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Abstract

In this article a numerical solution for a 3D isotropic and viscoelastic half-space subjected to a rectangular
tangential surface stress loading of constant amplitude is synthesized with the aid of the Radon and the
Fourier integral transforms. The analysis is performed in the frequency domain, leading to a stationary solution.
Viscoelastic effects are incorporated by means of the elastic-viscoelastic correspondence principle. The solution
strategy makes use of the integral transform between the original spatial variables and the two-dimensional
Radon transform. The equations of motion are analytically transformed to the Radon variables domain,
resulting in a system of ordinary differential equations. The system of equations in the transformed Radon
domain are solved for the given stress boundary conditions by means of the Fourier integral transform. The
inverse Radon transform is performed analytically with respect to one of the variables and numerically with
respect to the second variable. The inverse Fourier transform is performed numerically. A set of original
solutions for the half-space under dynamic loading is reported in the article. The article also addresses the
scheme used to perform the numerical inverse transformation.
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1 Introduction

The present work reports an effort to synthesize numerical solutions for 3D dynamic problems in
unbounded domains. In another accompanying article [1] the case of a 3D viscoelastic half-space sub-
jected to vertical rectangular loadings of constant amplitude has been described. In the present article
the solution for the tangencial load is reported. These dynamic solutions for unbounded domains are
important because they incorporate, in a natural way, the so-called Sommerfeld radiation condition
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[2–4]. Domain type methods, like the Finite Element Method (FEM), require special formulations to
model the radiation condition i.e., the withdrawal of energy from the system being analyzed by means
of outgoing and non-reflected waves. These special schemes include the development of Infinite Ele-
ments [5, 6] or the implementation of the Dirichlet-to-Neumann (DtN) mapping at the outer boundary
of the domain [7, 8]. On the other hand, the Boundary Element Method (BEM) can easily incorporate
the Sommerfeld radiation condition, provided the auxiliary state used to transform the differential
equations into boundary integral equations, also fulfill the radiation condition [9–11].

The development of these auxiliary dynamic solutions has drawn the attention of many researchers
in the last three-decades. Surface displacement field of a three-dimensional viscoelastic half-space
subjected to rectangular surface loading has been determined by Gaul [12] using the double Fourier
integral transform. This non-singular displacement solution was incorporated into a superposition
scheme to describe the dynamic interaction of surface foundations interacting with the soil, modeled as
a half-space [13]. Two-dimensional half-space solutions for distributed loads using the Fourier integral
transform have also been calculated by Rajapakse [14]. 2D solutions for anisotropic half-spaces and
full-spaces with arbitrarily oriented principal directions have been reported in [15] also using the
Fourier integral transform. Applications of the solutions developed in [15] to dynamic geomechanic
problems have been reported in [16].

The In the last decade some articles reported the synthesis of full-space or half-space solutions
using the Radon transform [17]. A fundamental solution for 3D anisotropic full-space using the Radon
transform was presented by Wang and Achenbach [18]. In this article [18], the fundamental solutions
for the 3D problem are given in terms of numerical integrations to be performed over a unit sphere.
A numerical realization scheme for the full-space anisotropic solution was presented by Dravinski and
Niu [19]. The solution of the three-dimensional problem of a concentrated load moving on the half-
space surface was presented by Georgiadis and Lykotrafitis [20]. In article [20] the half-space solution
is restricted to displacement fields determined at the half-space surface.

In the present work, stationary 3D displacement and stress fields are formulated using a solution
strategy that applies both the Radon and the Fourier integral transforms [21]. The methodogy furnishes
solutions for points at the half-space surface but also for points within the domain. The solution is
validated by comparison with results computed with a procedure based on the double Fourier integral.
The article also addresses the scheme used to perform the inverse transformations numerically. A set
of original dynamic displacement solutions for points within the half-space are reported in the present
article.

