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Abstract. Several studies have investigated the properties of the workspace open chains robotics with the purpose of emphasizing 

its geometric and kinematic characteristics, and to devise analytical algorithms and procedures for its design. The workspace of a 

manipulator robot is considered of great interest from theoretical and practical viewpoint. The workspace topology is defined by the 

number of kinematic solutions, the number of cusps and nodes that appear on the workspace boundary. In the classic applications in 

the industry, manipulators need to pass through singularities of the joint space to change their posture. A 3-revolute (3R) 

manipulator can execute a non singular change of posture if and only if there is at least one point in its workspace which has exactly 

three coincident solutions of the inverse kinematic model. In this work, a mulit-objective optimization problem is formulated with the 

aim of obtaining the optimal geometric parameters of robot which must obey the topology specified by the designer. The maximum 

workspace volume, the maximum system stiffness and the optimum dexterity are considered as the multi-objective functions.  In 

addition, the optimization problem is subject to penalties that control the topology, forcing it to occupy a certain portion of the 

workspace. A sequential technique and evolutions algorithms are applied in the solution of the problem. Some applications are 

presented to show the efficiency of the proposed methodology. 
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1. INTRODUCTION 
 

In the classic applications in the industry, manipulator robots need to pass through singularities of the joint space to 

change their posture. A 3-revolute (3R) manipulator can execute a non singular change of posture if and only if there is 

at least one point in its workspace which has exactly three coincident solutions of the inverse kinematic model (IKM), 

resulting in one of the separation surface which divide the workspace in several regions that have manipulators with 

same properties (binary or quaternary, regions with the same numbers of cusps and node points). These regions are 

called domains. So, to study such manipulators is essential to know the topology of the singularity surfaces in the 

workspace. These singularities are defined as places where the determinant of the Jacobian matrix of direct kinematic 

model (DKM) is annulled, defining the others equations of surfaces which divide the workspace.   

Wenger and El Omri (1996) showed that for some choices of the parameters, manipulators with three rotational 

joints (3R) may be able to change posture without meeting a singularity in the joint space. They succeed in 

characterizing such manipulators (Wenger, 1998), but they needed general conditions on the design parameters. Corvez 

(2002) found important results about this issue. In 2004, Baili realized researches on the proprieties of 3R manipulators 

with orthogonal axes and made a classification in the parameters space. 

Oliveira et al. (2009) showed a separation surfaces formulation by using the algebraic tool Grobner basis to obtain 

an analytical expression of the surfaces of the parameters space that separate the different types of manipulators. The 

other surfaces were obtained by annulment of the determinant of Jacobian matrix of the direct kinematic model. 

In this paper, a multi-objective optimization problem is formulated with the aim of obtaining the optimal geometric 

parameters of robot which must obey the topology specified by the designer. The maximum workspace volume, the 

maximum system stiffness and the optimum dexterity (expressed with condition number of Jacobian matrix) are 

considered as multi-objective function.    

  This paper also discusses a comparative study of three different numerical techniques, i.e., sequential quadratic 

programming (SQP), genetic algorithms (GA) and differential evolution (DE). The presence of voids and singularities 

and the discontinuous generation of the envelope greatly increase the complexity of the calculation of the algebraic 

formulation for a correct mathematical model of the robot. Moreover, the objective function presents several local 

maxima and is extremely nonlinear. These factors greatly increase the difficulties involved in the optimization process, 

justifying the use of different optimization techniques to validate the results. It is known that conventional methods are 

based on a rule of point-to-point and has the danger of falling into local optima. 

The evolutionary algorithms are based on the population-to-population rule. These techniques have the advantages 

of robustness and good convergence properties. They require no knowledge or gradient information about the 

optimization problems, in this case only the objective function and corresponding fitness levels influence the directions 
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of search. The discontinuities present on the optimization problems have little effect on the overall optimization 

performance. The probabilistic transition rules are used and they perform well for large-scale optimization problems in 

the presence of local optima. In this work two evolutions algorithms are applied in the solution of the problem: Genetic 

Algorithms (GA) and Differential Evolution (DE). GA and DE have been shown efficient to solve linear and nonlinear 

problems by exploring all regions of search space and exponentially exploiting promising areas through mutation, 

crossover, and selection operations applied to individuals in the population. Therefore, they are the suitable for the 

optimization problems studied here. 

