δW in (53) with respect to d, after some laborious manipulation, leads to
the tangent bilinear form

δ (δW ) =
Z

Ω
[(Ψ∆δd) · (DΨ∆δd) + (∆δd) · (G∆δd)− δd · (Lδd)] dΩ , (56)

in which

D =
∂σ

∂ε
, G =

"
Ḡ O9×2(nv+nw)

O2(nv+nw)×9 O2(nv+nw)×2(nv+nw)

#
and L =

∂q̄

∂d
. (57)

Operators D and G represent the constitutive contribution and the geometrical effects of the internal
forces on the tangent operator, respectively. It is worth mentioning that operator Ḡ in (57) is identical
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to G of [1, 2] (where it was first derived, see appendix A for more details), what remarkably means that
the consideration of cross-sectional in-plane distortions and out-of-plane warping does not introduce
any additional geometric terms into (56). Consequently, G is a function of nr, mr, u and θ only,
remaining always symmetric even far from equilibrium states. Operator L, however, stands for the
geometrical effects of the external forces and depends directly on the character of the external loading,
as one can see in (57)4. The bilinear form (56) is therefore symmetric whenever D = DT and L = LT ,
i.e. whenever the material is hyperelastic (or whenever the stress integration algorithm for inelastic
materials possesses a potential) and the external loading is locally conservative.

We introduce now the following tensors of elastic (or algorithmic) tangent moduli

∂τ r
i

∂γr
j

= Cij . (58)

With the aid of (58), together with the derivatives

∂γr
α

∂ηr
= O ,

∂γr
3

∂ηr
= I ,

∂γr
α

∂κr
= O ,

∂γr
3

∂κr
= −Y r,

∂γr
α

∂p
= er

3 ⊗ψ,α ,
∂γr

3

∂p
= (κr × er

3)⊗ψ ,

∂γr
α

∂p′
= O ,

∂γr
3

∂p′
= er

3 ⊗ψ ,

∂γr
α

∂r
= er

β ⊗ φβ,α ,
∂γr

3

∂r
=
�
κr × er

β

�
⊗ φβ and

∂γr
α

∂r′
= O ,

∂γr
3

∂r′
= er

β ⊗ φβ ,

(59)

where Y r = Skew (yr), one can obtain the elements of D (see appendix B) by the chain rule. We
remark that D is symmetric as long as

Cij = CT
ji . (60)

3 Elastic constitutive equations

We assume the rod is made of a hyperelastic material that may undergo arbitrarily large strains.
With this assumption, the developments presented in this section are general in the sense that they
are derived for fully three-dimensional finite strain constitutive models. These achievements are only
possible due to the three-dimensional character of our rod theory, which allows for a complete three-
dimensional state of deformation for a point within the rod body. Objectivity requirements (in the

4More details on the operator L can be found in appendix C.
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sense of [19, 20]) are automatically fulfilled by the use of objective strain measures. Extension to finite
elastoplasticity is straightforward once a stress integration scheme within a time step is at hand.

3.1 General hyperelastic materials

We write the symmetric Green-Lagrange strain tensor as

E =
1
2

(C − I) , (61)

where

C = F T F = (F r)T
F r (62)

is the right Cauchy-Green strain tensor. The second Piola-Kirchhoff stress tensor S is energetically
conjugated to E and is such that P = FS, or equivalently

P r = F rS. (63)

A general hyperelastic material can be fully described by a specific strain energy function ψ = ψ̂ (E),
such that S is given by

S =
∂ψ

∂E
. (64)

As a consequence, a fourth-order tensor of elastic tangent moduli for the pair {S,E} can be defined
as

D =
∂S

∂E
=

∂2ψ

∂E2 . (65)

With the aid of the following third-order tensors

Bi =
∂E

∂γr
i

, (66)

the relations

τ r
i = BT

i S (67)

can be readily derived from (63). From these last three expressions, and from (58), we arrive at

Cij = BT
i DBj +

�
er

i · Ser
j

�
I , (68)

with which D can be computed.
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3.2 Isotropic hyperelastic materials

For isotropic hyperelasticity, the strain energy function ψ can be written in terms of the invariants of
the right Cauchy-Green strain tensor C. We adopt here the following set of invariants

I1 = I : C , I2 =
1
2
I : C2 and J = det F , (69)

with which we write ψ = ψ̂ (I1, I2, J). Using (63) and (64), the back-rotated first Piola-Kirchhoff stress
tensor is then obtained via

