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Abstract

A.R. Aguiar (2004, 2006) [1, 2] have considered a class of two-dimensional problems in classical linear elasticity
for which material overlapping occurs. Of course, material overlapping is not physically realistic, and one
possible way to prevent it uses a constrained minimization theory. In this theory, a minimization problem
consists of minimizing the total potential energy of a linear elastic body subject to the constraint that the
deformation field be locally invertible. A.R. Aguiar (2004, 2006) [1, 2] have used, respectively, an interior
and an exterior penalty formulation of the minimization problem together with a standard finite element
method to compute the minimizers. The formulation consists of finding the displacement field that minimizes
an augmented potential energy functional, which is composed of the potential energy of linear elasticity
theory and of a penalty functional divided by a penalty parameter. In the interior penalty formulation, the
penalty functional becomes unbounded as we approach the boundary of the set of all kinematically admissible
deformation fields from inside the set. A sequence of minimizers belonging to this set and parameterized by the
penalty parameter is then constructed. As the penalty parameter becomes unbounded, the sequence is shown to
converge to the solution of the original constrained minimization problem. In the exterior penalty formulation,
the penalty functional is bounded everywhere and is zero inside the set of kinematically admissible fields. A
sequence of minimizers, parameterized by the penalty parameter, is also constructed and is shown to converge
to the solution of the original constrained minimization problem as the penalty parameter goes to zero. In
this work, we compare both formulations by solving a singular problem in plane elasticity. In particular, we
determine the convergence ratio in both cases and show numerical results which indicate that, for a fixed finite
element mesh, the sequence of numerical solutions obtained with the exterior penalty formulation converges
faster than the sequence of numerical solutions obtained with the interior penalty formulation.

Keywords: anisotropic elasticity, singularity, constrained optimization, penalty method, Finite Element Method.

1 Introduction

There are problems in the classical linear theory of elasticity whose closed form solutions, while
satisfying the governing equations of equilibrium together with well-posed boundary conditions, allow
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material overlapping to occur. Typically, problems of this kind involve some sort of singularity, and
strains exceeding level acceptable from the point of view of a linear theory occur around the singular
points.

References [1, 2] have considered a two-dimensional problem in classical linear elasticity for which
material overlapping occurs. The problem, presented in [3], concerns the equilibrium of a circular
homogeneous disk, which is radially compressed along its external contour by a uniformly distributed
normal force. The requirement that the displacement field be rotationally symmetric with respect
to the center of the disk allows the derivation of a closed form solution that predicts overlapping of
material in a certain region occupied by the linear elastic disk.

One possible way to prevent the anomalous behavior of self-intersection is proposed by [4]. It
combines the linear theory with the imposition of local injectivity constraint through a Lagrange
multiplier technique. These authors investigate the problem of minimizing the total potential energy
E of classical linear elasticity on an admissible set Aε of vector-valued functions v that satisfy the
injectivity constraint det(1 +∇v) ≥ ε > 0 for a sufficiently small ε ∈ R. In particular, they show the
existence of a solution for the constrained minimization problem in two dimensions. The constrained
problem is, however, highly nonlinear and, in general, needs to be solved numerically.

References [1, 2, 5] present Finite Element approaches to solve this class of constrained problems. In
the Obeidat’s approach, a carefully designed algorithm is required to keep track of all subdomains of
the reference configuration where the injectivity constraint is violated.

Our approach in [1] is based on an interior penalty formulation, which consists of replacing E by
a penalized functional Eγ = E + Q/γ, where γ is an arbitrary positive number and Q is a penalty
functional defined on the constraint set Aε. The penalty functional is non-negative on Aε, satisfies
Q[v] →∞ as v approaches the boundary of Aε, and is designed so that minimizers of Eγ [·] lie in the
interior of the constraint set Aε; hence the term interior penalty method. Thus, the penalty formulation
of the constrained problem consists of finding uγ ∈ Aε that minimizes the penalized functional Eγ

over the constraint set Aε.
Another approach considered by [2] is based on an exterior penalty formulation, which consists of

replacing E by a penalized functional Eδ = E + P/δ, where δ is an arbitrary positive number and P
is a penalty functional defined on the whole set A. The penalty functional is non-negative on A and
vanishes on Aε. In general, the minimizers of Eδ[·] lie in the exterior of the constraint set Aε; hence
the term exterior penalty method. Thus, the penalty formulation of the constrained problem consists
of finding uδ ∈ A that minimizes the penalized functional Eδ over the set A. This method has the
advantage of yielding an unconstrained minimization problem.

