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Abstract

This paper presents a study on the use of the tension field theory for efficient representation of fabrics. A highly
buckled membrane model provides the simplest approach for visualization of vertical fabrics. The differential
equation of tension lines gives the outline of the wrinkles. An equation system is presented, which, when
iteratively solved supplies the basic variables of realistic fabric displacements: the number and positions of
wrinkles, and the wrinkle depth. The model can also represent important physical characteristics of textiles,
as malleability, elasticity and weight. Experimental measures have been developed as a way to verify the
adequacy of the equations and to subsidize empirical propositions for improvement of the model. How to use
this approach for textile visualization is the objective of this work. Although the original theory is complex, the
resulting algorithm is simpler and faster than many numerical treatments already used for prediction of the
cloth aspect. The idea is to find a simple realistic model that turns possible the addition in the displacement
field of other important necessities of the fashion industry like animations and textures.

Keywords: tension field, theory of membranes, wrinkle lines, fabric displacements, post-buckling behavior,
deformation of textiles.

1 Introduction

Realistic visualization of fabric has been the subject of many works because it is essential in computer-
aided apparel design and fashion industry [1]. The main difficulty in realistic simulation of cloth is
that its surface tends to look artificial in usual representation [2]. For modeling the way in which a
cloth hangs, folds and wrinkles must be represented, as well as cloth’s physical properties such as
rigidity, elasticity and yarn structure. These characteristics distinguish a fabric from other materials.
Moreover, they are associated with the aesthetic aspect of the garments.

The task of realistic visualization of cloth is much more difficult than a representation of its surface
texture and has been considered usually by complex aproaches [3]. Attempts to use finite element
analysis and high-level mathematical techniques to model textiles demand vast computer power and
yet still do not produce faithfully simulations of fabrics [4]. An experimental evaluation must be con-
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sidered to maintain the aesthetic aspect. When fabrics are modeled as a physical object, even a single
piece draping on an object (like table linings and curtains) may need a great amount of calculations
[5]. The scale of the problem increases when fabric properties (elasticity, weight, etc.) must be taken
into account and increase more when the problem moves from modeling only the appearance to exper-
imental comparison of results. Computer model of fabrics has achieved a certain success (in computer
graphics) but it has yet space to combine reality with mathematical models for an efficient graphi-
cal representation. This work analyzes the use of the tension field theory combined with experimental
measurements for fabric representation. This combination makes possible to characterize textile details
in macro scale without the huge amount of computation necessary to micro scale representation, as
that of approaches based on fibers or threads.

2 Basic considerations

Observing the fabrics we see that the textile structure can be considered as a membrane. Fabric
folds are produced by gravity when only part of the cloth is directly supported. The lines of strain
presented on buckled membrane or highly thin plate are referred to as wrinkle lines [6], and they
represent the folds and the crinkles in fabrics [7]. The relationship between the membrane surface and
the load direction is very important in the mechanical behavior. There is no external loading in many
applications of textiles and the weight acts everywhere in vertical direction (due to the Earth gravity).
Fabrics undergo large displacements for small applied forces. Their displacement properties depend
on the textile surface direction. We shall distinguish between two essential kinds of behavior on these
structures:

(1) Normal load - a textile with loads applied in direction normal or perpendicular to its initial
plane (typical examples of this first type of behavior are a carpet falling on the floor, a waving flag,
or a cloth being lifted from a flat surface); and

(2) In plane load - a textile which carry loads in the same directions of its plane (typical examples
of this second type of behavior are vertical suspended blankets, curtains or a dress on a mannequin
and other fashion applications,).

The effect of gravity is generally the main load on a fabric. Therefore, in great number of repre-
sentation, the first kind of behavior represents fabrics with initial planes in horizontal direction. In
this case a satisfactory approximate theory of membrane bending by lateral loads can be used with
great realism and small complexity. If the initial plane of the textile to be represented is mainly ver-
tical, it corresponds to the second kind above (almost all the applications for fashion design), and
the approach will have to account for the buckling of the membrane. Buckling behavior in all struc-
tures (bars, beams, membranes, plates or shells) is much more complex than bending [8]. This paper
presents equations for simple and fast representation of the way in which a vertical cloth will fold
(second kind of behavior) and compares the results obtained from these equations with real cloth.
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3 Tension field theory