2 Problem statement

The problem to be solved consists of a 3D half space submitted to a tangential rectangular distributed
load of constant amplitude with dimensions (2a x 2b) applied at the half-space free surface and
presenting harmonic time behavior, see figure 1. The medium is considered isotropic and viscoelastic.
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Figure 1: Half-space subjected to a tangential rectangular surface loading

The problem is governed by the Navier equations in the frequency domain which, in the absence of
body forces, can be expressed in terms of the displacement components U i (x, y, z, ω) (i = x, y, z)as:

µ Ūi,jj + (λ + µ) Ūj,ji = −ω2ρŪi (1)

In equation (1), µ and λ are Lamé constants, ρ is the continuum density and ω is the circular
frequency. For linear isotropic continuum the components of the stress tensor σij may be expressed
in terms of the displacement components U i

σij = µ (Ūi,j + Ūj, i) + δijλ Ūk,k (2)

In equation (2), δij is the Kroenecker delta. The tangential traction excitation σzx (x.y.z = 0, ω)
applied at the half-space surface (z = 0) is incorporated in the formulation as boundary conditions:

σzx(x, y, z = 0, ω) =

{
−1; |x| ≤ a, |y| ≤ b

0 ; |x| > a, |y| > b
(3)

σzy(x, y, z = 0, ω) = 0 (4)

σzz(x, y, z = 0, ω) = 0 (5)

Viscoelastic effects are introduced by means of the elastic-viscoelastic correspondence principle [22].
In applying this principle, the real Lamé constants µ, λ are substituted by complex valued parameters
µ∗, λ∗ containing the internal damping coefficient η(ω) in the imaginary part. In the present article
the damping coefficient is considered constant, yielding the constant hysteretic damping model [22]:

{
λ∗ = λ [1 + i η]

µ∗ = µ [1 + i η]
(6)
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3 Solution strategy

The solution strategy applied in this article is a classical one. Initially, the displacement compo-
nents of the Navier equations U i (x, y, z, ω) and the stress components at the half-space surface
σix (x, y, z = 0, ω) (i = x, y, z) undergo a rotation of magnitude θ about the z-axis, relating the
original x−y axes to the primed x′−y′ axes. The primed axis x′ is now coincident with the normal n,
see figure 2. The definition of the Radon variables (s, θ) can also be seen in figure 2. After this coor-
dinate rotation the Navier displacements (1) and the stress equations (2) may be expressed in terms
of the primed axes components U i′ (x′, y′, z = z′, ω) and σix′ (x′, y′, z = z′, ω) with (i′ = x′, y′, z′).
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Figure 2: Scheme for coordinate rotation and Radon variables

In the second step the Navier equations written in the primed coordinate system (x′, y′, z′) are
transformed to the Radon domain variables with respect to the pair (x′, y′ ↔ s, θ), see [16, 21]. This
transformation for isotropic media renders two uncoupled sets of partial differential equations in terms
of the displacements in the Radon domain Ũi′ (s, θ, z = z′, ω), with (i = x′, y′, z′).

{
µ

[
d2

ds2
+

d2

dz2

]
+ ω2ρ

}
Ũz′ + (µ + λ)

(
d2

dsdz
Ũx′ +

d2

dz2
Ũz′

)
= 0 (7)

{
µ

[
d2

ds2
+

d2

dz2

]
+ ω2ρ

}
Ũx′ + (µ + λ)

[
d2

ds2
Ũx′ +

d2

dsdz
Ũz′

]
= 0 (8)

{
µ

[
d2

ds2
+

d2

dz2

]
+ ω2ρ

}
Ũy′ = 0 (9)

The first two equations, (7) and (8), represent a two-dimensional coupled system in the Radon
domain in terms of the displacement variables Ũx′ and Ũz′ . Equation (9) in the variable Ũy′ is uncou-
pled from the two preceding ones. These two systems can be solved independently.

Solution of the two equation system. The first system, equations (7) and (8), can be solved with
the aid of the Fourier transform, as can be found in [16]. A Fourier transform between the Radon
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variable s and the Fourier variable k, is applied to these equations. The variable k represents a wave
number. The solution in terms of the doubled transformed displacement variables ˆ̃Ux′ (k, θ, z, ω) and
ˆ̃Uz′ (k, θ, z, ω) may be written as:

ˆ̃Uz′ = A · e−δα1·z + B · eδα1·z + C · e−δα2·z + D · eδα2·z (10)

ˆ̃Ux′ = ψ1A · e−δ·α1·z − ψ1B · eδ·α1·z + ψ2C · e−δ·α2·z − ψ2D · eδ·α2·z (11)

Analogously, the solutions for the surface stress components are expressed as:

ˆ̃σzz′ (k, θ, z, ω) = Γ1Ae−δα1z − Γ1Beδα1z + Γ2Ce−δα2z − Γ2Deδα2z (12)