In Section 2 we apply both penalty formulations on the class of constrained minimization problems
considered by [4]. In Section 3 we review some results presented by these authors concerning the
compressed disk problem in the context of both the unconstrained and the constrained theories. In
Section 4 we use the Finite Element Method to obtain discrete problems from the penalty formulations
of the constrained disk problem and discuss briefly a strategy presented by [6] to solve this class of
problems. The resulting numerical scheme is simple to implement, converges much faster than previous
schemes presented by [1, 2], and can be applied in the numerical solution of problems in any dimension.
In Section 5 we compare the numerical results obtained from the solutions of the discrete problems
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with analytical results obtained from the closed form solution of the constrained minimization problem
considered in Section 3. In Section 6 we present some concluding remarks.

2 The penalty functional formulation

Let B ⊂ R2 be the undistorted natural reference configuration of a body. Points x ∈ B are mapped
to points x̂ = f(x) ≡ x + u(x) ∈ R2, where u(x) is the displacement of x. The boundary ∂B of B
is composed of two non-intersecting parts, ∂1B and ∂2B, ∂1B ∪ ∂2B = ∂B, ∂1B ∩ ∂2B = ∅, such that
u(x) = 0 for x ∈ ∂1B and such that a dead load traction field t̄(x) is prescribed for x ∈ ∂2B. In
addition, a body force b(x) per unit volume of B acts on points x ∈ B.

We consider the problem of minimum potential energy:

min
v∈Aε

E [v] , E [v] ≡ 1
2

a[v,v]− f [v] , (1)

where

a[v,v] ≡
∫

B

C[E] ·E dx , f [v] ≡
∫

B

b · v dx +
∫

∂2B

t̄ · vdx , (2)

and E ≡ [∇v + (∇v)T
]
/2 is the infinitesimal strain tensor field. The functional E [·] is the total

potential energy of classical linear theory of elasticity. Furthermore,

Aε ≡ {v : W 1,2 (B) → R2
∣∣ det (1 +∇v) ≥ ε > 0,v = 0 a.e. on ∂1B} (3)

is the class of admissible displacement fields and C = C(x) is the elasticity tensor, assumed to be
positive definite and symmetric. We suppose that ε > 0 in (3) is sufficiently small.

Reference [4] fully characterize the solutions of the minimization problem (1)-(3). In particular,
they show that there exists a solution to this problem which does not violate the injectivity constraint
det (1 +∇v) ≥ ε > 0 and derive first variation conditions for a minimizer u ∈ Aε of E [·].

Let
A ≡ {v : W 1,2 (B) → R2

∣∣v = 0 a.e. on ∂1B} . (4)

We then obtain the first variation of E [·] at u in the form < DE [u],v >≡ a[u,v] − f [v] ,∀v ∈ A ,

where a[·, ·] and f [·] are defined in (2). On the other hand, it can be shown that there exists a scalar
Lagrange multiplier field λ : L2(B) → R such that the first variation has the equivalent representation
< DE [u],v >=

∫
B

λ cof∇f · ∇v dx ,∀v ∈ A , where cof∇f is the cofactor of the deformation gradient

and we recall from above that f(x) = x + u(x).
Defining

B> ≡ int[{x ∈ B : det∇f > ε}] , B= ≡ int[{x ∈ B : det∇f = ε}] , (5)

where int[·] denotes the interior of a set, the necessary first variation conditions for the existence of a
minimizer are given by
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• The Euler-Lagrange equations

Div T + b = 0 in B> , Div(T− ελ(∇f)−T ) + b = 0 , λ ≥ 0 , in B= , (6)

together with the boundary conditions

Tn = t̄ on ∂B> ∩ ∂2B , (T− ελ(∇f)−T)n = t̄ on ∂B= ∩ ∂2B , (7)

where T is the stress tensor and n is a unit normal to ∂2B.
• Jump conditions across Σ ≡ B̄> ∩ B̄=, which is assumed to be sufficiently smooth:

(T− ελ(∇f)−T )
∣∣
Σ∩B̄=

n = T
∣∣
Σ∩B̄>

n , (8)

where n is a unit normal to Σ and where Σ ∩ B̄= and Σ ∩ B̄> mean that the evaluations are
understood as limits to the dividing interface Σ from within B= and B>, respectively.