The manipulators with three rotational joints with orthogonal axes as described in Fig. 1.  The study of this type of 

manipulator is done according to the Denavit-Hartenberg parameters: d2, d3, d4, r2, and r3. To reduce the number of 

parameters, will be considered d2 = 1 and r3 = 0. The joint variables are θ1, θ2 and θ3 which represent the input angles of 

the actuators. For this type of manipulator, the direct kinematic model is given in Eq. (1): 

 

 
Figure 1. Manipulator with three rotational 

joints (3R) with orthogonal axes  
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in which  
i

c = cos
i

θ and 
i

s = sin
i

θ ,  for i = 1, 2, 3. 

 

 

 

A powerful algebraic tool is used: the Grobner basis. With this approach, it is possible to obtain analytical 

expressions of the surfaces of the parameters space that separate the different types of manipulators. The annulment of 

the determinant of Jacobian matrix of the inverse kinematic model (IKM) enables to obtain the other surfaces that 

separate the various regions for different topologies (Oliveira et al, 2009). Thus, it is possible obtain: 
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The Equation (2) is the surface of separation between the manipulators of domain 1 and domain 2. The manipulators 

that belong to domain 1 are binary, have a toroidal cavity in its workspace and do not have cusps and nodes points. The 

domain 2 represents the manipulators that have 4 points of cusp, but do not have the same number of nodes. 

The surface of separation C2  between the domains 2 and 3 is defined by: 

 

( )
2 2

2 4 3 3 3 2: /(1 ). 1C d d d d r= + + +      (3) 

 

The domain 3 is composed by manipulators which present 2 cusps points on internal envelopment. In the case of 

domain 4, the manipulators have 4 points of cusp and 4 nodes. The surface C3, which separates the manipulators of the 

domains 3 and 4, is given by: 

 

( )
2 2

3 4 3 3 3 2: /( 1). 1C d d d d r= − − + , with d3 > 1                (4) 

 

Finally, the domain 5 corresponds to manipulators that have no cusp points. Unlike of manipulators of the type 1, 

the internal envelope is not defined by a toroidal cavity, but by a region with 4 solutions in IKM. The surface of 

separation C4 between the domains 3 and 5 is: 

 

 ( )
2 2

4 4 3 3 3 2: /(1 ). 1C d d d d r= − − + , with d 3< 1             (5) 

 

Summarizing, the space of parameters (d3, d4 and r2) of a 3R orthogonal manipulator is divided into 5 domains 

separated by surfaces C1, C2, C3 and C4, defined by Eqs. (2), (3), (4) and (5), respectively. 
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The Figure 2a) shows the curves of separation in a plane section (d3, d4) of the space of parameters, resulting in 5 

domains, adopting a fixed value for r2 =1. The Figure 2b) shows the space of parameters divided according to the 

number of cusps points and nodes points. The domains according to the number of cusps points are divided into sub-

domains that contain the same number of nodes. Each sub-domain defines a topology of the workspace denoted   

WTi(α, β), where α represents the number of cusp points and β the number of nodes points. 
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Figure 2. Division of parameters space considering r2 = 1: 

(a) According to the surface of separation of topologies;  ( b) According to the number of points of cusps and nodes 
 

As explained previously, the manipulators of the domain 1 have a toroidal cavity and do not have cusps and nodes 

points. The manipulator represented in Fig. 3a) characterize the first type of manipulator, whose topology is known as 

WT1(0, 0). 

The manipulators that belong to domain 2 have 4 points of cusp. This region can be subdivided into 3 sub-domains 

through the surfaces E1  and E2. The topology of the workspace WT2(4, 2), represented by Fig. 3b), has 4 cusp points, 2 

nodes, a toroidal cavity, two regions with 4 solutions and a region with 2 solutions in IKM. The topology WT3(4, 0) 

contains manipulators with 4 cusp points, zero node, without toroidal cavity, a region with 4 solutions and other with 2 

solutions in IKM, as illustrated in Fig. 3c). The transition between the topologies WT2 and WT3 is the boundary 

between the manipulators containing a toroidal cavity in its workspace and those that do not contain. According to Baili 

(2004), the surface of separation between these topologies is given by the expression: 

 

E1 : d4 = 0.5 (A - B), where A and B are given in Eq. (2).     (6) 

 

In domain 2 is still possible to characterize the topology represented in the Fig. 4d), denoted by WT4(4, 2), 

containing 4 points of cusp and 2 nodes. These nodes are different from nodes of WT2 since not delimit a toroidal cavity 

but a region of 4 solutions in IKM. In this case, the surface of separation E2, between topology WT3 and WT4 is defined 

by: 
 

