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Abstract

An object oriented finite element code was developed to take advantage of the clearly object oriented nature
of finite elements, specially with respect to property inheritance and function overloading. Furthermore, the
operator overloading characteristic of the C++ language allowed for the inclusion in the software, without
any additional programming effort, of the probability density functions of any variables one might wish to
analyze. By no additional programming effort it is meant that the actual finite element code is exactly the same
as a deterministic code (obviously, programming of the overloaded operators and data type was necessary).
The resulting software expands the realm of application of the finite element method true probabilistic stress
analysis, either for actual experimental verification or for probabilistic design with respect to uncertainties
associated to physical properties, boundary conditions, and geometry.

1 Introduction

The use of the finite element method for structural analysis is already well consolidated in the engineer-
ing community. The advances in materials and computational resources, though, have substantially
altered basic premises which guided the development of this method. For a number of engineering
problems, it is no more necessary to seek computationally fast and economic solutions, since process-
ing speed and memory availability are no longer limiting factors. This new paradigm calls for ever
more realistic approximate models, which means, for less approximate and more perfect models of
reality. These new models require more care in the analysis, in details that were until recently com-
pletely neglected, either due to the imprecision of the models themselves or the cumbersome nature
of the implementation of such details.

Stemming from this premise, this work shows the development of a software that takes into account
the probability density functions of the involved variables as an integral part of the analysis. Although
there exists a Stochastic Finite Element Method, the implementation shown here is far simpler, as it
takes advantage of the operator overloading capabilities of the C++ programming language.
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2 Theoretical background

In this section a brief introduction on probability theory is presented, to illustrate the developed
procedures. Short accounts of object oriented programming as well as of the finite element method
are also presented.

2.1 Probability

The initial part of our theoretical background recalls some concepts and definitions on probability
theory, and can be found in any introductory text on the subject [1].
Definition 2.1 Let ε be an experiment and S a sampling space associated to the experiment. A function
X, that associates to each element s ∈ S a real number, X(s), is called a random variable.
Definition 2.2 Let X be a continuous random variable. The probability density function f , written in
short form as pdf, is a function f that satisfy the following conditions:

(a) f(x) ≥ 0 for all x ∈ RX ,
(b) ∫

RX

f(x)dx = 1. (1)

Furthermore, one can define for any c < d (in RX),

P (c < X < d) =
∫ d

c

f(x)dx = 1. (2)

The definition of the accumulated distribution function will be useful and is presented next.
Definition 2.3 Let X be a random variable, discrete or continuous. Function F is defined as the accu-
mulated distribution function of the random variable X, (short form: df) as F (x) = P (X ≤ x).

To this definition follow some theorems which characterize the accumulated distribution function
as a non-decreasing function and define its relation with the probability density function:

F (x) =
∫ x

−∞
f(s)ds; (3)

or

f(x) =
d

dx
F (x). (4)

Besides these definitions, it can be shown that for two independent continuous random variables X

and Y , with pdfs g and h, respectively, the pdf s of the variable Z = X + Y is given by [1, p. 275]:

s(z) =
∫ +∞

−∞
g(w)h(z − w)dw, (5)

where w is an integration variable.
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It can also be shown that for two independent continuous random variables X e Y , with pdfs g and
h, respectively, the pdf p of the variable V = XY is given by [1, p. 115]:

p(v) =
∫ +∞

−∞
g(u)h

( v

u

) ∣∣∣∣
1
u

∣∣∣∣ du, (6)

(u is an integration variable) and that for two independent continuous random variables X e Y , with
pdfs g and h, respectively, the pdf q of the variable U = X/Y is given by [1, p. 117]:

q(u) =
∫ +∞

−∞
g(vu)h(v) |v| dv, (7)

where v is an integration variable.
It can be also shown that for a random variable X with pdf f , the pdf g of a random variable

Y = H(X), monotonic function (increasing or decreasing) of X is given by [1, p. 92]:

g(y) = f(x)
∣∣∣∣
dx

dy

∣∣∣∣ . (8)

If the accumulated distribution function y = H(x) is increasing,

G(y) = F (x), (9)

and for y = H(x) decreasing,

G(y) = 1− F (x). (10)

2.2 Programming language

The choice of the programming language depends of the verification of some fundamental requisites,
such as: execution efficiency, low level resources, object oriented capabilities, and ease of graphics
programming [2].