An interior penalty functional formulation of the minimization problem (1)-(3) consists of replacing
the energy functional (1.b) by a penalized potential energy functional Eγ : Aε → R̄, R̄ ≡ R ∪ {∞}, of
the form

Eγ [u] = E [u] +
1
γ
Q[u] , (9)

where γ > 0 is a penalty parameter and Q : Aε → R̄ is an interior penalty functional, also called
barrier functional. The penalty functional is designed so that minimizers of Eγ [·] lie in the interior of
the constraint set Aε. Thus, the addition of (1/γ)Q has the effect of establishing a barrier on the
boundary of the constraint set Aε that prevents a search procedure for a minimizer from leaving the
set Aε. In this work, we consider the inverse barrier functional, defined by

Q[v] =
∫

B

1
det(1 +∇v)− ε

dx, ∀v ∈ Aε . (10)

Observe from (10) that Q is non-negative on Aε and satisfies Q[v] →∞ as v approaches the boundary
of Aε.

The penalty formulation of the minimization problem (1)-(3) consists of finding an admissible
displacement field uγ ∈ Aε that minimizes the penalized potential Eγ [·], i.e.,

min
v∈Aε

Eγ [v] , (11)

where Eγ [v] is given by the expressions (9), (1.b), (2), and (10). This is a constrained problem,
and indeed the functional to be minimized is somewhat more complicated than the original energy
functional (1.b). The advantage of considering this problem, however, is that we can use numerical
procedures commonly employed in the numerical approximation of solutions of unconstrained prob-
lems. Thus, although the minimization problem (11) is a constrained problem from the theoretical
point of view, from a computational point of view, it is unconstrained.
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On the other hand, an exterior penalty functional formulation of the minimization problem (1)-(3)
consists of replacing the energy functional (1.b) by a penalized potential energy functional Eδ : A → R
of the form

Eδ[u] = E [u] +
1
δ
P[u] , (12)

where δ > 0 is a penalty parameter and P : A → R is a penalty functional, which is non-negative in
A and is designed so that P[v] increases with the distance from v to the constraint set Aε. In this
work, we consider

P[v] =
1
2

∫

B

[max(0,−p(v))]2 dx , ∀v ∈ A , (13)

where max(0,−p) ≡ (−p + | p |)/2 and

p(v) = det(1 +∇v)− ε . (14)

Clearly, P[v] = 0 if the injectivity constraint is satisfied; otherwise, P[v] > 0. In Section 4 we see
that the choice (13) for P leads to a discrete version of the penalized energy functional Eδ that is
continuous and differentiable everywhere.

We then want to find an admissible displacement field uδ ∈ A that minimizes the penalized potential
Eδ[·], i.e.,

min
v∈A

Eδ[v] , (15)

where Eδ[v] is given by the expressions (12), (1.b), (2), (13), and (14). This is an unconstrained
problem, which also has the advantage of yielding discrete minimization problems that can be solved
by classical unconstrained optimization techniques.

In Section 4 we use both penalty formulations presented above to construct a numerical scheme
that is used in Section 5 for the solution of the constrained plane problem presented in Section 3.2.

3 The disk problem

In this section we review the main results obtained from the solution of a plane problem, which will
serve as a model problem in our computations, in the context of both the classical linear theory,
Section 3.1, and the constrained minimization theory, Section 3.2.

3.1 The unconstrained disk problem

In classical linear elasticity, the disk problem concerns the equilibrium of a circular homogeneous
disk of radius ρe, which is radially compressed along its external contour by a uniformly distributed
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normal force p per unit length. Relative to the usual orthonormal cylindrical basis (eρ, eθ), the stress
and strain tensors are given by

T = σρ ρ eρ ⊗ eρ + σθ θ eθ ⊗ eθ + σρ θ (eρ ⊗ eθ + eθ ⊗ eρ) ,

(16)

E = ερ ρ eρ ⊗ eρ + εθ θ eθ ⊗ eθ + ερ θ (eρ ⊗ eθ + eθ ⊗ eρ) ,

respectively. These tensors are related to each other by the linear constitutive relations

σρ ρ =
1

1− νρνθ
(Eρ ερρ + νρ Eθ εθθ) ,

(17)

