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Abstract

The objective of this work is to propose a dual finite deformation visco-hypoelasticity model and a numerical
scheme for the analysis of polimeric materials. The proposed rate form of constitutive equation is formulated
in terms of objective Green-Naghdi rate Kirchhoff stress tensor and Lagrangian logarithm (Hencky) strain
tensor rate. The integration of the rate constitutive equation yields an integro-diferential form of constitutive
equation. The material is assumed to be isotropic and the kernel functions, associated with the shear and bulk
compliance modulus, are represented in Prony series. The problem is formulated within a Total Lagrangian
descripton. The Galerkin finite element method is used for numerical approach. Finally some problem cases
are solved, and the proposed model, the robustness and performance of the algorithms employed are tested.
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1 Introduction

The materials are termed viscoelastic because they exhibit both solid- and fluid-like behaviour, and
amongst examples of such media we find concrete and the thermoplastic polymers. The polymers
consist of so called long chain molecules. They are easily moulded, lightweight and may be made
strong plastics. The long chains, or backbones, are constructed by joining a great many hydrocarbon
monomers together to form periodic sequences of specific arrangements of hydrogen and carbon atoms;
this is then the long chain, the polymer.

Solid polymers can occur in the amorphous or crystalline state. Polymers in the amorphous state are
characterized by a disordered arrangement of the macromolecular chains, which adopt conformations
corresponding to statistical coils. The crystalline state is characterized by a long-range threedimen-
sional order (order extending to distances of hundreds or thousands of times the molecular size of the

Mechanics of Solids in Brazil 2009, H.S. da Costa Mattos & Marcílio Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-43-7



32 H.P. Azikri de Deus and M.K. Alves

repeating unit). The macromolecular chains in this state adopt fixed conformations such as planar
zigzag, or helical. These chains are aligned parallel to each other, forming a compact packing that gives
rise to a three-dimensional order. Many polymers have the capability to crystallize. This capability
basically depends on the structure and regularity of the chains and on the interactions between them.
The term “semicrystal1ine state” should be used rather than crystalline state, because regions in which
the chains or part of them have an ordered and regular spatial arrangement coexist with disordered
regions typical of the amorphous state.

Viscoelastic behavior is typical of a number of materials such as polymers and plastics, as explained
previously. These materials have memory, i.e. the stress depends on the entire history of the deforma-
tion and typically this memory fades with time. In dual formulation the strain can be represented as a
functional of the stress history which, due to the requirement that the principle of material objectivity
needs to be satisfied. This leads to reasonably complex relations even in the “simplest” of constitutive
relations.

Later in this paper it describes a dual finite visco-hypoelastic model based in Hencky strain measure
used in small strain contexts to the case of large deformation. The extension to the large deformation
case is achieved by considering

a multiplicative decomposition of the deformation gradient and taking the logarithm strain measure
with rotated Kirchhoff stress as the conjugated pair. Before presenting the model, this paper begins
with a brief discussion about basic physical phenomena of creep and stress relaxation, typical for
viscoelastic materials. The subsection 2.2 starts by a discussing the two more general categories of
viscoelastic constitutive models: integral and differential models. In the subsection 2.3 are presented
the derivation of our dual integral constitutive model. The section 3 presents the strong, weak (varia-
tional) formulation of the problem the numerical scheme. Finally the section 4 discusses the numerical
applications.

2 Constitutive laws

Viscoelastic media are characterized by two basic phenomena: creep and stress relaxation. We consider
both cases below.

2.1 Creep and relaxation

Consider a simple uniaxial bar of a viscoelastic material, subjected to an instantaneously applied and
sustained tensile load as shown in figure 1.

Firstly imagine a qualitatively similar bar, again fixed at one end, to which an on/off axial step
loading is applied at the other, that is, at t0 = 0 the loading increases instantaneously to the constant
value F and at t∗ > t0, F is removed as illustrated in figure. The bar now responds by extending in
length and we denote this extension by u(t). At the instant t0+ there is again linear elastic behaviour
and u(t0+) is therefore given by Hooke’s law, but over the range t ∈ (t0, t∗), the bar will continue
to extend, this behaviour is termed creep. If for arbitrarily large t∗ this creep continues indefinitely
then the material is a viscoelastic fluid, on the other hand if u(t) approaches some constant value
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Figure 1: Schematic creep

then it is a viscoelastic solid. Upon removal of the load F at t = t∗ the material again displays elastic
behaviour, there is an elastic recovery where u instantaneously snaps back to a lesser value.