ˆ̃σzx′ (k, θ, z, ω) = Γ3Ae−δα1z + Γ3Beδα1z + Γ4Ce−δα2z + Γ4Deδα2z (13)

In equations (10) and (11), a new variable δ, defined as δ = (ω2ρ)1/2, is introduced. The roots of
the characteristic equation, α1 and α2 are given by [21]:

α1 =

√
−c3 −

√
c2
3 − 4c1c5

2c1
; α2 =

√
−c3 +

√
c2
3 − 4c1c5

2c1
(14)

With c1, c3 and c5 being determined from the constitutive parameters λ, µ of the continuum and
from a modified wave number variable, defined as ξ = k/δ, [16, 21]:

c1 = λµ + 2µ2 (15)

c3 =
(−2ξ2λµ− 4ξ2µ2 + λ + 3µ

)
(16)

c5 =
(
ξ4λµ + 2ξ4µ2 − ξ2λ− 3ξ2µ + 1

)
(17)

The expressions for ψ1, ψ2, Γ1 to Γ4 can be found in appendix A.
Solution of the second equation. The general solution for the uncoupled equation (9) follows essen-

tially the same steps described in the previous section. The displacement and stress solution in the
y’-direction is:

ˆ̃Uy′ = Ee−β·δ·z + Feβ·δ·z (18)

ˆ̃σzy′ = −µβEe−β·δ·z + µβFeβ·δ·z (19)

with

β = ±
√

µξ2 − 1
µ

(20)

The integration constants A, B, C and D found in solutions (10) through (13) and the functions
E and F present in equations (18) and (19) are to be determined from the boundary conditions.
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4 Transformation of the boundary conditions to the Radon-Fourier domain.

In order to determine the constants present in the general solutions (10) to (13), (18) and (19) the
boundary conditions given in equations (3) to (5) must also be transformed to the primed coordinate
system, followed by a Radon transform with respect to the pair (x′, y′ ↔ s, θ) and a Fourier transform
with respect to the variables (s ↔ k) [21].

The algebraic manipulation is rather cumbersome [21] and the resulting surface stress boundary
conditions in the transformed Radon-Fourier domain ˆ̃σix′ (k, θ, z = 0, ω) may be written as:

ˆ̃σzx′ (k, θ, ω, z = 0) = ˆ̃σzx (k, θ, ω, z = 0) cos θ = − 4√
2π

sin[ξδa cos (θ)] sin[ξδb sin (θ)]
(ξδ)2 sin(θ) cos(θ)

cos θ (21)

ˆ̃σzy′ (k, θ, ω, z = 0) = −ˆ̃σzx (k, θ, ω, z = 0) sin θ = +
4√
2π

sin[ξδa cos (θ)] sin[ξδb sin (θ)]
(ξδ)2 sin(θ) cos(θ)

sin θ (22)

ˆ̃σzz′ (k, θ, ω, z = 0) = 0 (23)

Determination of the integration constants. It can be shown that to fulfill the Sommerfeld radiation
condition, the functions B, D and F from equations (10), (13), (18) and (19) must vanish: B = D =
F = 0. The values of A and C are determined by comparing the surface stress solutions (12) and (13)
with the transformed boundary conditions (23) and (21), respectively. The value of E is obtained by
applying condition (22) to equation (19). The results are:

A =
Γ2

Γ1Γ4 − Γ3Γ2

ˆ̃σzx cos θ =
−4√
2π

Γ2

Γ1Γ4 − Γ3Γ2

sin[ξδa cos θ] sin[ξδb sin θ]
(ξδ)2 sin θ cos θ

cos θ (24)

C =
−Γ1

Γ1Γ4 − Γ3Γ2

ˆ̃σzx cos θ =
4√
2π

Γ1

Γ1Γ4 − Γ3Γ2

sin[ξδa cos θ] sin[ξδb sin θ]
(ξδ)2 sin θ cos θ

cos θ (25)

E = −ˆ̃σzx
sin θ

µβ
=

4√
2π

sin[ξδa cos θ] sin[ξδb sin θ]
(ξδ)2 sin θ cos θ

sin θ

µβ
(26)

Expressions for the solutions in the original physical domain. Once the constants A, B, C, D, E

and F are known, the problem is solved in the transformed Radon-Fourier domain. The remaining
task is to transform the solutions back to the original physical domain. An inverse Fourier transform
with respect to the pair (k ↔ s) is applied to the solutions, followed by an inverse Radon transform
with respect to the variables (s, θ ↔ x′, y′). A final coordinate rotation about the z-axis will bring the
solution to the original (x, y, z, ω) domain.