σθ θ =
1

1− νρνθ
(νθ Eρ ερρ + Eθ εθθ) , σρ θ = 2 Gερθ ,

where Eρ, Eθ, νρ, νθ, and G are elastic constants that satisfy the inequalities
νρ

Eρ
=

νθ

Eθ
, Eρ > 0 , Eθ > 0 , G > 0, (1− νρ νθ) > 0 . (18)

Since uniqueness is guaranteed in classical linear elasticity, the displacement field must be rota-
tionally symmetric with respect to the center of the disk, i.e., u(ρ, θ) = u(ρ) eρ. Thus, the strain
components take the form

ερρ = u′ , εθθ =
u

ρ
, ερθ = 0 , (19)

where (·)′ ≡ d (·)/d ρ. Also, there is only one non-trivial equilibrium equation, which is given by
∂σρρ/∂ρ+(σρρ − σθθ) /ρ = 0 . Because of (16)-(19), this equation becomes Eρ

(
u′′ + u′

ρ

)
−Eθ

u
ρ2 = 0 .

Imposing the natural compatibility condition u(0) = 0 and the boundary condition σρρ(ρe) = −p,
we obtain the classical solution presented in [3],

u(ρ) = −q
ρk

ρk−1
e

, q ≡ p (1− νρ νθ)√
Eρ Eθ + νρ Eθ

, κ ≡
√

Eθ

Eρ
> 0 . (20)

As remarked by Lekhnitskii, a consequence of both (20.a,c) is that the radial and tangential stresses
become singular for any p > 0 when κ < 1, since

σρρ = −p

(
ρ

ρe

)k−1

, σθθ = −p κ

(
ρ

ρe

)k−1

. (21)

Another interesting feature of the solution (20.a,c), noted by [4], is that for any p > 0 there is a
core region defined by

0 <

(
ρ

ρe

)1−κ

< q (22)

for which u(ρ) < −ρ. Since the deformation of the body is given by f(x) = [ρ + u(ρ)] eρ for each
particle x = (ρ, θ) of the disk, we readily see that material penetrates itself in this central core.
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This core contains an annular region, defined by κ q <
(

ρ
ρe

)1−κ

< q , where the determinant of the
deformation gradient, given by

det∇f =

[
1− κ q

(
ρ

ρe

)κ−1
][

1− q

(
ρ

ρe

)κ−1
]

, (23)

is negative. Outside the annular region, i.e., for small and large values of (ρ/ρe)
1−κ, we see from (23)

that det∇f is positive.
Thus, for 0 < κ < 1, the classical solution has no physical meaning and therefore should be rejected

as a viable solution. The anomalous behavior of material overlapping provides, however, motivation
to use a pseudo-linear theory which respects the constraint that admissible deformations be at least
locally invertible, i.e., that det∇f > 0.

3.2 The constrained Lekhnitskii problem

Reference [4] consider the solution of the rotationally symmetric disk problem of Lekhnitskii outlined
in Section 3.1 for the material parameter κ ∈ (0, 1) of (20.c) within the constrained minimization
theory outlined in Section 2.

The sets B= and B> of (5), where the constraint of local injectivity is active (det∇f = ε) and
non-active (det∇f > ε), respectively, can be determined explicitly as

B= = {x = ρ eρ ∈ B : 0 ≤ ρ < ρa}] , B> = {x = ρ eρ ∈ B : ρa < ρ < ρe} , (24)

for some ρa ∈ [0, ρe], which is the solution of the algebraic equation

0 =
(

1 + κ

1− νρ νθ

)
(Eρ κ + νρ Eθ)

(
ρe

ρa

)κ−1

+

(25)
(

1− κ

1− νρ νθ

)
(Eρ κ− νρ Eθ)

(
ρe

ρa

)κ−1

+
2 κ p√
ε− 1

,

with κ defined by (20.c).
The equations (6)-(8) can be solved in closed form, yielding the Lagrange multiplier constraint stress

field λ(ρ) = −
(

1−√ε√
ε

)(
Eρ−Eθ

1−νρ νθ

)
log

(
ρ
ρa

)
in B= . Note that λ has a logarithmic singularity at the

origin, which is weaker than the stress singularity of the unconstrained problem reported in (21).
Also, the displacement field u = u(ρ) eρ is given by

u(ρ) =





− (1−√ε) ρ in B= ,

(
1+κ
2 κ

)
(
√

ε− 1) ρ−κ+1
a ρκ +

(−1+κ
2 κ

)
(
√

ε− 1) ρκ+1
a ρ−κ in B> .