Thereafter is another creep phase during which the material attempts to return to its original
configuration. It can make a solid fluid distinction: if, as t → ∞ we have u → 0 then the material is
a solid but if u → constant 6= 0 then there is a permanent set within the bar caused by irreversible
molecular flow during the initial creep phase and the material is a fluid.

The ability of a viscoelastic material to attempt to return to its original configuration even after
inelastic deformation has taken place implies that it somehow has an internal record of its initial state.
If this is the case then it seems plausible that it also keeps a record of all of its states up to the present
time and for this reason viscoelastic materials are said to possess memory.

Now we think of the bar as being fixed rigidly at one end and, at some reference time t = 0, an
instantaneous longitudinal displacement u, applied to the other as schematically shown in the figure
2.

In response an internal longitudinal stress σ is set up within the bar which at the instant, t = 0+,
is given by Hooke’s law, and so the instantaneous response of the material is linear elastic. Over time
however the stress decreases monotonically to either the constant, nonzero, value σ0 or to zero. In the
former case the material is termed a viscoelastic solid whilst in the latter a viscoelastic fluid. This
phenomena is known as stress relaxation.
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Figure 2: Schematic stress relaxation

2.2 Linear visco-hypoelastic constitutive model

As we have seen for an elastic solid, the stress is determined by the deformation of the material relative
to a fixed reference configuration. However, it is. One blank line must be included above and bellow
each equation. evident that several materials, exhibit viscoelastic characteristics, i.e. the magnitude
of the measured stress depends on strain, strain rate, time and temperature as well, although we
will not consider it here. In this sense the stress in viscoelastic materials can be represented as a
functional of the history of the deformation. In other words, these materials have memory: the stress
depends on the entire history of the motion, and typically this memory fades with time. There are a
number of approaches for constructing constitutive models for the large strain viscoelastic deformation.
Mathematical relations which describe how stress can depend on the history of the deformation are
either given in integral form or in differential form. In integral form the stress at time t is given in terms
of an expression which involves an integral over previous times. The integral in such an expression
is known as a history integral. In contrast, the differential form of constitutive model the history of
the deformation is taken into account by certain ordinary differential equations which describe how
certain quantities known as internal variables evolve in time. For a more detailed presentation of both
ways of representing viscoelastic constitutive models see, for example see the references Drozdov [1],
Haupt [2], Johnson et al. [3], Reismann and Pawlik [4] and Truesdell and Noll [5].

The Boltzmann superposition principle follows by that in each strain step the stress evolution is
given by Hooke’s law. In this sense, the evolution in each strain step component is approximated with

Mechanics of Solids in Brazil 2009, H.S. da Costa Mattos & Marcílio Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-43-7



A dual finite visco-hypoelastic approach 35

a piecewise continuous step function. For sufficiently smooth fields, the general linear constitutive
equation for the linear viscoelastic (small deformation) solid is given by

σij(t) = Dijkl(t− t0)εkl(t0) +
Z t

t0

Dijkl(t− ξ)ε̇kl(ξ)dξ (1)

or equivalently

σij(t) = Dijkl(t0)εkl(t− t0)−
Z t

t0

Ḋijkl(t− ξ)εkl(ξ)dξ (2)

Considering now a viscoelastic isotropic material

D(t) = 2G(t)IIDEV + K(t)(I ⊗ I) (3)

in which

IIDEV = II − 1
3
(I ⊗ I) (4)

where I is the second order identity tensor and II is the fourth order identity tensor and the kernel
functions are represented in terms of Prony series, which assumes that:

G(t) = G∞ +
nGX
i=1

Gi exp
�
− 1

τG
i

�
(5)

K(t) = K∞ +
nKX
i=1

Ki exp
�
− 1

τK
i

�
(6)

in which G∞ and Gi are shear elastic moduli, K∞ and Ki are bulk elastic moduli and τG
i and τK

i are
the relaxation times for each Prony component. An a alternative formulation for the quasi-static rate
model is the constitutive equation given in

εij(t) = Cijkl(t− t0)σkl(t0) +
Z t

t0

Cijkl(t− ξ)σ̇kl(ξ)dξ (7)

in which

C =
B

9
(I ⊗ I) +

J

2
IIDEV (8)

where B is the bulk compliance function and J is the shear compliance function with the kernel
functions are represented in terms of Prony series, which assumes that:
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B(t) = B0 +
nGX
i=1

Bi

�
1− exp

�
− 1

τB
i

��
(9)

J(t) = J0 +
nGX
i=1

Ji

�
1− exp

�
− 1

τJ
i

��
(10)

in which J0 and Ji are shear compliance moduli, B0 and Bi are bulk compliance moduli and τB
i and

τJ
i are the relaxation times for each Prony component.