E2 : d4 = d3   (7) 

 

The domain 3 is composed by manipulators which have 2 cusp points and can be divided into 2 sub-domains 

through the surface E3. The manipulators described by WT5(2, 1) have 2 cusps points on internal envelope, a node point 

and has the shape of a fish, as shown Fig. 3e). Moreover, the Fig. 5f) presents a manipulator that belongs to the 

workspace WT6(2, 3), which has 2 points of cusp and 3 nodes. The Eq. (8) defines the separation surface between the 

topology WT5 and WT6. Besides, this surface also separates the topology of the workspace WT8 and WT9 that are 

contained in the domain 5.  

 

E3 : d4 = 0.5 (A + B) (8) 

 

In domain 4, the manipulators are of type 4, represented by WT7(4, 4), have 4 cusp points and 4 nodes, as can be 

seen in Fig. 3g). The 4 points of cusp are shared between the internal and external singularity surfaces. 

Finally, the domain 5 corresponds to manipulators that have no cusp points. Unlike of manipulators of the type 1, 

the internal envelopment is not defined by a toroidal cavity, but by a region with 4 solutions in IKM. 

The domain 5 corresponds to manipulators of type 5 and do not have cusp points. This region is divided into 2 sub-

domains through the surface E3. In the Fig. 3h), the topology represented by WT8 (0, 0) does not have cusp points and 

nor nodes. As mentioned earlier, its internal envelope is not defined by a toroidal cavity, but by a region with 4 
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solutions in IKM. Finally, Fig. 3i) features a manipulator which belongs to the topology WT9 (0, 2), with 0 cusp points 

and 2 nodes points obtained by the intersection of internal and external envelopment. 
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Figure 3. Radial section for 3R orthogonal manipulator, showing the 5 types of manipulators 
 

2. WORKSPACE OF 3R MANIPULATORS  
 

According to Bergamaschi et al (2006), the workspace W  is the set of all attainable points for a point P of the end-

effector when the joint variables sweep its definition interval entire. Point P  is usually chosen as the center of the end-

effector, or the tip of a finger, or even the end of the manipulator itself. The first procedure to investigate the workspace 

is to vary the angles θ1, θ2 and θ3 in their interval of definition and to estimate the coordinates of point P with respect to 

the manipulator base frame. The workspace of this robot is a solid of revolution. Thus, it is natural to imagine that the 

workspace is the result of rotation around the z axis of a radial plane section. 

 

 
 

Figure 4. (a) A scheme for evaluating the workspace volume of 3R manipulators;  (b) Discretization of cross section 

area by using a rectangular mesh 

 

The workspace of a three-revolute open chain manipulator can be given in the form of the radial reach r and axial 

reach z with respect to the base frame, according to Bergamaschi et al. (2006). For this representation, r is the radial 

distance of a generic workspace point from the z-axis, and z is the distance of this same point  at  the  XY-plane  (see 

Fig. 4b). Thus, using Eq. (1), the parametric equations (of parameters θ2 and θ3) of the geometrical locus described by 
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point P on a radial plane are: 

 

r
2
=x

2 
+ y

2   
and   z, where  x, y and  z are given in (1).  (9) 

 

The workspace volume V can be evaluated by the Pappus-Guldin Theorem,  using  the  following  equation  (see 

Fig. 4a): 

 

V = 2πrg Ar, where Ar  is the cross section area, which is formed by the family of curves given by Eq. (1).  (10) 

 

This research proposes numerical formulation to approximate the cross section area, through its discretization within 

a rectangular mesh. Initially, the extreme values of vectors r and z should be obtained as:    

 
rmin = min {r},   rmax = max{r},   zmin = min {z}   and   zmax = max{z}      (11) 

 
Adopting nr and nz as the number of intervals chosen for the discretization along the r and z axis, the sizes of the 

elementary areas of the mesh can be calculated: 

 

max min
( ) /

r
r r r n∆ = −    and   

max min
( ) /

z
z z z n∆ = −   (12) 

 

The nr and nz values must be adopted so that the sizes of the elementary areas (∆r or ∆z) are at least 1% of the total 

distances considered in the discretization (rmax - rmin  or  zmax - zmin ). Every point of the family of curves form the cross 

section of the workspace is calculated by Eq. (9).  Using this equation, varying the values of θ2 and θ3 in  the  interval  