The inverse Fourier and Radon transforms will produce two improper integrals over the variables k

and s, as well as a proper integration with repect to the variable θ. It can be shown that the improper
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integration with respect to the Radon variable s can be performed analytically [21]. After a long
manipulation the final solution for displacements and stresses at the original domain are given by:

Ux (x, y, z, ω) = 1
2π2

1√
2π
∗

π/2∫
−π/2

∞∫
−∞

π · sign (δξ) eiδξ(x cos θ+y sin θ)ξδ
{
cos θ

[
ψ1A · e−δ·α1·z + ψ2C · e−δ·α2·z]− sin θ

[
Ee−β·δ·z]}dξdθ

(27)

Uy (x, y, z, ω) = 1
2π2

1√
2π
∗

π/2∫
−π/2

∞∫
−∞

π · sign (δξ) eiδξ(x cos θ+y sin θ)ξδ
{
sin θ

[
ψ1A · e−δ·α1·z + ψ2C · e−δ·α2·z] + cos θ

[
Ee−β·δ·z]}dξdθ

(28)

Uz (x, y, z, ω) =
1

2π2

1√
2π

π/2∫

−π/2

∞∫

−∞
π · sign (δξ) eiδξ(x cos θ+y sin θ)ξδ

{
A · e−δ·α1·z + C · e−δ·α2·z}dξdθ

(29)

σzx (x, y, z, ω) = 1
2π2

1√
2π
∗

π/2∫
−π/2

∞∫
−∞

π · sign (δξ) eiδξ(x cos θ+y sin θ)ξδ
{
cos θ

[
Γ3Ae−δα1z + Γ4Ce−δα2z

]− sin θ
[
µβδEe−β·δ·z]}dξdθ

(30)

σzy (x, y, z, ω) = 1
2π2

1√
2π
∗

π/2∫
−π/2

∞∫
−∞

π · sign (δξ) eiδξ(x cos θ+y sin θ)ξδ
{
sin θ

[
Γ3Ae−δα1z + Γ4Ce−δα2z

]
+ cos θ

[
µβδEe−β·δ·z]}dξdθ.

(31)

σzz (x, y, z, ω) =
1

2π2

1√
2π

π/2∫

−π/2

∞∫

−∞
π · sign (δξ) eiδξ(x cos θ+y sin θ)ξδ

{
Γ1Ae−δα1z + Γ2Ce−δα2z

}
dξdθ

(32)
Expressions (27) through (32) must be evaluated numerically. There are only three components of

the stress tensor given in equations (30) to (32). The other three stress components may be obtained
from the displacement equations. It should also be clear that the values of the constants A, C and
Eare to be taken from equations (24), (25) and (26).
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5 Numerical Evaluation

Integrand behavior. All the integrands presented in equations (27) to (32) present a similar structure.
The typical integrand shows a kernel K (ξ) multiplied by oscillating functions H (ξ, θ). The kernels
K (ξ) of the elastic half-space present 3 singularities related to the compression, shear and Rayleigh
waves [23]. These singularities may be smoothed by introducing damping coefficients at the imaginary
part of the constitutive parameters µ and λ [23]. The integration strategy applied in this article can
only be used in the viscoelastic case, in which the damping factor is present, η > 0. This leads to
non-singular integrands. For the case of an elastic continua, in which η = 0, the resulting singular
integrands must be regularized. The second part of the typical integrand consists of an oscillating
term that will be named H (ξ, θ). It is to be evaluated in the range −π/2 < θ < +π/2. The oscillation
frequency of the integrand depends on the position of the field point (x, y), on the normalized wave
number ξ and on geometry of the loading area (a, b). It can be shown that for increasing values of the
wave number ξ = ξ0, the integrand H (ξ = ξ0, θ) becomes more difficult to integrate.

Integration strategy. The methodology applied to the numerical evaluation of expressions (27)
through (32) is now described. For a given circular frequency ω, for a set of constitutive parameters
ρ, µ, λ,η, for loading geometry a, b and for a given set of coordinates x, y, z the improper integration
in the range 0 < ξ < +∞ is performed. Within this integration procedure, for every value of the
normalized wave number ξ = ξ0, the oscillating part of the integrand H (ξ = ξ0, θ) is evaluated within
the range −π/2 < θ < +π/2.