2.3 Finite visco-hypoelastic constitutive model

The Hencky’s logarithmic strain measure model was proposed in 1938 to study elastic behaviour of
rubbers at some simple finite deformation modes. The Hencky’s logarithmic strain or natural strain
has inherent advantages over other strain measures in his study of a priori constitutive inequalities
and treated the Hencky strain, its rate and its work-conjugate stress as basic measures for strain,
strain rates and stresses. The Hencky’s logarithmic tensor E, based in Lagrangean formulation, can
be defined in following way:

E(xo, t) =
1
2

ln (C(xo, t)) ;

= ln (U(xo, t))
(11)

where U is the symetric positive defined second order tensor from polar decomposition of F = RU

(gradient of the deformation function). From the spectral decomposition:

U(xo, t) =
nX

i=1

p
Λi (ϕi ⊗ ϕi) (12)

with {Λi}n
i=1 and {ϕi}n

i=1 are the eigenpairs of C. As pointed out by the famous Hill’s work in 1978,
the rate of stress work per unit of mass which is invariant under a change of strain measure and the
reference configuration is used

to generate stress measures conjugate to the family of strain measures

Ẇ =
1
ρ

(σ : D) =
1
ρo

(τ : D) =
1
ρo

�
P : Ḟ

�
=

1
2ρo

�
S : Ċ

�
(13)

in which σ is the Cauchy stress tensor, τ is the Kirchhoff stress tensor, D is the infinitesimal defor-
mation rate, P is the first Piola-Kirchhoff stress, F is the gradient of the deformation function, S is
the second Piola-Kirchhoff stress, C is the right Cauchy-Green strain tensor and ρo and ρ being the
reference and the current mass densities. Then, one follows that
Theorem 1 The rotated Kirchhoff stress tensor ( τ̄ = RT τ R) forms the conjugated stresstensor pair
with the Hencky’s logarithmic strain measure (E), under the isotropy hypothesis, i.e.
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Ẇ =
1
ρo

�
τ̄ : Ė

�
(14)

Proof We have

ρoẆ = τ : D = τ̄ :
�
RT D R

�
Thus observing that RT D R can be rewritten as follow

RT D R =
1
2

�
U−1U̇ + U̇U−1

�
.

From the spectral decomposition, we have

Ė =
1
2

nX
i=1

�
Λ̇i

Λi
(ϕi ⊗ ϕi) + ln (Λi) (ϕ̇i ⊗ ϕi + ϕi ⊗ ϕ̇i)

�
and observing that ϕi : ϕj = δij and ϕ̇i : ϕi = ϕi : ϕ̇i = 0, we conclude that

τ : D = τ̄ : Ė. (15)

By a similar way it follows in this unrotated configuration the constitutive equation may be rewritten
as

E(t) = C̄(t− t0)τ̄(t0) +
Z t

t0

C̄(t− ξ )̇̄τ(ξ)dξ (16)

In order to generalize this constitutive equation to finite deformation problems, it is necessary to
introduce the following definition
Definition 1 Let be v, A, and H (first order, second order and fourth order tensor respectively), one
defines the pull back or bar transformation as

v̄(t) = ΘT (t) v(t) (17)

Ā(t) = ΘT (t)A(t)Θ(t) (18)

H̄(t) = ΘT (t)ΘT (t)H(t)Θ(t)Θ(t) (19)

and from continuum mechanics

F̄ (t) = ΘT (t) F (t) (20)

C̄(t) = ΘT (t)C(t)Θ(t) (21)

These pull back (rotation neutralized) quantities with Θ(t) are used to define a convenient framework
to perform the integration of the constitutive model. Indeed, the pull back Kirchhoff stress tensor can
be defined as
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τ̄(t) = ΘT (t) τ(t)Θ(t) (22)

and one can show that

˙̄τ(t) = ΘT (t) ˙̂
τ (t)Θ(t) (23)

(for proof details see the reference Azikri de Deus [6]) where ˙τ^(t) denotes the Green-Naghdi rate of
the pull back Kirchhoff stress tensor, which is given by

˙̂
τ = τ̇ − Ξτ + τ Ξ (24)

where Ξ(t) = Ṙ(t)RT (t) (spin tensor). Let us define the rotation tensor Θ(t), as the solution to the
following initial value problem:
Problem 1 Given Ξ(t), find Θ(t) that solves

Θ̇(t)ΘT (t) = Ξ(t) (25)

Θ̇(t) = Ξ(t)Θ(t) (26)

Θ(0) = I (27)

By simple observation, one can verify that the solution to the initial value problem is given by
Θ(t) = R(t) (for more details see the references Azikri de Deus [6] and Truesdell and Noll [5]).