The tension field theory describes the highly wrinkled state of membranes subjected to displacements
well in excess of that necessary to initiate buckling. The assumption of zero flexural membrane stiffness
on post-buckling and wrinkles at right angles to the lines of tension characterizes this theory. Mansfield
[6] considers an initially flat membrane of arbitrary shape and variable stiffness, under self-weight
supported in a vertical plane. Slack in the membrane manifests itself in the formation of wrinkle
lines whose determination is the prime objective. The tension field theory was conceived as a theory
of wrinkling isotropic elastic membranes, but the basic assumptions do not depend on isotropy or
elasticity [7]. The membrane may have anisotropy related to the weave and nonlinear elastic properties
[9]. Pipkin’s derivation [7] takes into account that there is resistance to changes in the angle between
the weft and warp directions in fabrics. However the theory does not attempt to describe the field
of displacements normal to the membrane surface. Rimrott and Ma [10] use this theory to prevent
wrinkles in substratum of solar panels. They simulated, in laboratory, blankets with in-plane loading
and their experiments showed that the number of wrinkles was a function of the critical stress that the
material withstand. Theory and experiment are compared with good agreement [10]. However, like the
other works using tension field the description of the 3D wrinkled displacement is not considered. This
displacement is much important for realistic visualization of textiles and related to the out-of-plane
displacements engendered by the buckling action of the compressive stresses [9]. Strictly speaking such
relations are nonlinear and their exact analysis presents formidable difficulties [9]. Fortunately, textiles
can easily be experimented in laboratory and their out-of-plane displacements can be measured to
improve assumptions to derive the 3D equations [11].

3.1 The wrinkle model from tension field assumptions

A distinctive property of textile materials is their extremely low compressive stiffness. A general
assumption is that a textile cannot support any compressive stress. For the case when the vertical
membrane is suspended by fixed points, the wrinkle lines have to pass through these fixed points
in order to satisfy equilibrium conditions [6], whose solution will depend on the boundary condi-
tion of each problem. From equilibrium conditions Mansfield [6] developed wrinkle lines equations for
membranes (supported at points or edge-supported) with different boundary: cosine, parallelogram,
triangular, pennant-shaped and wedge-shaped (see figure 1). Mansfield shows the wrinkle line equa-
tions occur in a repetitive sequence in case of strip supported at intervals (figure 2). The case of
inclined supports was also considered and demonstrated that the pattern of wrinkle lines is obtained
from the previous case by a simple shearing process (as the parallelogram on figure 1 that is derived
from rectangular shape).

The simplest wrinkle line solution [6] is given by

y = aoe
k cos (πx/l) (1)

where ao represents the maximum height of the first wrinkle (amplitude of cosine curve), l is the
distance between fixed points or supports (figure 3), and
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Figure 1: 2D wrinkle lines from tension field theory [6].

k = −(π2F )/(l2w) (2)

where w is the textile weight per area (textile total weight, W , divided by the area of its surface) and
F is the tension in the horizontal direction. This solution is exact for cosine-shaped textiles, that is
when the lower boundary (first wrinkle line) is given by

yo = ao cos(πx/l)

and the upper boundary (upper wrinkle line) is given by

yn = an cos(πx/l) (3)

In the limiting case we have an = 0, which corresponds to a straight upper boundary. Note that F

is zero on yo, which agrees with equilibrium requirement of free stress lower boundary. When an → 0
the horizontal component F grows to infinity.  

 

 

 

 

 

 

 

 

 

 
Figure 2: Repetitive folds in case of fabric strip supported at intervals.

Observing the behavior of actual suspended fabric it is possible to see that a finite number of
wrinkles will be developed [11]. The amplitude of the wrinkles is strongly dependent on the horizontal
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motion of the supports but this is not the case for the number of wrinkles [12]. In experiments this
number are also not dependent of warp directions. We have investigated carefully this problem because
most of fabrics have anisotropy, but all results related with the wrinkles position and shape show not
direction dependence [13]. A more important observation is that there is not randomness in the fold
shapes [10–16]. In steady state, repetitions of experiments using the same initial conditions always
agree with this observation [11–16].

 

 

 

 

 

 

 

 

 

 

 

4. SIMULATING 3D WRINKLES 

 

 

 

 

 
Figure 3: Cosine membrane and its wrinkle characteristics used in the equations.

4 Simulating 3D wrinkles

The tension field theory [9] considers only the 2D locus of the fabric folds (figure 1). Even if complicated
types of crinkle are considered, as those treated by Pipkin [7] of two intersected families of fold
lines or double folds, the wrinkle description is purely on plane. Of course the number of folds and
their locus is the main aspect of the cloth representation. However, folds must be 3D in realistic
textile visualization. Strictly speaking such problems are nonlinear and their exact analysis presents
formidable difficulties [9]. Fortunately, textiles can easily be experimented in laboratory and their
out-of-plane displacements can be studied to improve assumptions to derive the 3D equations [11].
To aid displacement descriptions, experiments have been organized with fabrics of different materials
and several shapes [13].
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Figure 4: The same fold prevision from the proposed approaches are drawn on the real textiles. The
match is inadequate only for the lowest wrinkle in non-cosine shapes. For these figures h = L = 140
cm, t = 0.4 mm. The material presents E = 40 MPa, w = 17.7×107 N/mm2. The calculated values
are n = 4, Q=0.6 and zmax = 7 cm.