For the oscillating part H (ξ = ξ0, θ), the interval −π/2 < θ < +π/2 is subdivided into a number
of sub-intervals, NI. An empiric rule can be established regarding the initial number of sub-intervals
to be used:

NI =
|δξ (x + y) |

3
(33)

The integration over these sub-intervals is performed with standard 2-points Gauss quadrature. In
the sequence, a 4-points rule is applied and convergence is verified. If the desired accuracy is not
achieved, a 6-points Gauss rule is applied. Numerical experience shows that, starting with the number
of initial sub-intervals NI given in (33) and using the 6-points Gauss rule, an accuracy of 10−5 is
usually achieved in the evaluation of the integrals, within each sub-interval. The improper integration
over ξ is accomplished in two steps. Initially, a proper integration is performed using the Gauss rule
within the range 0.0 < ξ < 1.5. Interval sub-division strategy is applied until the required accuracy
is obtained. For the remaining integration interval, 1.5 < ξ < +∞, a forward marching integration
scheme has been devised. The interval length of the forward marching procedure ∆ξ is determined
according to the empirical rule

∆ξ =
π√

x2 + y2
√

ω2ρ
(34)

Every time a new interval ∆ξ is integrated, its result is compared to the accumulated value obtained
in all previous stages. If the contribution of the last interval is smaller than a prescribed value the
integration process stops. If this criterion is not fulfilled, the integration process marches on, over a
new interval ∆ξ.
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6 Numerical results

The numerical results obtained in this work are compared to those obtained by Romanini [24] using
the double Fourier integral transform. The parameters used in the numerical examples are: a=b=1m,
ν=0.25, µ=1 N/m2, ρ=1kg/m3 and η = 0.2. A set of displacements for a frequency ω = 5rad/s are
given in figures 3 and 4. The components Uxx = Ux(σzx) and Uzx = Uz(σzx) are determined for a
line inside the half-space, running in the x direction with coordinates z = 1m, y = 0m. Figure 5
reports a displacement component Uyx = Uy(σzx) for the circular frequency ω = 2rad/s and for a
line situated at the half-space surface, running in the x-direction with coordinates y=2m and z=0m.
The results reported agree very well with those of Romanini [24]. In fact, the results obtained by the
present methodology match so well those furnished by Romanini [24], so that they cannot graphically
distinguished from each other. These perfect agreement in the numerical results allow us to think that
the present formulation and implementation is correct.
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Figure 3: Displacement component Uxx for ω = 5rad/s, y =0m , z =1m

7 Concluding remarks

Dynamic stationary displacement and stress fields for 3D viscoelastic half-spaces subjected to rectan-
gular tangential loading of constant amplitude were determined by means of the double Radon-Fourier
integral transforms. Internal damping was introduced by the elastic-viscoelastic correspondence prin-
ciple. Calculations were performed for a frequency independent damping coefficient, reproducing the
constant hysteretic damping model.

The numerical strategy used to perform numerically the inverse Fourier and Radon transforms was
addressed. Validation of the proposed scheme was attempted by comparisons with solutions obtained
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Figure 4: Displacement component Uzx for ω = 5rad/s, y =0m , z =1m
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Figure 5: Displacement component Uyx for ω = 2rad/s, y =2m , z =0m

by a double Fourier integral transform approach. Dynamic displacements fields within the half-space
were compared to results obtained by a strategy based on the double Fourier integral transform. Accu-
rate results were obtained by the proposed methodology. The mathematical structure stemming from
the double Radon-Fourier transform strategy resembles the structure of the half-space surface prob-
lems solved using the double Fourier transform. A sample of original dynamic results, for displacement
fields within the 3D half-space and at its surface, are furnished.
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Appendix A. Auxiliary equations

ψ1 =
α2

1 (λ + 2µ)− ξ2µ + 1

iξ (λ + µ) α1
(A1)

ψ2 =
α2

2 (λ + 2µ)− ξ2µ + 1

iξ (λ + µ) α2
(A2)

Γ1 = −α1 (λ + 2µ) + iξλψ1 (A3)
Γ2 = −α2 (λ + 2µ) + iξλψ2 (A4)

Γ3 = iµξ − µα1ψ1 (A5)
Γ4 = iµξ − µα2ψ2 (A6)
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