[–π , π], it is possible to obtain the family of curves of the workspace.  Given a certain point (r, z), its position inside the 

discretization mesh is determined through the following index control: 

 

minint [( ) / ] 1i r r r= − ∆ +    and  
minint [( ) / ] 1j z z z= − ∆ +   (13) 

  
where i and j are computed as integer numbers. As shown in Fig. 5b), the point of the mesh that belongs to the 

workspace is identified by Pij = 1, otherwise Pij = 0, which means: 

 

 0, i f ( ) 1, f ( )
ij ij ij

P P W P or i P W P= ∉ ∈   ; where W(P) indicates workspace region.    (14) 

 

In this way, the total area is obtained by the sum of every elementary areas of the mesh that are totally or partially 

contained in the cross section. In Eq. (14), it is observed that only the points that belong to the workspace contribute to 

the calculation of the area AT. The coordinate rg of the center of the mass is calculated considering the sum of the center 

of the mass of each elementary area, divided by the total area, using the following equation: 

   

 ( )∑∑
= =

∆∆=

max max

1 1

i

i

j

j

ijT zrPA      and      
( )( )

max max

min

1 1

( 1) ( / 2) /
i j

g ij T

i j

r P r z i r r r A
= =

 
= ∆ ∆ − ∆ + ∆ + 
 
∑∑  (15) 

 
Finally, after the calculation of the cross section area and the coordinate of the center of the mass, given by Eqs. (14) 

and (15), respectively, the workspace volume of the manipulator can be evaluated by using Eq. (10).  

 

3. SYSTEM STIFFNESS  

 

From the viewpoint of mechanics, the stiffness is the measurement of the ability of a body or structure to resist 

deformation due to the action of external forces. The stiffness of a serial mechanism at a given point of its workspace 

can be characterized by its stiffness matrix. This matrix relates the forces and torques applied at the gripper link in 

Cartesian space to the corresponding linear and angular Cartesian displacements. 

Two main methods have been used to establish mechanism stiffness models. The first one is called matrix structural 

analysis, which models structures as a combination of elements and nodes. The second method relies on the calculation 

of the serial mechanism's Jacobian matrix which is adopted in this work.  

Matrix J is usually termed Jacobian matrix which is described in Eq. (16). By considering the case in that d2=1, its 

determinant is calculated by using the Eq. (17).  
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J d r d d

d d d d

θ θ θ θ

θ θ θ θ
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( ) ( )( )4 3 4 3 2 3 3 3 3 3 2 3 2det( ) cos sin sin sin cos cosJ d d d d d d rθ θ θ θ θ θ = + + + −          (17) 

 

The stiffness matrix of the mechanism in the Cartesian space is then given by the Eq. (18), where Kj is the joint 

stiffness matrix of the mechanism, with Kj=[k1, k2, k3]. In this case, each actuators of the mechanism is modeled as an 

elastic component. ki is a scalar representing the joint stiffness of each actuator, which is modeled as linear spring: 
 

[ ] [ ]T

C jK J K J=               (18) 

 

Particularly, in the case for which all the actuators have the same stiffness, i.e., k=k1=k2=k3, then Eq. (18) will be 

reduced to:  
 

[ ] [ ]T

CK k J J=                (19) 

 

Furthermore, the diagonal elements of the stiffness matrix are used as the system stiffness value. These elements 

represent the pure stiffness in each direction, and they reflect the rigidity of machine tools more clearly and directly. 

The objective function for system stiffness optimization can be written as Eq. (20). In this case, the stiffness index S can   

be maximized: 
 

11 22 33S K K K= + +                          (20) 

 

4. DEXTERITY  
 

The condition number of the Jacobian matrix will be used as a measure of dexterity indices for the 3R manipulator. 

By using the spectral norm, these indices will be described as. 
 

max min( ) | ( ) / ( ) |Cond J J Jλ λ=            (21) 

 

where λmax and λmin means the maximum and minimum singular values of Jacobian matrix J, respectively. Regarding the 

computing time of optimization process, this expression is selected as the objective function for the optimization of 

dexterity. The value of Cond(J) , which is directly related to singular values of Jacobian matrix, is between 1 and 

positive infinity. All the singular values of the Jacobian matrix will be the same and the manipulator is isotropic if 

Cond(J) is equal to 1. While Cond(J) is prone to be  positive infinity it means  that the Jacobian matrix is singular. 

Therefore, for the optimization of dexterity, the condition number must to be minimized. 