3 The finite visco-hypoelastic problem

The approach used here is the total Lagragian formulation. Considering the reference configuration
Ωo, defined at to, a bounded domain with a Lipschitz boundary ∂Ωo subjected to a body force b

defined on Ωo, a prescribed surface traction defined on Γt
o and a prescribed displacement defined on

Γu
o , where ∂Ωo = Γt

o ∪ Γu
o and Γt

o ∩ Γu
o .

Taking the motion function φt : <3 → <3 such that x = φ (xo, t) = φt (xo) ∴ xo = φ−1
t (x). It

follows that the displacement field is defined as: x = u(xo, t)+xo ∴ uo(xo, t) = φt(xo)−xo = x−xo =
x− φ−1

t (x) = u(xo, t). Thus, it is possible to announce the problem in the reference configuration as:
Problem 2 For each t ∈ [0, tf ] determine uo(xo, t) that solves the following boundary value problem
stated as

div P (xo, t) + ρo(xo) b(xo, t) = 0 in Ωo (28)

P (xo, t) no(xo, t) = t̄o(xo, t) in Γt
o (29)

uo(xo, t) = ūo(xo) in Γu
o (30)

with b(xo, t) ∈ L2 (Ωo) and ūo(xo) ∈ H
1/2
00 (Γu

o ) for each t ∈ [0, tf ].
Let us define now the following sets, for each time t ∈ [0, tf ]
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Kinu
o =

¦
uo : Ωo → <3

��uo ∈ H1 (Ωo) , uo(xo, t) = ūo(xo) in Γu
o

©
(31)

V aru
o =

¦
v̂ : Ωo → <3

��v̂ ∈ H1 (Ωo) , v̂(xo) = 0 in Γu
o

©
(32)

Thus it has the weak form of the problem
Problem 3 For each t ∈ [0, tf ] determine uo(xo, t) ∈ Kinu

o such thatZ
Ωo

P : ∇v̂ dΩo =
Z

Ωo

ρob · v̂ dΩo +
Z

Γt
o

t̄o · v̂ d∂Ωo, ∀v̂ ∈ V aru
o (33)

For each t ∈ [0, tf ], it can denoting

= (uo; v̂) =
Z

Ωo

P : ∇v̂ dΩo −
Z

Ωo

ρob · v̂ dΩo −
Z

Γt
o

t̄o · v̂ d∂Ωo, ∀v̂ ∈ V aru
o (34)

Then, the problem can be stated as
Problem 4 For each t ∈ [0, tf ] determine uo(xo, t) ∈ Kinu

o such that

= (uo; v̂) = 0, ∀v̂ ∈ V aru
o (35)

The problem above is approached by Newton method in association with Galerkin-FEM, and the
incremental formulation follows from the schematic algorithm in Tab. 1

Table 1: Newton’s Method Algorithm – Incremental Formulation.

For each time step t = tn;

(i) Initialize the iteration counter k ← 0 ;

(ii) Initialize the variable vector u0
n+1 = un;

(iii) Compute the residue vector, error = ‖residue vector‖;
(vi) Do while ( error > tolerance1)

(1) Determine the tangent modulus
�
ℵ(uk

n+1)
�
ijkl

= ∂Pij

∂Fkl

���
u=uk

n+1

(2) Solve the problem
R
Ωo
ℵ(uk

n+1)∇(∆uk
n+1) : ∇v̂dΩo = −=

�
uk

n+1o
; v̂
�

, ∀v̂ ∈ V aru
o ;

(3) Actualize the variable vector uk+1
n+1 = uk

n+1 + ∆uk
n+1;

(4) Compute the new error;

(5) Actualize =
�
uk

n+1; v̂
�
← =

�
uk+1

n+1; v̂
�
and k ← k + 1;

End Do while.
(1): previously defined.
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4 Numerical examples

For these applications, one used a mesh with two six points triangular elements. The developed code
is written in Fortran 90 and for post processing, it’s used the GID 8.0 software. The global tolerance
is 10−6.
EXAMPLE 1: In this example, one is considered the plane strain state. The body is a rectangular shape,
in which the dimentions are width 1 (× 25, 4 mm) and height 2 (× 25, 4 mm). Let be presented the
following reference configuration Ωo = {(x, y) |0 < x < 1 (× 25, 4 mm) and 0 < y < 1 (× 25, 4 mm)}
under symmetry considerations. For the quasi-static problem one has the boundary conditions: ūx(0, y, t) =
ūy(0, y, t) = 0, ūx(1, y, t) = 0.1 t (× 25, 4 mm) and the other conditions are tension free for t ∈ [0, 1]
(see fig. 3). In this example one demonstrates the consistence of the numerical algorithm (code) by
comparing the numerical solution against artificial exact solution. Invariably one design the loads and
tractions so that the exact stretch have the form x(t) = λ1(t)xo and y(t) = λ2(t) yo.