P r = 2F r
�

∂ψ

∂C

�
, (70)

what yields

P r =
∂ψ

∂J
J(F r)−T + 2F r

�
∂ψ

∂I1
I +

∂ψ

∂I2
C

�
(71)

if the chain rule is applied with the derivatives

∂J

∂C
=

1
2
JC−1 ,

∂I1

∂C
= I and

∂I2

∂C
= C . (72)

Conversely, as one can readily verify, if we write the back-rotated deformation gradient as

F r = fr
i ⊗ er

i , (73)

where fr
i = er

i + γr
i (see expression (25)), then

J = (fr
1 × fr

2) · fr
3 ,

J(F r)−T = gr
i ⊗ er

i and

F rC =
�
fr

i · fr
j

�
fr

i ⊗ er
j ,

(74)

in which

gr
1 = fr

2 × fr
3 , gr

2 = fr
3 × fr

1 and gr
3 = fr

1 × fr
2 . (75)

Introducing (74) into (71), one arrives at the following expression for the vector-columns of P r:

τ r
i =

∂ψ

∂J
gr

i + 2
∂ψ

∂I1
fr

i + 2
∂ψ

∂I2

�
fr

j ⊗ fr
j

�
fr

i . (76)

3.3 A neo-Hookean isotropic hyperelastic material

A simple poly-convex neo-Hookean material as proposed in [20, 21] is represented by the specific strain
energy function
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ψ (J, I1) =
1
2
λ

�
1
2

�
J2 − 1

�
− ln J

�
+

1
2
µ (I1 − 3− 2 lnJ) , (77)

in which λ and µ are material parameters (or Lamé coefficients). With this expression at hand, from
(76) we get

τ r
i =

1
J

�
λ

1
2

�
J2 − 1

�
− µ

�
gr

i + µfr
i , (78)

and then the tangent tensors of (58) are given by

Cij =
�

1
2λ
�
1 + 1

J2

�
+ 1

J2 µ
�
gr

i ⊗ gr
j + µ δijI+

− 1
J

�
λ 1

2

�
J2 − 1

�− µ
�

εijk Skew (fr
k) .

(79)

Here, δij = er
i · er

j and εijk = er
i · er

j × er
k are the usual Kronecker and permutation symbols,

respectively. From (79), the constitutive matrix D can be computed.

4 Finite Element implementation

The description of the rod deformation generates a boundary value problem whose weak form (53) can
be solved by several approximation techniques. We adopt here a Galerkin type of approximation, the
trial functions of which are to be supplied by the finite element method. We write the finite element
interpolation in a particular element e, e = 1, . . . Ne, as follows

d = Npe , (80)

where N is the matrix of element shape functions and pe the vector of element nodal degrees-of-
freedom. The vector of the residual nodal forces for a particular element is then obtained from (80)
into (53), and after some algebra one gets

Pe =
Z

Ωe

�
NT q̄ − (Ψ∆N)T

σ
�

dζ , (81)

in which Ωe is the element domain. The element tangent stiffness matrix is obtained by inserting (80)
into (56), leading to

ke =
Z

Ωe

�
(Ψ∆N)T

D (Ψ∆N) + (∆N)T
G (∆N)−NT LN

�
dζ . (82)

Here it is important to remark that the linearization stated in (82) can be performed either before
or after discretization. Assemblage of the global residual forces and of the global tangent stiffness may
be done as usual by means of
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R =
NeX
e=1

AT
e Pe and K =

NeX
e=1

AT
e keAe , (83)

respectively, where Ae is the connectivity matrix relating the element nodal degrees-of-freedom pe

with the whole domain nodal degrees-of-freedom r, i.e.

pe = Aer . (84)

Equilibrium is then stated by vanishing the global residual forces,

R(r) = o , (85)

what can be iteratively solved by the Newton method for the free degrees-of-freedom.

5 Numerical examples

The finite element expressions derived on the previous section were implemented into a finite element
code and in the present section we assess the performance of our formulation by means of two numerical
examples. Standard quadratic shape functions of Lagrangian type are adopted to construct N. Reduced
gaussian quadrature for computation of (81) and (82) is utilized, whereas integration of the constitutive
equation over the cross-sections (i.e. integration of the expressions in appendix B) is performed using
a 2× 2 gaussian scheme. We remark that several other examples can be found in [5].

5.1 Example 1: pure stretching of a bar

A straight rod with free ends and rectangular cross-section b×h is subjected to a large tensile normal
force P = 3.75 × 106 as depicted in Fig. 2. With this example we want to show the ability of the
formulation in capturing Poisson’s effect when finite stretching occurs. The rod is discretized using
four 3-noded elements along with symmetry conditions. We adopt ν = 0.499999 in order to simulate
incompressibility. In Fig. 2 one can see the deformed configuration obtained in true scale, and the final
dimensions of the cross-sections are also shown (no in-plane distortion is observed as only homothetic
deformation occurs). We remark that the rod volume is perfectly preserved, with J = detF = 1.0
being exactly attained in all elements at every converged configuration of the Newton iterations.