 

5. NUMERICAL SIMULATIONS 
 

The optimization problem is formulated with the objective of obtaining the optimal geometric parameters of the 3R 

manipulator to maximize the workspace and the system stiffness and to optimize the dexterity such as the topologies 

specified by the designer are obeyed. Since the problem have several objectives, it deals with a multi-objective 

optimization problem, it is required to find all possible tradeoffs among multiple objective functions that are usually 

conflicting with each other. The constraints depend on the topology chosen for the robot, according to Fig. 3. In this 

work, the optimization is investigated using a Sequential Quadratic Programming (SQP), the Differential Evolution 

(DE) and Genetic Algorithms (AG).  

The evolutionary algorithms were developed for unconstrained problems. So, in the case of constrained optimization 

problems, it is necessary to introduce modifications in this method. This work uses the concept of Penalty Function 

(Nocedal and Wright, 2000). In this technique, the problems with constrains are transformed in unconstrained problems 

adding a penalty function P(x) to the original objective function to limit constraint violations. This new objective 

function is penalized, according to a factor rp, every time that meets an active constraint. The scalar rp is a multiplier 

that quantifies the magnitude of the penalty. For the efficiency of the evolutionary method, a large value of the penalty 

factor rp should be used to ensure near satisfaction of all constraints, in this research, was adopted rp=1000. Then, the 

problem can be rewrite as follows: 

 

Maximize  F(x) = f(x) + rp P(x),  where f(x) = [V, Cond(J), S] and P(x) = max (0, gj(x) )
2
 (22) 

Subject to:    gj(x) ≤ 0; j=1,..,k   and  x
l 
≤  xi  ≤  x

u
 , i=1, 2, 3 
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The geometric parameters are design variables given by x = (d3, d4, r2)
T
. The lower and upper bounds adopted for the 

arm length (side constraints) are: 0.1 ≤ xi ≤ 3.0,  i = 1,2,3. 

In this simulation, two methods of multi-objective optimization are utilized: Weighting Objectives Method and 

Global Criterion Method (L2r-metric and L3r-metric) presented on Oliveira and  Saramago (2010). 

The weighted sum strategy converts the multi-objective problem vector f(x) into a scalar optimization problem by 

building a weighted sum of all the objectives as Eq. (23). The weighting coefficients wi represent the relative 

importance of each criterion. Thus, 

 

Maximize 1 1 2 2 3 3( ) ( ) ( )pF x w Vc w Cond J c w Sc r P x= − + − , where 
3

1
1ii

w
=

=∑                   (23) 

 

where the workspace volume V is given by Eq. (10), the stiffness S  is calculated using the Eq. (20) and the condition 

number Cond(J) is represented in the Eq. (21).   

Objective weighting is obviously the most usual substitute model for vector optimization problems. The trouble here 

is attaching weighting coefficients to each of the objectives. The weighting coefficients do not necessarily correspond 

directly to the relative importance of the objectives or allow trade-offs between the objectives to be expressed. For the 

numerical methods for seeking the optimum of  (23) so that wi can reflect closely the importance of objectives, all the 

functions should be expressed in units of approximately the same numerical values. The best results are usually 

obtained if ci = 1/fi
o
, where fi

o
 represents the ideal solution, that indicates the minimum value of each i-th function. To 

determine this solution, one must find the minimum attainable for all the objective functions separately. In this case, the 

vector f
o
 = [Vid,, Sid , Cond(J)id]

T
 is ideal for a multi-objective optimization problem. 

In Global Criterion Method, the multi-objective optimization problem is transformed into a scalar optimization 

problem by using a global criterion. The function that describes this global criterion must be defined such as a possible 

solution close to the ideal solution is found. In this case, the L2r-metric and L3r-metric, are given respectively by: 

 

Minimize 

1
22 2 2

( ) ( )
( ) ( )

( )

id id id

p

id id id

V V Cond J Cond J S S
F x r P x

V Cond J S

      − − −
 = + + +            

 (24) 

Minimize 

1
33 3 3

( ) ( )
( ) ( )

( )

id id id

p

id id id

V V Cond J Cond J S S
F x r P x

V Cond J S

 
− − −

 = + + +

 
 

 (25) 

 

The computational code of the DE was developed in MATLAB
®
 by the authors. The parameters used were: number 

of population individuals Np = 15; 100 generations, representation of individuals by real vectors using multiplier of the 

difference vector F = 0.8 and crossover probability CR = 0.5. 