(26)
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Using (26) together with f(ρ) = [ρ + u(ρ)] eρ, we can easily obtain the expression

det∇f(ρ) =





ε in B= ,

{
1 +

√
ε−1
2 κ

[
(κ + 1)

(
ρ
ρa

)κ−1

+ (κ− 1)
(

ρ
ρa

)−κ−1
]}

∗

{
1 +

√
ε−1
2

[
(κ + 1)

(
ρ
ρa

)κ−1

− (κ− 1)
(

ρ
ρa

)−κ−1
]}

in B> .

(27)

The solution (26) describes the deformation of the disk which is, in fact, globally injective.

4 The discrete formulation

We want to construct an approximate solution to both minimization problems (11) and (15) for given
penalty parameters γ and δ, respectively. For this, we consider a Finite Element formulation based
on the introduction of discrete minimization problems over a finite-dimensional space Ah ⊂ A, where
the subscript h stands for the characteristic length of the finite element and A is given by (4). These
problems can be solved using an unconstrained minimization method with a line search technique.

Holding h fixed and increasing γ in the interior penalty formulation, we generate a sequence of
solutions parameterized by γ for the discrete problems that converges to an approximate solution uh

of the minimization problem (1)-(3) as γ →∞. We then refine the Finite Element mesh by decreasing
h and repeat the process above. In so doing, we generate a sequence of solutions uh parameterized by
h which converges to the solution u of the original minimization problem (1)-(3).

A similar procedure is used to generate a convergent sequence of solutions uh for the exterior penalty
formulation. Here, however, uh is the limit function of a sequence of solutions parameterized by δ as
δ tends to zero.

The procedures outlined above are general an apply to problems in any dimension. In this work, we
consider the model problem of Lekhnitskii described in Section 3 with the imposition of the injectivity
constraint det(1 + ∇v) ≥ ε > 0, where v ∈ A. Although the problem is two-dimensional, we recall
from Section 3 that it is also rotationally symmetric, so that v = v eρ, where v is a scalar function
defined on the interval (0, ρe).

Since the energy potential E [·] is given by (1.b) and (2), we can write

E [v eρ]=
π Eρ

1− νρ νθ





ρe∫

0

[
(v′)2 ρ +

(κ v)2

ρ

]
dρ + νρ [κ v(ρe)]2



 + 2 π p v(ρe) ρe (28)
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for the model problem of Lekhnitskii, where κ is given by (20.c). Since det(1+∇(v eρ)) = (1+v′)(1+
v/ρ), the inverse barrier functional, defined by (10), becomes

Q[v eρ] = 2 π

ρe∫

0

ρ

(1 + v′)(1 + v/ρ)− ε
dρ , (29)

and the exterior penalty functional, defined by (13) and (14), becomes

P[v eρ] =
π

4

ρe∫

0

[−(1 + v′)(1 + v/ρ) + ε + |(1 + v′)(1 + v/ρ)− ε|]2 ρ dρ . (30)

The penalized potential Eγ [·] is then obtained from (9), (28), and (29), while the penalized potential
Eδ[·] is obtained from (12), (28), and (30).

Now, let 0 = ρ0 < ρ1 < ρ2 < . . . < ρn = ρe be a partition of the interval I ≡ (0, ρe) in sub-intervals
Ij = (ρj−1, ρj) of length ∆ρj = ρj − ρj−1 , j = 1, 2, . . . , n . Let also Ah be the set of functions v eρ

such that v is linear over each sub-interval Ij , v ∈ C0(I), and v(0) = 0. Clearly, Ah ⊂ A, where A is
given by (4).