Experiences has been conducted comparing cosine with others types of boundaries and the results
showed that the wrinkle pattern is visually identical until the bottom wrinkle [12]. Quadrilateral
boundaries were the case with worse results. Figure 4 shows the drawings in real cloth of the wrinkled
prevision. The real cloths have rectangular boundary and cosine shapes. Both drawings are obtained
from considering the cosine expressions of the last section. The only position where the prevision and
the real folds visually do not match (see figure 4) is for the rectangular shape on the wrinkle whose
amplitude goes through the bottom boundary. But locus and shapes can be considered correctly
described for textile computer graphics representation. These experiences indicated that the use of
the 3D cosine boundary developed expressions is also adequate for other shapes [11]. The same happens
with the assumption of the lateral displacement. The displacement in z direction (normal to the xy
plane of figure 3 or the lateral displacement) varies linearly on any strip folded between a + or -
direction, with maximum value for x = 0. The z component of the wrinkle line of order i can be
represented

zi = zmax cos(πx)/l (4)

Then, the fabric representation can be performed in three steps: (1) grid generation; (2) determi-
nation of the elements related to the folds; and (3) the grid displacement and its combination with
other displacements (figure 5) and rendering techniques (but this is out of the scope of this work).
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 Figure 5: Results of the computer program implemented: The deformed grid for cosine membrane
with the characteristics defined in the central line of Table 1, and examples of addition with other
deformations and displacements.

4.1 First step: grid generation

This step represents the cloth modeled as a grid of three-dimensional coordinates. By increasing the
density of the grid, greater resolution of the surface model may de obtained. A distinction must be
made between free points and restricted points on the grid. The restricted points are those that fix a
piece of fabric, their coordinates will not change. The remaining points are considered as free points,
they will move with textile folds and their new position must be computed. The grid is treated as a
coordinate system that describes the garment shape before the appearance of folds. Each grid point
should be corresponded with a fabric point on x, y and z axes.

4.2 Second step: determination of fold positions

To determine the displacement of each point when the textile is suspended and the folds appear, the
locus of the wrinkles must be computed. For this, some parameters must be calculated. They are
the number of wrinkles, n, the amplitude of each wrinkle in vertical direction, ai, and the maximum
component of the wrinkle lines out of the initial plane, zmax. The placement of each point of the grid
on the folded fabric, which will be determined in the next step, is related to these values.

The process of determining these parameters involves an iterative stage. It has been shown [10] for

Mechanics of Solids in Brazil 2007, Marcílio Alves & H.S. da Costa Mattos (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-30-7



154 A. Conci

cosine boundaries (figure 3) that the wrinkle amplitudes grow in geometric progression. Hence, for
each wrinkle i, the parameter ai in equation (3) can be described as

a0/a1 = a1/a2 = . . . = an−1/an = (a0/an)1/n = Q (5)

So the vertical position of each fold is:

yi = (ao/Qi) cos(πx/l) (6)

However, the value of the ratio Q, and the number of wrinkles n are not yet determined. Since
the critical stress, σcr, cannot be exceeded, the number of wrinkles and their amplitudes will adjust
themselves. This stress is limited by the buckling stress [8]. The ratio Q can be related to the maximum
compressive stress in the cloth [11]:

wh(Q− 1)2/(tQ(Q + 1)) ≤ σcr = cEt2/(l2(1− ν2)) (7)

where t is thickness of the cloth, h is its height or its initial maximum on the vertical dimension, c is
a constant describing the load condition [8], E is the material Young’s modulus and ν its Poisson’s
ratio.

As a first approach Q can be obtained from (7) by enforcing equality and using the maximum
compression stress of thin plates [6]. The other two unknowns n and zmax are obtained by fabric
inextensibility assumptions [11]. The initial length L and the wrinkled upper boundary length can be
related by

L =

l/2∫

−l/2

√
1 +

(
dyn

dx

)2

+
(

dzn

dx

)2

dx

or from (4) to (6)

L =

l/2∫

−l/2

√
1 +

(π

l

)2
(

a2
0

Q2n
+ z2

max

)
sin2 πx

l
dx (8)

The inextensibility of the vertical fibers leads, for x = 0, to

h =
∑n

i=1

√
(ai−1 − ai)

2 + (2zmax)
2

or from (5) and (6)

h =
∑n

i=1

√
a2
0

Q2(i−1)

(
1− 1

Q

)2

+ (2zmax)
2 (9)

An approximation of n can be determined by means of the equation (5):
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n = Int [log (a0/an) / log Q] (10)

in which Int [ . ] is the integer approximation [ . ] , because the number of wrinkles must be integer.
However, a0 and an are both unknown. They are the amplitudes of the lower and upper boundaries
of the folded fabric (figure 3). As a first approximation a0 = 1.01h and an = 0.01h can be used (for
practical purposes) beginning the iterative approach. The obvious an = 0 is out of the question in
equation (10) (indetermination). These values are used as an initial approximation. As soon as n and
Q become know, the amplitude ai of each wrinkle line can be obtained from (5). A tentative value
must be used for zmax (as 0.01h) in the equation (8) and (9).