The Genetic Algorithms Optimization Toolbox (GAOT) program developed by Houck et al. (1985) has been used to 

perform the GA, adopting Np = 80 individuals, 100 generations, crossover and mutation probabilities: 0.60 and 0.02. 

The Sequential Quadratic Programming (SQP) it was performed by using the toolbox fmincon of the MATLAB
®
. 

 

5.1 Example 1 - WT1(0, 0) 

 

In Example 1 is considered an application where the manipulator must belong to the topology WT1 (see Fig. 3). In 

this case, the following constraints are adopted: 

 

Side limits: 0.1 < d3 < 3.0;  0.1 < d4 < 3.0  e  0.1 < r2 < 3.0  [u.l.] and    (26) 

Points below the curve C1, given by Eq. (2). 

 
The ideal solution calculated using DE is: Vid =315.298 [u.v.];  Cond(J)id =1.517 and Sid =27.009 [u.s.].  
 It is worth noting that when SQP is applied the optimum depends on the initial estimate provided by the user. Thus, 

tests were performed for different initial values resulting in different answers. This behavior clearly indicates the 
presence of several local minima. Several starting points were tested: the upper and lower limits of the search space, the 
midpoint of the range and the optimal solution obtained by DE. In the results presented in the Tab. 1 to Tab 4 the 
starting points are the solution obtained by DE. 

The optimal results obtained through the optimization procedure Weighting Objectives Method,  Eq. (23), are 

showed in Tab. 1.  Observing this table one can be noted that the best solution depends on interest of the designer 

because each objective function is conflicting with other. In this example, when was adopted the weighting coefficients 

equal to 0.8 for the volume (w1) or for the stiffness (w3) it is obtained similar results. This is due to the fact that both are  

maximized and presented the similar behavior. But given the weighting coefficients equal to 0.8 for the condition 

number (w2) it is observed that was obtained a different result and the dexterity was significantly improved.  The results 
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indicate that this problem is very sensitive to the dexterity value. When this function is prioritized, the optimal volume 

and stiffness are strongly modified. 

Table 2 shows the optimal results obtained by using the Global Criterion Method, Eqs. (24) and (25). In this 

technique the idea is to minimize the relative error of functions in relation to ideal values. The solutions obtained 

represent a compromise between the three objective functions. Note that the optimal is similar to the values obtained 

with previous method when w1 = 0.8 or w3= 0.8 were chosen.   

 

Table 1. Optimal results obtained with the Weighting Objectives Method for Example 1. 

 

Weighting 

coefficients wi 
Technique 

d3       d4       r2 

(u.l.) 

Volume 

(u.v.) 
Cond(J) 

Stiffness 

(u.s) 

Time 

(min) 

w1=0.33 

w2=0.33 

w3=0.33 

DE 0.39   0.39  0.10 12.26 1.523 3.91 32.00 

GA 0.38   0.38  0.10 11.84 1.519 3.83 91.59 

SQP 0.37  0.37   0.10 11.28 1.527 3.73 1.07 

w1=0.80 

w2=0.10 

w3=0.10 

DE 0.96   0.76  0.10 60.19 2.104 10.91 31.55 

GA 0.98   0.72  0.10 58.13 2.023 10.65 81.34 

SQP 0.97   0.73  0.10 58.99 2.057 10.77 7.00 

w1=0.10 

w2=0.80 

w3=0.10 

DE 0.38   0.38  0.10 11.79 1.518 3.82 33.49 

GA 0.37   0.37  0.10 11.07 1.523 3.69 74.95 

SQP 0.38   0.38  0.10 11.78 1.519 3.82 4.10 

w1=0.10 

w2=0.10 

w3=0.80 

DE 0.95  0.77  0.10 60.42 2.119 10.94 33.13 

GA 0.96   0.76  0.10 60.01 2.097 10.89 70.01 

SQP 0.95   0.77  0.10 60.43 2.120 10.94 0.91 

 

Table 2. Optimal results obtained with the Global Criterion Method for Example 1. 

 

 Technique 
d3       d4       r2 

(u.l.) 