Next, introduce the piecewise linear basis functions φj eρ ∈ Ah, j = 1, 2, . . . , n, defined by φj(ρi) =
δij , i, j = 1, 2, . . . , n . Then, a function vh eρ ∈ Ah has the representation

vh(ρ) = s · g(ρ) , ρ ∈ I , (31)

which is the inner product between the vector s ≡ (η1, η2, . . . , ηn) ∈ Rn and the n-dimensional vector-
valued function g ≡ (φ1, φ2, . . . , φn) defined over the interval I. The coefficients ηi are given by

ηi = vh(ρi) . (32)

Substituting vh into (28)-(30), we obtain

Eh(s) ≡ E [(s · g) eρ]
2 π p ρe

=
Eρ

2 (1− νρ νθ) p ρe

{ ρe∫

0

[
(s · g′)2 ρ +

(κ s · g)2

ρ

]
dρ +

νρ [κ s · g(ρe)]2
}

+ s · g(ρe) , (33)

Qh(s) ≡ Q[(s · g) eρ]
2 π p ρe

=
1

p ρe

ρe∫

0

ρ

[(1 + s · g′)(1 + s · g/ρ)− ε]
dρ , (34)
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22 A.R. Aguiar

Ph(s) ≡ P[(s · g) eρ]
2 π p ρe

=
1

8 p ρe

ρe∫

0

[
− (1 + s · g′)(1 + s · g/ρ) + ε +

|(1 + s · g′)(1 + s · g/ρ)− ε|
]2

ρ dρ , (35)

respectively. Observe from (31)-(35) that Eh, Qh, and Ph are scalar functions of an n-dimensional
vector of coefficients ηi, i = 1, 2, . . . , n. Also, Ph is a continuous function of s with continuous first
derivative.

The discrete versions of the penalized potentials Eγ [·] and Eδ[·] are then defined by

Fγ(s) ≡ Eh(s) +
1
γ
Qh(s), Fδ(s) ≡ Eh(s) +

1
δ
Ph(s), (36)

respectively, for a fixed h. The discrete version of the minimization problem (11), applied to the con-
strained disk problem of Section 3.2, consists of finding an n-dimensional vector rγ ≡ {χ1, χ2, . . . , χn}
that minimizes the scalar function Fγ , given by (36.a), over all vectors s in Rn. A similar statement
is also true for the discrete version of the minimization problem (15).

The discrete minimization problems stated above are solved iteratively using a standard uncon-
strained second-order minimization method with a line search technique. The method is based on an
iterative descent algorithm described in [6]. Below, we describe briefly the algorithm for the minimiza-
tion problem

min
s∈Rn

Fγ(s) , (37)

where Fγ is given by (36.a) together with (33) and (34).
Starting from an initial guess s0 ∈ Rn, which corresponds to the undistorted natural state of the

body, and from a known direction of steepest descent d0, we generate a sequence of approximate
solutions sk, k = 0, 1, 2, . . ., denoted by {sk} ∈ Rn, using the recursive formula sk+1 = sk + αk dk ,

where αk is a scalar minimizing Fγ in a given direction of search dk. The sequence of points {sk}
converges to the solution rγ ∈ Rn of the discrete minimization problem (37).

Next, we increase the penalty parameter γ and repeat the whole minimization process outlined
above. Now, however, we start the new minimization process taking for s0 the limit point rγ of the
previous minimization process. The initial direction of search d0 is the direction of steepest descent
evaluated at the new point s0. Using this procedure for a fixed h, we generate a sequence {rγ} that
converges to a limit point rh ∈ Rn as γ → 0. We use rh together with the representation (31) to
construct the function uh = (rh · g) eρ. This function is an approximation of the solution u of the
original problem (1)-(3) for a fixed h. Letting h → 0, we generate a sequence {uh} that converges to
u.

The algorithm for the minimization problem

min
s∈Rn

Fδ(s) , (38)
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where Fδ is given by (36.b) together with (33) and (35), is similar to the algorithm described above.
Here, however, we let δ → 0 in order to generate a sequence {rδ} that converges to the limit point
rh ∈ Rn.

5 Numerical results

We apply the numerical method discussed in Section 4 to solve numerically the constrained disk
problem described in Section 3.2. We have normalized all lengths by setting the radius of the disk
ρe = 1. Furthermore, in dimensionless units, the applied load on the boundary of the disk is p = 500,
and the elastic constants are c11 ≡ Eρ/(1−νρ νθ) = 105, c22 ≡ Eθ/(1−νρ νθ) = 103, c12 ≡ νρ c22 = 103,
which, in view of (20.c), yield κ = 0.1 < 1. Also, we take ε = 0.1 for the lower bound of the injectivity
constraint1. The radius of the core subregion B= where the constraint is active is calculated from (25),
yielding ρa

∼= 0.00583. In addition, we use uniform partitions of the interval (0, ρe) to simulate a case
for which the active region B= is both not empty and unknown. The most refined mesh in this work
has 4096 elements.