Among the available programming languages, the one that best suits the proposed requisites is C++
[3, 4]. Since the proposed system should be able to function either under Windowstm or Linuxtm, with
a graphics interface, a visual development environment would be a better option, and the KDevelop
environment was chosen.

There are four basic properties which characterize object oriented programming [5]: Abstraction,
encapsulation, inheritance and polymorphism. Abstraction is the capacity of representing abstract
data types, or abstract concepts, with a user created class of objects. Encapsulation is the capacity
of encompassing intrinsic properties within the class programming, without leaving to the final pro-
grammer (or the user) the need for specific knowledge of the abstract data type. Inheritance is the
capacity to write general coding that can apply to all objects instantiated with that class, or with
classes derived from the class that contain that code. Polymorphism, on the other hand, allow classes
derived from the same class to have different behavior and carry different information. The finite
element method is quite suitable to this programming paradigm. Since all elements are derived from
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the same general principles, some routines concerned with post-processing, graphical user interface, or
retrieval of element properties, can clearly be written in a general way such as to allow inheritance of
these methods. All elements have nodes, connectivity, material properties, real constants associated,
but each might have a different number of such properties and thus, different behavior concerning
these properties. Some element characteristics, such as their internal displacement interpolation func-
tions, shape functions, and material behavior type, can be encapsulated, leaving for the user only the
trouble of using the element in a piece of code. Finally, different elements have different behavior, and
this can be accomplished by overloading existing methods on the parent class, such that the new class
has its own behavior.

2.2.1 Operator overloading

The operator overloading technique, present in the C++ programming language, allows the definition
of new algebraic operators for new data types. With this technique, and the definitions on the previous
section, it was possible to define a set of operators for a new abstract data type created to represent
a random variable.

Preliminary studies pointed towards the storage of points related to the accumulated distribution
function, since it is a monotonically increasing function with values always between zero and one.
The adoption of this function as the storage data for the random variables would limit the amount
of memory storage, but it would also increase the amount of computation needed for each operation
to be performed. The probability density function (pdf) was thus chosen as the storage function. The
operations will be performed on these functions for each variable, and each variable is stored as a set
of properties defining the function.

The mathematical operations performed on the variables are accomplished by numerical integration
of the pdf functions for each variable, as in Section 2.1.

Programming the random variable class required knowledge on data structures and advanced numer-
ical methods, as well as object oriented programming. Finite element programing for this code was,
on the other hand, quite simple, since the operator overloading took care of the difficulties generated
by the random variables [6].

2.3 Finite Element Method

The formulation of the finite element method for linear elastic stress-strain problems can be simplified
by taking the minimizing coefficients of the following functional [7, 8]

Π =
1
2

∫

V

εT CεdV −
∫

V

UT fBdV −
∫

S

UST
fSdS, (11)

where ε is the strain, U is the associated displacement in each point of the element, fB is the body
force and fS is the surface force.

Different problems will involve integration in different domains (dimensionally speaking) and might
involve different interpolation functions.
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By adopting a set of displacement interpolating functions one can generate a system of equations
which will represent the physical behavior in the element. For irregular domains it becomes necessary
to also map the deformed element in an undeformed configuration, which creates the need for position
interpolation functions, also called shape functions. For the present paper, only the interpolation
functions for the two-dimensional linear quadrilateral isoparametric element will be shown. They are
(for r and s, the parametric coordinates in undeformed space):

N1 = 1
4 (1 + r)(1 + s),

N2 = 1
4 (1− r)(1 + s),

N3 = 1
4 (1− r)(1− s),

N4 = 1
4 (1 + r)(1− s).





(12)

The previous equations, as stated, interpolate both displacements and shape as follows:

x =
∑q

i=1 Nixi,

y =
∑q

i=1 Niyi,

}
(13)

u =
∑q

i=1 Niui,

v =
∑q

i=1 Nivi,

}
(14)

where xi, yi, ui, and vi are, respectively, the coordinates and displacements of node i of the element,
which has q nodes.

For the truss element, the stiffness matrix can be obtained both from the same approach shown
above and from strength of materials considerations.

For the 2-D isoparametric element, the programing language showed its full potential. The actual
routines written were the constructor, B assembly, C assembly, and Stiffness assembly
(using BTCB), all for the 2-D Isoparametric element class, overloading the element routines. For the
actual Linear quadrilateral element it was only necessary to overload the shape functions (displacement
interpolation functions, since we are dealing with isoparametric elements). Figure 1 shows an example
of the element class tree.