 
Figure 3: Traction test.

By a simple computation from the boundary condition and supposing

J(t) = 3, 2386× 10−8
�
1− e

1
20,2599 t

�
+ 5, 8578× 10−7 (× 6, 89 kPa)−1 (36)

one has that this block is composed by a polymer that has the following ralaxation function for B

B(t) = 4, 7279× 10−8
�
1− e

1
19,8283 t

�
+ 8, 7867× 10−7 (× 6, 89 kPa)−1 (37)

where the time scale is taken in days. In next figure (see fig. 4), one presents the time evolution of σxx

in the body (constant profile along entire body).
One can observe the evolution of stress σxx component with the time for one day obeservation. Note

that the numerical results are equal to the exact solution of the problem for each time step. The last
figure shows the displacement profile on the deformed body (see fig. 5).

Mechanics of Solids in Brazil 2009, H.S. da Costa Mattos & Marcílio Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-43-7



A dual finite visco-hypoelastic approach 41

 
Figure 4: Tension (kPa) vs. time (days).

 
Figure 5: Displacement for t = 1 day.

EXAMPLE 2: In this example, one is considered the plane strain state. The body is a square shape
(2 (× 25, 4 mm)× 2 (× 25, 4 mm)) with a circular hole inside (radius = 0, 2 (× 25, 4 mm)). This hole is
placed at the geometrical center of square shape. For the quasi-static problem, the body is submited
to prescribed displacement conditions on right and left (same value) side of the square shape and the
other conditions are free stress. Motivated by numerical effort reduction, this problem is approached
under simety considerations (1/4 of geometry - see fig. 6).

On the right side one has ūx(1, y, t) = 0.1 t (× 25, 4 mm) for t ∈ [0, 1]. The polymer is the same of

Mechanics of Solids in Brazil 2009, H.S. da Costa Mattos & Marcílio Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-43-7



42 H.P. Azikri de Deus and M.K. Alves

example 1 where the time scale is taken in days. In this example one is used 801 elements and 1682
nodes (see fig. 7).

 
Figure 6: 1/4 Square shape with a circular hole.

 
Figure 7: Tri 6 elements mesh.

The figure 8 shows the displacement field at the final observation instant. The figure 9 shows the
stress σxx profile. Note that high stress levels are in top of the central hole. The figure 10 shows the
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stress σxy profile, where higher stress levels are in top of the central hole and in the figure 11 is exposed
the stress σyy profile. The high stress levels are too in top of the central hole.

 
Figure 8: Displacement for t = 1 day.

 
Figure 9: σxx profile for t = 1 day.
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Figure 10: σxy profile for t = 1 day.

 
Figure 11: σyy profile for t = 1 day.

EXAMPLE 3: In this example, one is considered the plane strain state. The body is a complex geometry
component (dimentions in inches). For the quasi-static problem, this body is submitted to prescribed
displacement conditions on right side and the others condition are free stress conditions (see fig. 12).

On the right side one has ūx(1, y, t) = −0, 3 t (× 25, 4 mm) for t ∈ [0, 1]. The polymer is the same
of examples 1 and 2, where the time scale is taken in days. In this example one is used 337 elements
and 755 nodes (see fig. 13).
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The figure 14 shows the displacement field at the final observation instant. The figure 15 shows the
stress σxx profile. Note that high stress levels are in upper right and low left of the central hole. The
figure 16 shows the stress σxy profile, where higher stress levels are in upper right and low left of the
central hole. In the figure 17 is exposed the stress σyy profile. The high stress levels are in upper left
and low right of the central hole.

 
Figure 12: Problem sketch.

 
Figure 13: Tri 6 elements mesh.
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Figure 14: Displacement for t = 1 day.

 
Figure 15: σxx profile for t = 1 day.
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Figure 16: σxy profile for t = 1 day.

 
Figure 17: σyy profile for t = 1 day.
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