Volume 

(u.v.) 
Cond(J) 

Stiffness 

(u.s) 

Time 

(min) 

L2r-metric  

DE 0.98   0.70   0.10   57.43 2.003 10.57 41.72 

GA 0.94   0.68   0.20 53.53 2.004 9.91 84.44 

SQP 0.98  0.71   0.10        57.44 2.004 10.57 3.41 

L3r-metric 

DE 0.96   0.75   0.10 59.54 2.076 10.83 41.52 

GA 0.98   0.71   0.11 57.81 2.016 10.58 81.45 

SQP 0.97   0.74   0.10 59.27 2.068 10.80 1.22 

 

Observing the Tab. 1 and Tab. 2 it appears that the sequential and random techniques obtained similar values, 

differing only in the computational cost. In the case of SQP, the results were good because the initial estimate is the 

optimal obtained by DE. Using sequential programming, the computational cost was significantly small, but this 

technique has some limitations, for example: if the model is multimodal, it can "get stuck" in some local solutions; it 

only handles real variables; the objective function and the constraints must both be continuous. 

Considering the L2r-metric, the optimal point obtained by Differential Evolution is marked in Fig. 5a). The optimal 

cross section area of the workspace is presented in Fig. 5b). Comparing the radial section of Fig. 5b) to Fig. 3a), one can 

observe that the project parameters result in a manipulator with a bigger volume (the void of the workspace was 

reduced). The optimal manipulator belonging to the topology WT1 (d2 = 1, r3 = 0) is represented in Fig. 5c). 
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(a) Parameters space with d2 = 1, r3 = 0 (b) Cross section area of the workspace (c)  Scheme for 3R Robot  

Figure 5. The optimum design of a 3R Robot, considering the L2r-metric by Differential Evolution – Example 1 
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5.2 Example 2 – WT3(4, 0) 

 

Now, considering that designer desires a manipulator that belongs to the topology WT3, the following constraints are 

adopted:   

 

Side limits: 0.1 < d3 < 3.0;  0.1 < d4 < 3.0  e  0.1 < r2 < 3.0  [u.l.];  (27) 

Points above the curve E1, given by Eq. (6) and  Points below the curve E2, given by Eq. (7). 

 

The ideal solution calculated using DE is: Vid =1896.784 [u.v.]; Cond(J)id =1.317 and Sid =94.000 [u.s.].  For this 

case, the optimal results obtained through the optimization procedure Weighting Objectives Method are showed  in  

Tab. 3.  The Tab. 4 shows the results obtained by using Global Criterion Method. As observed in Example 1, the best 

solution depends on interest of the designer.   

 

Table 3. Optimal results obtained with the Weighting Objectives Method for Example 2. 

 

Weighting 

coefficients wi 
Technique 

d3       d4       r2 

(u.l.) 

Volume 

(u.v.) 
Cond(J) 

Stiffness 

(u.s) 

Time 

(min) 

w1=0.33 

w2=0.33 

w3=0.33 

DE 3.00   3.00  3.00 1896.80 2.023 94.00 6.61 

GA 3.00   3.00  3.00 1896.80 2.023 94.00 70.65 

SQP 3.00   3.00  3.00 1896.80 2.023 94.00 0.46 

w1=0.80 

w2=0.10 

w3=0.10 

DE 3.00   3.00  3.00 1896.80 2.023 94.00 54.37 

GA 3.00   3.00  3.00 1896.80 2.023 94.00 73.89 

SQP 3.00   3.00  3.00 1896.80 2.023 94.00 0.43 

w1=0.10 

w2=0.80 

w3=0.10 

DE 3.00   1.72  3.00 1008.50 1.317 57.90 15.72 

GA 3.00   1.72  3.00 1008.50 1.317 57.89 80.15 

SQP 3.00   1.72  3.00 1008.10 1.317 57.88 1.66 

w1=0.10 

w2=0.10 

w3=0.80 

DE 3.00   3.00  3.00 1896.80 2.023 94.00 67.21 

GA 3.00   3.00  3.00 1896.80 2.023 94.00 68.67 

SQP 3.00   3.00  3.00 1896.80 2.023 94.00 0.43 
 

Considering the L2r-metric, the optimal point obtained by Differential Evolution is marked in Fig. 6a). The scheme 

of the optimal manipulator belonging to the topology WT3 is illustrated in Fig. 6b). 

 

Table 4. Optimal results obtained with the Global Criterion Method for Example 2. 

 

 Technique 
d3       d4       r2 

(u.l.) 