The programmed shape function is as follows:

void elemento2D4N::monta_n(int pg)

{

#ifdef ALEATORIO

aleatorio

#else

double

#endif

r,s,J[2][2],invJ[2][2],um=1.0,quatro=4.0;

double xpg[ptg],wpg[ptg];

int p=ptg;

for (int i=0;i<2;i++)
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Figure 1: Class diagram for element classes
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Figure 1: Class diagram for element classes

for (int n=0;n<4;n++)

dn[2*n+i]=dN[2*n+i]=0.0;

pontos_de_gauss(p,xpg,wpg);

r=xpg[pg%p];

s=xpg[pg/p];

peso=wpg[pg%p];

peso*=wpg[pg/p];

N[0]=(um+r)*(um+s)/quatro;

N[1]=(um-r)*(um+s)/quatro;

N[2]=(um-r)*(um-s)/quatro;

N[3]=(um+r)*(um-s)/quatro;

dn[0]=(um+s)/quatro;

dn[1]=(um+r)/quatro;

dn[2]= -(um+s)/quatro;

dn[3]=(um-r)/quatro;

dn[4]= -(um-s)/quatro;

dn[5]= -(um-r)/quatro;

dn[6]=(um-s)/quatro;

dn[7]= -(um+r)/quatro;

J[0][0]=J[0][1]=J[1][0]=J[1][1]=0.0;

for (int i=0;i<2;i++)

for (int j=0;j<2;j++)

for (int n=0;n<4;n++)

J[i][j]+=dn[2*n+i]*this->pno[n]->qx(j);

detJ=J[0][0]*J[1][1]-J[1][0]*J[0][1];

invJ[0][0]=J[1][1]/detJ;

invJ[1][1]=J[0][0]/detJ;

invJ[0][1]=-J[0][1]/detJ;

invJ[1][0]=-J[1][0]/detJ;
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for (int i=0;i<2;i++)

for (int j=0;j<2;j++)

for (int n=0;n<4;n++)

dN[2*n+i]+=invJ[i][j]*dn[2*n+j];

peso*=detJ;

}

3 Results

In this section a couple sample problems are shown, to illustrate the potential of the present technique.

3.1 Truss

The truss example shown in Figure 2 was created to test the obtained results. The results were
compared to the reference [9].
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Figure 2: Truss problem
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3.1.1 Deterministic values

In this case, all data values furnished were deterministic. The results, in this case, as expected, all
present zero deviation from the mean.

It can be observed that the tension (or compression) force, described in the output data as calculated
stress (tensão calculada) are correct. It is important to point out that the used printing format prints
only the mean and standard deviation, but the program keeps in storage the description of the complete
probability density function associated to each variable, and it is possible to the user to recover this
information.

Elemento 0: Tensao calculada = 6 ± 0

Elemento 1: Tensao calculada = 4 ± 0

Elemento 2: Tensao calculada = 4 ± 0

Elemento 3: Tensao calculada = 4 ± 0

Elemento 4: Tensao calculada = 5.65685 ± 0

Elemento 5: Tensao calculada = -5.65685 ± -0

Elemento 6: Tensao calculada = -2 ± -0

Elemento 7: Tensao calculada = 6 ± 0

Elemento 8: Tensao calculada = 2.82843 ± 0

Elemento 9: Tensao calculada = -4 ± -0

Elemento 10: Tensao calculada = -6 ± -0

Elemento 11: Tensao calculada = -8.48528 ± -0

Elemento 12: Tensao calculada = -5.65685 ± -0

Vetor de deslocamentos resultantes =

u[0]=0 ± 0

u[1]=0 ± 0

u[2]=0 ± 0

u[3]=-0.0016 ± 0

u[4]=0.0012 ± 0

u[5]=-0.00346274 ± 0

u[6]=0.002 ± 0

u[7]=-0.00812548 ± 0

u[8]=0.0028 ± 0

u[9]=-0.0139196 ± -0

u[10]=-0.00153137 ± 0

u[11]=-0.00732548 ± -0

u[12]=-0.0012 ± -0

u[13]=-0.00426274 ± -0

u[14]=-0.0008 ± 0

u[15]=-0.00306274 ± 0

3.1.2 Variation of the loading

In this case, the values of all furnished data were deterministic, except those for the applied forces.
These were described by a constant probability distribution function (pdf), with values between -
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4,04 and -3,96 (plus or minus 1%). This function has the calculated standard deviation of 0,023094.
The results present mean and standard deviation for all calculated values, showing how this small
uncertainty about entry data can alter our analysis results. It is interesting to notice that bar 7
presents the highest relative standard deviation (about 1,36% of the axial force value). This result
would not be of easy determination using conventional finite element techniques.