In Fig. 1 we show two graphs with both the exact analytical solution, given by (26) and represented
by the solid line, and the numerical solutions, obtained with the regular mesh of 4096 elements
and represented by the dash-dotted lines. The graph on the left side was obtained with the interior
penalty formulation using increasing values of γ and the graph on the right side was obtained with the
exterior penalty formulation using decreasing values of δ. We see from both graphs that the sequences
of numerical solutions converge to limit functions that can not be distinguished from the analytical
solution. Observe from the graph on the left side that the displacement field for γ = 1 is positive in
(0, ρe), even though the disk is under compression. This numerical solution has no physical meaning
and it only provides a starting point in the search procedure for the next solution in the sequence of
solutions parameterized by γ, (see Section 5).

In Fig. 2 we show curves for the base 10 logarithm of the error between the exact solution u = u eρ,
given by (26), and the numerical solution uh = (rh · g) eρ, using the regular mesh of 4096 elements.
This error is plotted against both the base 10 logarithm of the parameter γ of the interior penalty
formulation in the graph on the left side and the base 10 logarithm of the parameter 1/δ of the exterior
penalty formulation in the graph on the right side. For both formulations, the solid line represents the
energy norm of the error, which is defined by ‖u−uh‖E = F(u−uh), where F is given by either (36.a)
together with (33) and (34) for the interior penalty formulation or (36.b) together with (33) and (35)
for the exterior penalty formulation. The dash-dotted line represents the Euclidean norm of the error,
‖r − rh‖2, for both formulations, where the components of r are given by ξi = u(ρi), i = 1, 2, . . . , n.
Observe in the graph on the left side that ‖r− rh‖2 decreases monotonically with increasing values of
γ and tends to an assymptotic value as γ becomes large. A similar behavior is observed for ‖u−uh‖E ,
except that there is a point off the curve for γ = 105. For the graph on the right side, observe that
both errors are almost constant for small and large values of δ and that they decrease rapidly in an

1These geometric and material constants are used by [4] and [5] in their analytical and numerical analyses, respec-
tively, of the compressed disk problem.
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Figure 1: Radial displacement u versus radius ρ for the constrained disk problem with a fixed h.
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Figure 2: Base 10 logarithm of the error e versus base 10 logarithm of the parameter a) γ (left), b)
1/δ (right). Solid line: e ≡ ‖uh − u‖E . Dash-dotted line: e ≡ ‖r− rh‖2.

interval of intermediate values of δ. Notice a point off the curve for ‖r− rh‖2 when δ = 10−7.
In both graphs shown in Fig. 2 we see that the errors tend to assymptotic values as both γ and 1/δ

tend to infinity. In Fig. 3 we show curves for the base 10 logarithm of the Euclidean error ‖rb − rh‖2
between the best numerical solution ub ≡ rb · g, obtained with large values of either γ or 1/δ for each
discretization, and the numerical solution uh = rh · g. This error is plotted against both the base 10
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logarithm of the parameter γ in the graph on the left side and the base 10 logarithm of the parameter
1/δ in the graph on the right side.

Observing the graph on the left side of Fig. 3, we see that ‖rb − rh‖2 decreases monotonically with
increasing values of γ and that, except for the curve obtained with 256 elements, which is represented
by the plus sign, all the other curves are similar to each other. In particular, notice that all these curves
are almost straight lines for γ > 104. Performing a linear regression on the curve corresponding to 4096
elements, which is represented by the solid line, we find that the angular coefficient is approximately
equal to −0.54, which corresponds to a convergence ratio of 10−0.54 ∼= 0.292. Similar analyses can
be performed on the curves shown in the graph on the right side of Fig. 3. In this case, all but the
curve corresponding to 256 elements, are almost straight lines for 1/δ > 105. In this case, the angular
coefficient obtained from a linear regression analysis of the curve corresponding to 4096 elements is
approximately equal to −1.02, which corresponds to a convergence ratio of 10−1.02 ∼= 0.096.