5.2 Example 2: pure bending of a bar

The simply supported rod with geometric and material properties shown in Fig. 3 is subjected to
a pair of external bending moments M at both ends. The right end support is free to move in the
horizontal direction and we apply M such that the rod undergoes a complete round-turn. Discretization
is performed using four 3-noded elements, the same as in the previous example. In Fig. 4 one can see
a graph of the end moments M against (i) the rotations θ in radians of the right-end section, (ii) the
horizontal displacements u of the right-end and (iii) the mid-span vertical displacements v . A plot of
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Figure 2: Pure stretching of a bar.

the deformed cross-sections is shown in Fig. 5 for M= 1.4875× 106, where a slight amplification factor
is adopted to make the in-plane deformations visible. Notice that the deformation of the cross-sections
is nearly the same along the rod’s length. Notice, also, that the upper portion of the sections remains
distented whereas the bottom part is shortened, as expected. Excellent convergence is found within
the Newton solution procedure.  
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Figure 3: Pure bending of a bar.
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Figure 4: Displacements and rotation at pure bending of a bar. 
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Figure 5: Cross section in-plane deformation at final moment for the pure bending of a bar.

6 Conclusions

In this work we revisit the geometrically-exact six-parameter rod model presented in [1–4] and extend
it to a multi-parameter formulation that allows for general cross-sectional in-plane distortions and
general out-of-plane warping. We start from the ideas set by the authors in [6], and derive the complete
rod theory together with its numerical implementation via the finite element method. The key aspects
are the definition of additional degrees of freedom pertaining to the cross-sections and the concept
of a cross-section director. We follow a stress-resultant approach, with the cross-sectional resultants
being defined based on first Piola-Kirchhoff stresses and deformation gradient strains. Finite rotations
are described in a total Lagrangian way. The theory allows for a complete three-dimensional state of
deformation for a point within the rod body and for this reason fully 3-D finite strain constitutive
equations are possible to be adopted without any condensation. This is a remarkable feature and up
to our knowledge makes our model the first rod formulation as to permit general 3-D material laws
for arbitrarily large strains. The present assumptions provide a consistent basis to the computational
simulation of profile (distortional) deformations, which are typical of cold-formed thin-walled rod
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structures, and we believe this is one of the main contributions of our work. Several other examples
presented in [5] further illustrate the robustness of the formulation.
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Appendix A

Tangent operator Ḡ in (57) has the following structure

Ḡ =

264 O O Gu′θ

O O Gθ′θ

Gθu′ Gθθ′ Gθθ

375 . (86)

In order to derive the elements of (86), the following result is obtained by differentiation

∂(Γ T t)

∂θ
= Γ T ∂t

∂θ
+ V (θ, t) , (87)

where t is a generic vector and

V (θ, t) = h2 (θ) T + h3 (θ) (TΘ − 2ΘT )+

−h4 (θ) (Θt⊗ θ) + h5 (θ)
�
Θ2t⊗ θ

�
,

(88)

with T = skew (t). One can show that property

V (θ, t) = V T (θ, t) + Γ T TΓ (89)

holds for V (θ, t), and this is a crucial result in proving the symmetry of (86). With the aid of (87) and (88)
it is possible to write

Gu′θ =
�
Gθu′

�T
= −NΓ ,

Gθθ′ =
�
Gθ′θ

�T
= V (θ, m) and

Gθθ =
�
Gθθ

�T
= Γ T Z′NΓ − V (θ, z′ × n) + V ′ (θ, θ′, m)− Γ ′TMΓ ,

(90)

in which N = Skew(n), M = Skew(m) and
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V ′ (θ, θ′, m) = h3 (θ) (MΘ′ − 2Θ′M)− h4 (θ) (Θ′m⊗ θ + Θm⊗ θ,α)+

+ h5 (θ)
�
(Θ′Θ + ΘΘ′) m⊗ θ + Θ2m⊗ θ′

�
+

+ (θ · θ′) [h4 (θ) M + h5 (θ) (MΘ − 2ΘM)]+

+ (θ · θ′) �−h6 (θ) (Θm⊗ θ) + h7 (θ)
�
Θ2m⊗ θ

��
.