In this work a numerical integration (Simpson) is used to solve equation (8). Note that its result is
a first approximation of horizontal textile length, L′, where the real value L is known. The obtained
value of L′ is tested against the real value and new values of zmax, and n are obtained using above
equations, until the convergence of L′ to L. The tolerance value of this convergence is more or less
arbitrary, depending on the desired accuracy. In every case on the next section 5% is used as tolerance
value.

4.3 Third step: wrinkle line positions and grid displacement

The third step performs a 3D displacement on all points on the surface. After determining of the basic
parameters Q, zmax and n, the wrinkles lines and all locations of fold points can be obtained by using
equations (3), (4) and (5). Knowing the position of the folds, the 3D visualization of the deformed grid
is straightforward from interpolation between consecutive folds and the surface is ready for projections,
shadings, shadows and textures details. Figure 5 shows on the main illustration the deformed grid and
in the small illustrations the results of the deformed grid added to other displacements or deformations
(as in animation sequences).

5 Results and conclusions

Only the elements related to the wrinkle locus are here presented. First, numerical results consider
the length influence on wrinkles. To study this the same textile with increasing length, h, in one
direction is used in simulations. The other characteristics were kept and they are t = 0.25 mm, E =
165 MPa, w = 15×10−7 N/mm2 and L = 140 cm. The support displacement is 10 cm, so l= 120 cm
(figure 3). Table 1 shows the parameters obtained by the approach for each h. The number of wrinkles
increases when the length increases. For rectangular shapes, these results can easily be compared with
laboratory experiments. Figure 5 shows the wrinkle line positions and grid displacement obtained for
this fabric with cosine shape and h = 140 cm.

Obtained fold characteristics for textiles with 145×90 cm and increasing weight are shown in Table
2. The other characteristics are t = 0.35 mm, E = 150 MPa and support displacements of 8.5 cm.
These results show that the number of wrinkles increases with the weight. A series of simulations
have been done for textiles with 90×75 cm and increasing thickness, t, as shown in Table 3. The
other characteristics for the results (of Table 3) are w = 12.8 × 10−7 N/mm2, E = 185 MPa, and
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support displacement of 7 cm. The effect of increasing stiffness is clearly seen. Some results obtained
for textiles with length of 125×85 cm and increasing Young’s modulus, E, are shown in Table 4. The
other characteristics are t = 0.23 mm, w = 17 × 10−7 N/mm2 and support displacement of 9 cm. It
shows that, when the elasticity increases, the ratio Q increases, but the number of wrinkle decreases.

Table 1: Results for a increasing length.

h (cm) n zmax(cm) Q

90 5 5.4 1.31

140 7 4.8 1.29

235 8 6.0 1.34

Table 2: Fabric with increasing weight.

w (10−7 N/mm2) n zmax(cm) Q

10 4 5.60 1.78

33 6 4.60 1.46

54 7 4.40 1.39

Table 3: Fabric with increasing thickness.

t (mm) n zmax(cm) Q

0.09 7 3.45 1.33

0.26 4 4.15 1.65

0.40 2 1.10 2.60

Mechanics of Solids in Brazil 2007, Marcílio Alves & H.S. da Costa Mattos (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-30-7



After buckling behavior based on tension field theory and experiments 157

Table 4: Fabric with increasing elasticity.

E (MPa) n zmax(cm) Q

55 8 3.70 1.34

110 7 4.25 1.30

185 6 4.55 1.47

Beside numbers, side by side comparison of real cloth and simulation of the same cloth is a better
argument for the visual similarity obtained with the approach. Figures 6 and 7 show the locus of the
folds drawn over real cloths. The wrinkle lines behavior is considered in cosine formulation for both
cases (according to the experimental investigations).

Results of this approach show that it is possible to represent the fold peculiarities related with textile
geometry and physical characteristics. The introduced out-of-plane analysis of the displacements allows
to represent the post-wrinkling state. The derived equations provide the basic variables for realistic
appearance of clothes: number of wrinkles and their position. The resulting deformed description can
be used then with a variety of rendering for realistic textile representation [1, 2].
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Figure 6: Folds obtained by the approach drawn over a real cloth supported at intervals (darkest lines
represent negative folds).
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Figure 7: Folds obtained by the approach drawn over a real shirt (darkest lines represent negative
folds).
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