Volume 

(u.v.) 
Cond(J) 

Stiffness 

(u.s) 

Time 

(min) 

L2r-metric  

DE 3.00   2.61  3.00 1596.47 1.865 81.89 19.20 

GA 3.00   2.61  3.00 1596.50 1.865 81.89 90.69 

SQP 3.00   2.61  3.00 1596.50 1.865 81.89 2.38 

L3r-metric 

DE 3.00   2.42  3.00 1458.42 1.810 76.46 21.34 

GA 3.00   2.42  3.00 1458.50 1.810 76.46 86.12 

SQP 3.00   2.42  3.00 1458.50 1.810 76.46 7.51 
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(a)Parameters space with d2=1, 

r3=0 

(b) Cross section area of the 

workspace 
(c)  Scheme for 3R Robot  

Figure 6. The optimum design of a 3R Robot, considering the L2r-metric by Differential Evolution – Example 2 
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The optimal cross section area of the workspace is presented in Fig. 6b). Comparing the radial section of Fig. 6b) to 

Fig. 3c), one can observe that the workspace is increased. Furthermore, the manipulators of this type of topology remain 

with  4 cusp points, a region with 4 solutions and other with 2 solutions in IKM.  

Is important to note that the applied methodologies were effective to obtain an optimum which obeys the topology 

constraints. 

 

5.3 Input and Output Window Program  

 

A input data window and a output optimal results window was developed to facilitate the use of computational code, 

as shown in Fig. 7a) and 7b), respectively.  

In the input window the designer can choose the multi-objective optimization method, the type of topology and 

define the side constraints. In the output window can be seen the volume, stiffness and dexterity optimal values. 

Moreover, it presents the optimal dimensions and the cross section area of the workspace. 

 

  
(a) 

 
(b) 

 

Figure 7.  (a) Input data window;    (b) Output optimal results window for the topology WT5(2,1), Fig.3(e) 
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6. CONCLUSIONS 

 

In this work, a suitable formulation of the optimal design of manipulators with three orthogonal rotational joints was 

used. The aim is to obtain the optimal dimensions of the manipulators so that the maximum volume of the workspace, 

the maximum stiffness of the mechanism and the optimization of dexterity are considered simultaneously. 

In addition, were imposed constraints according to the type of workspace topology by using appropriate equations 

written according to the separation surfaces of different domains. The solutions were obtained by means of two 

evolutionary techniques and one sequential. 

The authors developed a computational code in MATLAB®, easy to be used by the designer, allowing the optimum 

design of manipulations can be calculated considering the most appropriate topology for the tasks.  

The main contributions of this work were: to verify that the dexterity has a great influence on the optimal 

dimensions of the manipulators;  enable the designer to choose one type of topology to obtain the best design that 

matches the desired application. 

In the future work other examples with different topology constraints will be studied and the general case for the 3R 

manipulator, adopting the parameter r3 ≠ 0, will be considered. 

 

7. ACKNOWLEDGEMENTS 

 

The authors acknowledge the Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) by the 

financial support. 

 

8. REFERENCES 
 

Baili, M. and Wenger Ph., Chablat D., 2004, “Analise et Classification de Manipulateur 3R  à axes Orthogonaux”, 

Thèse de Doctorat - University of Nantes, France. 

Bergamaschi, P.R., Nogueira, A.C. and Saramago, S.F.P., 2006, “Design and optimization of 3R manipulators using 

the workspace features”, Applied Mathematics and Computation, Elsevier, Vol. 172. No.1., pp. 439-463. 

Corvez, S. and Rouillier, F., 2002, “Using computer algebra tools to classify serial manipulators”, Proceeding 

Fourth International Workshop on Automated Deduction in Geometry, Lins. 

Houck, C.R.; Joinez, J.A. and Kay, M.G., 1985, “A Genetic Algorithms for Function Optimization: a Matlab 

Implementation. NCSO-IE Technical Report”,  University of North Caroline, USA. 

Oliveira, G.T.S., Nogueira, A.C., Saramago, S.F.P., 2009, “Use of the Grobner Basis in the Study of Manipulators 

Topology”, Proceedings of the 20th International Congress of Mechanical Engineering, Gramado, 20th COBEM, 2009. 

v.1. Brazil. 

Oliveira, L.S. and  Saramago, S.F.P., 2010, “Multiobjective Optimization Techniques Applied to Engineering 

Problems”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol.XXXII, pp.94 - 104, 2010. 

Nocedal, J., Wright, S.J., 2000, “Numerical Optimization”, Springer Series in Operations Research. 

 

9. RESPONSIBILITY NOTICE 
 

The authors are the only responsible for the printed material included in this paper. 

 

 

 

 

ABCM Symposium Series in Mechatronics - Vol. 5 
Copyright © 2012 by ABCM

Section VII - Robotics 
Page 1248