Here the following trigonometric functions have been introduced

h6 (θ) =
h3 (θ)− h2 (θ)− 4h4 (θ)

θ2
and h7 (θ) =

h4 (θ)− 5h5 (θ)

θ2
. (915)

Appendix B

Tangent operator D in (57) has following structure

D =

2666666666666664
∂nr

∂ηr

∂nr

∂κr

∂nr

∂p

∂nr

∂p′
∂nr

∂r

∂nr

∂r′
∂mr

∂ηr

∂mr

∂κr

∂mr

∂p

∂mr

∂p′
∂mr

∂r

∂mr

∂r′
∂π

∂ηr

∂π

∂κr

∂π

∂p

∂π

∂p′
∂π

∂r

∂π

∂r′
∂α

∂ηr

∂α

∂κr

∂α

∂p

∂α

∂p′
∂α

∂r

∂α

∂r′
∂ρ

∂ηr

∂ρ

∂κr

∂ρ

∂p

∂ρ

∂p′
∂ρ

∂r

∂ρ

∂r′
∂β

∂ηr

∂β

∂κr

∂β

∂p

∂β

∂p′
∂β

∂r

∂β

∂r′

3777777777777775 . (92)

The elements of (92) are displayed next.

5The singularities in h6(θ) and h7(θ) are also removable.
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∂nr

∂ηr
=

Z
A

C33dA ,

∂nr

∂κr
= −

Z
A

C33Y
rdA ,

∂nr

∂p
=

Z
A

�
C3α

�
er

3 ⊗ψ,α

�
+ (C33 (κr × er

3))⊗ψ
�
dA ,

∂nr

∂p′
=

Z
A

C33 (er
3 ⊗ψ) dA ,

∂nr

∂r
=

Z
A

��
C3γer

β

�⊗ φβ,γ +
�
C33

�
κr × er

β

��⊗ φβ

�
dA ,

∂nr

∂r′
=

Z
A

�
C33e

r
β

�⊗ φβdA ,

∂mr

∂ηr
=

Z
A

Y rC33dA ,

∂mr

∂κr
= −

Z
A

Y rC33Y
rdA ,

∂mr

∂p
=

Z
A

�
(Y rC3αer

3)⊗ψ,α + (Y rC33 (κr × er
3))⊗ψ + (er

3 × τ r
3)⊗ψ

�
dA ,

∂mr

∂p′
=

Z
A

(Y rC33e
r
3)⊗ψdA ,

∂mr

∂r
=

Z
A

��
Y rC3γer

β

�⊗ φβ,γ +
�
Y rC33

�
κr × er

β

��⊗ φβ +
�
er

β × τ r
3

�⊗ φβ

�
dA ,

∂mr

∂r′
=

Z
A

�
Y rC33e

r
β

�⊗ φβdA ,

∂π

∂ηr
=

Z
A

�
ψ,α ⊗

�
CT

α3e
r
3

�
+ ψ ⊗

�
CT

33 (κr × er
3)
��

dA ,

∂π

∂κr
=

Z
A

�
ψ,α ⊗

�
Y rCT

α3e
r
3

�
+ ψ ⊗

�
Y rCT

33 (κr × er
3)
�

+ ψ ⊗ (er
3 × τ r

3)
�
dA ,

∂π

∂p
=

Z
A

�
(er

3 ·Cαβer
3)
�
ψ,α ⊗ψ,β

�
+ (er

3 ·Cα3 (κr × er
3))
�
ψ,α ⊗ψ

��
dA+

+

Z
A

ψ ⊗ (κr × er
3)
�
C3α

�
er

3 ⊗ψ,α

�
+ C33 (κr × er

3)⊗ψ
�
dA ,

∂π

∂p′
=

Z
A

��
ψ,α ⊗ er

3

�
Cα3 (er

3 ⊗ψ) + ψ ⊗ (κr × er
3) C33 (er

3 ⊗ψ)
�
dA ,

(93)
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∂π

∂r
=

Z
A

�
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Appendix C

Tangent operator L has following structure

L =
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For instance, semi-tangential external moments are conservative moments characterized by the following
time derivative

˙̄m =
1

2
ω × m̄ . (97)

For this type of loading the only nonzero submatrix of L is
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= Sym (V (θ, m̄)) . (986)

In contrast, for a constant eccentric force n̄ whose moment is m̄ = s× n̄ (with s as the eccentricity vector),
this submatrix is given by

∂m̄

∂θ
= Γ T Sym

�
SN̄

�
Γ + Sym (V (θ, m̄)) , (99)

where S = Skew(s) and N̄ = Skew(n̄).

6The operator Sym (•) extracts the symmetric part of (•), i.e. Sym = 1
2
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(•) + (•)T

�
.
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