We see from the exposition above that, for a sufficiently large value of n, the sequence of numerical
solutions parameterized by δ converges faster to a limit function than the sequence of numerical
solutions parameterized by γ. On the other hand, this convergence is more uniform for the sequence of
solutions parameterized by γ than it is for the sequence of solutions parameterized by δ. In particular,
notice that this last sequence yields a convergence ratio close to one for large values of δ. To see this,
we performed a linear regression analysis on the curve corresponding to 4096 elements for 1/δ < 10
and found that the angular coefficient is approximately equal to −0.01.
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Figure 3: Base 10 logarithm of the Euclidean error e = ‖rb − rh‖2 versus base 10 logarithm of the
parameter a) γ (left), b) 1/δ (right).

2Consider the ratio between two consecutive values of a sequence of real numbers. If this ratio tends to a constant
value as the number of terms in the sequence tends to infinity, then the ratio is called the convergence ratio of the
sequence.
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Next, we chose the largest value of either γ or 1/δ for each discretization and obtained curves for both
the exact analytical solution, given by (26), and the corresponding numerical solution. These curves are
shown in Fig. 4. The analytical solution is represented by the solid line and the numerical solutions are
represented by the dash-dotted lines. The graph shown in the figure is identical to the graph obtained
with either the interior penalty formulation with a fixed large γ or the exterior penalty formulation
with a fixed small δ. Observe that the numerical solution converges to the analytical solution as
h ≡ ρe/n → 0, where n is the number of elements. In addition, a numerical solution obtained from a
coarse mesh, with only 64 elements, is already a good approximation for the exact solution in both
cases, even though the distance of the nearest node to the origin, given by ρ1 ≡ h = 0.015625 for a
regular mesh, is greater than the radius of B=, given by ρa

∼= 0.00583.
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Figure 4: Radial displacement u versus radius ρ for the constrained disk problem for either large γ or
small δ.

In Fig. 5 we show curves for the base 2 logarithm of the error between the exact solution u = u eρ,
given by (26), and the numerical solution uh = (rh · g) eρ versus the base 2 logarithm of the number
of elements n. The solid line represents the energy norm of the error, ‖u − uh‖E , and the dash-
dotted line represents the Euclidean norm of the error, ‖r − rh‖2, where we recall from above that
the components of r are given by ξi = u(ρi), i = 1, 2, . . . , n. Results for the interior and exterior
formulations are shown in the left and right graphs, respectively. Observe that the graphs are very
similar to each other. In both cases the error decreases with the increasing number of elements up
to 128 elements, which corresponds to the distance ρ1 = 0.00781, then increases and reaches a peak
for n = 256, which corresponds to ρ1 = 0.00391, decreasing thereafter. These two values of ρ1 are,
respectively, above and below the value of ρa

∼= 0.00583.
Notice from Fig. 5 that all curves are almost straight lines for n ≥ 1024 elements. Performing

a linear regression on these curves, we found that, for both formulations, the angular coefficient is
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Figure 5: Base 2 logarithm of the error e versus base 2 logarithm of the number of elements n. Left:
Interior penalty formulation with large γ. Right: Exterior penalty formulation with small δ. Solid line:
e ≡ ‖uh − u‖E . Dash-dotted line: e ≡ ‖uh − u‖2.

approximately equal to −0.8 for the energy norm of the error and to −1.6 for the Euclidean norm
of the error. These values correspond to convergence ratios of 2−0.8 ∼= 0.57 and of 2−1.6 ∼= 0.34,
respectively.

6 Conclusion

We presented a comparative study between an interior and an exterior penalty formulation for a class
of constrained minimization problems considered by [4]. A constrained problem in this class consists
of finding a minimizer u for the total potential energy E of classical linear theory of elasticity over a
set Aε of admissible displacement fields that satisfy the local injectivity constraint det(1+∇u)−ε ≥ 0
for a sufficiently small ε ∈ R.

In Section 5 we showed numerical results that are in very good agreement with analytical results
presented in Section 3.2. In addition, we showed some convergence results which indicate that, for a
fixed characteristic length h of the finite element mesh, the sequence of numerical solutions obtained
with the exterior penalty formulation converges faster to a limit function than the sequence of numer-
ical solutions obtained with the interior penalty formulation. The results also indicate that this limit
function is the same for both formulations. We then constructed a sequence of limit functions uh and
observed that the convergence ratio for this sequence is the same for either one of the formulations,
even though the convergence ratio obtained with the energy norm of the error is significantly different
from the Euclidean norm of the error.
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