Elemento 0: Tensao calculada = 6 ± 0

Elemento 1: Tensao calculada = 4 ± 0

Elemento 2: Tensao calculada = 4 ± 0.0086785

Elemento 3: Tensao calculada = 4 ± 0

Elemento 4: Tensao calculada = 5.65685 ± -0.0221034

Elemento 5: Tensao calculada = -5.65685 ± 0.0221034

Elemento 6: Tensao calculada = -2 ± -0

Elemento 7: Tensao calculada = 6 ± 0.0818713

Elemento 8: Tensao calculada = 2.83315 ± 0.0192891

Elemento 9: Tensao calculada = -3.99294 ± 0.0370206

Elemento 10: Tensao calculada = -6 ± -0

Elemento 11: Tensao calculada = -8.48365 ± 0.0389415

Elemento 12: Tensao calculada = -5.65685 ± -0

Vetor de deslocamentos resultantes =

u[0]=0 ± 0

u[1]=0 ± 0

u[2]=0 ± 0

u[3]=-0.0016 ± 0

u[4]=0.0012 ± 0

u[5]=-0.00346273 ± 2.15046e-06

u[6]=0.002 ± 0

u[7]=-0.00812548 ± 6.40233e-06

u[8]=0.0028 ± 1.7357e-06

u[9]=-0.0139197 ± -2.59929e-05

u[10]=-0.00153133 ± 7.84972e-06

u[11]=-0.00732548 ± -4.42069e-06

u[12]=-0.0012 ±-0
u[13]=-0.00426274 ± -1.37984e-05

u[14]=-0.0008 ± 0

u[15]=-0.00306274 ± 8.84137e-06

3.2 Two-dimensional isoparametric element

The problem consisted of a single element, with either a probabilistic load (plus or minus one percent)
or a probabilistic size (the width varying plus or minus half percent). The results, for the three options,
deterministic, varying load or varying width, are shown next:
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Deterministic Varying Load Varying Width

0 0 ± 0 0 ± 0

0 0 ± 0 0 ± 0

20 20.0005 ± 0.147214 20.9039 ± 1.88914

5.77645e-16 0.00143169 ± 0.132165 1.35551 ± 1.97109

20 19.9979 ± 0.145676 19.0214 ± 1.16508

-5 -4.99829 ± 0.159795 -2.93172 ± 1.81429

0 0 ± 0 0 ± 0

-5 -4.99982 ± 0.0759411 -5.27838 ± 0.862019

The above results might lead to incorrect conclusions, such as the mean plus deviation not covering
the deterministic solution. As in the fifth displacement, for varying width, -2.93172 minus 1.81429
does not add to -5.

The results, however, show interesting behavior that can best be seen on the interval of possible
resultant solutions:

Deterministic Varying Load Varying Width

0 [0,0] [0,0]

0 [0,0] [0,0]

20 [[19.4391,20.5609] [10.5513,26.9434]

5.77645e-16 [-0.578156,0.578156] [-15.9084,7.46965]

20 [19.5424,20.4576] [15.2713,28.466]

-5 [-5.49019,-4.50981] [-18.9973,1.39452]

0 [0,0] [0,0]

-5 [-5.247,-4.753] [-11.9851,-1.61036]

It can be observed that the probabilistic nature of loading does not affect seriously the results, or
at least not as seriously as uncertainties about the geometric properties of the specimen.

4 Final remarks

The developed software presents promising results for structural stress-strain analysis. This software
allows the user to know how small assembly imperfections, or small differences in the prescribed
loading or material properties, might change the internal stresses in the structure. More precisely,
this program allows the user to know the probability density functions of the variables involved as a
function of the probability density functions of the project variables.
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The proposed methodology of finite element object oriented programming has proved its usefulness
through the ease of programming and code maintenance for the generated code. The addition of new
elements is quite simple and requires almost no additional programming.

The analysis of a very simple example shows a dependency on geometric variables that is more
important than loading uncertainties. Further work will cover this aspect of the probabilistic nature
of the stress-strain problem.
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