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Abstract. In this work we report the study of a copper capacitive MEMS (Micro-Electro-Mechanical Systems) as a sensor to 

analyze the quality of automotive fuel such as hydrated ethanol and gasoline used in Brazil. Fuel adulteration is a frequent problem 

in some countries, including Brazil. The standard Brazilian gasoline ranges from 20 to 25% of dehydrated ethanol in its 

composition to improve octane rating of the fuel. The most common adulteration for gasoline is the ethanol over-rated 

concentration. Ethanol fuel has been used in large scale with small amount of water (6.2 to 7.4% m/m) as an alternative to gasoline. 

In this case, the typical adulteration is over-rated water, usually non-distilled water that causes many problems to the engine. The 

proposed microsensor has interdigitated electrodes format and its capacitance changes when it is submerged in different dielectric 

fluids making it capable of detecting adulterated fuel. Printed circuit boards covered with copper were used as the base material, 

and the electrodes were obtained by etching the copper layer. The gap between sensors electrodes has dimensions around 100µm. 

Another interdigitated MEMS sensor with Nickel electrodes was also been used in the measurements for comparisson. Three 

different prepared fuel mixtures were measured by the microsensor with temperatures ranging from 5°C up to 25°C. To improve the 

data analysis, an artificial intelligence algorithm, called AdaBoost, that is famous for its flexibility and simple implementation, was  

employed. The data obtained from the sensors was used to calibrate the AdaBoost algorithm which was applied to classify unknown 

fuel mixtures. The system showed good performance in the detection of adulterated and non-adulterated ethanol fuel samples in 

relation to distillation or water addition, with sensitivity of the order of 1% in the values of alcoholic concentration. The results 

show that the use of artificial intelligence combined with sensors was accurate and efficient for the analysis of ethanol fuel. The 

method can also be applied to Brazilian type C gasoline. 

 

Keywords: MEMS, Fabrication process, AdaBoost, Fuel adulteration, Fuel sensor.  

 

1. INTRODUCTION 
 

Ethanol fuel started to be used in Brazil in the 1970s, when the Brazilian government encouraged the reduction of 

the gasoline consumption due to the global oil crises. At the time, the vehicles adapted to utilize ethanol could not use 

gasoline and the consumers were not confident about the stability of ethanol supply. Consumer confidence improved 

when the flex fuel vehicles arrived in Brazil in the beginning of the 2000’s. Nowadays, the majority of automobiles sold 

in the country have this option (it can use ethanol or gasoline). 

The ethanol that replaces the gasoline is called AEHC (Portuguese acronym that means hydrated alcohol fuel). It 

must have alcoholic content between 92.6 and 93.8º INPM as regulated by ANP (Agência Nacional do Petróleo, Gás 

Natural e Biocombustíveis - the Brazilian agency that regulates fuels). 

Another type of ethanol fuel used in Brazil is the AEAC (Portuguese acronym to dehydrated ethanol). The 

production of this fuel needs one more distillation process in order to obtain alcoholic content of 99.3º INPM. This high 

alcoholic content is necessary because this ethanol is added to all gasoline consumed in the country. The addition of 

AEAC reduces the gasoline consumption, works as oxidant, increases the octane number and reduces emission of 

carbon monoxide and non-burned hydrocarbons (Lee et. al., 2007). The content of ethanol in gasoline varies from 20% 

to 25%. It depends on the seasonal availability of ethanol in the market. 

Today, the consumption of both types of ethanol is high in Brazil and the fuel became more susceptible to fraud as 

it already happened with gasoline (Dias et al, 2007). 

One of the most common ways of adulterating ethanol fuel is to add water. AEAC is only taxed after it is mixed 

with gasoline and because of that, the transgressors buy AEAC without paying taxes and put water in it to sell as 

AEHC. This irregular mixture causes damage to the car engine and other parts because the water is not distilled. 

Another commonly practiced fraud is the addiction of water in AEHC in order to increases its volume.  It reduces the 

alcoholic content and can causes damage to the vehicle too. 
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The concern about fuel adulteration in an environment where flex fuel vehicles are common shows the necessity of 

the development of fuel sensors. Fuel sensors are already aim of study of several researchers. Some of these sensors are 

based on impedance measurement method (Rocha and Simões-Moreira, 2005; Santos, 2003), others use optical fiber 

(Falate, 2003a, 2005b; Roy, 1999). Others are base on photothermic effect (Lima et. al., 2004). And also there are 

sensors of electrochemical cell type (Paixão et. al., 2007). Hoffman et. al. (1996a, 1997b) proposed a sensor with 

interdigitated electrodes that among other liquids can analyze gasoline-methanol mixtures. 

In this work the authors propose a new sensor of reduced dimensions made on a substrate. Two types of sensors 

were fabricated and characterized. One type of sensors was fabricated on printed circuit board, PCB, substrate and has 

copper electrodes. Another type, used for comparison, was fabricated on alumina substrate and has nickel electrodes 

(Mendonça et. al., 2010). The reduced dimensions of the sensor award some advantages to it over other sensor that have 

the same objective. The proposed sensor is portable, light, and low energy consumption. Furthermore, this type of 

sensor allows for automation of the analysis by using an integrated circuit. 

The main sensor function is to analyze the fuel sample and indicate if the fuel is conform or non-conform according 

to ANP. In order to improve the calibration of the sensor the obtained data were analyzed using techniques of machine 

learning. Pattern recognition algorithms became popular due to accuracy and speed. The algorithm used in this work 

was AdaBoost (Adaptive Boosting). There is a brief description of how this algorithm works in section 3. 

The set of proposed sensor and the proposed computational method present good potential to be used in vehicles and 

gas stations pumps in order to evaluate the fuel quality in real-time. 

2. PROPOSED SENSOR 

The proposed microsensor is a capacitive with the form of interdigitated copper electrodes and works immerse in 

the fuel. Once the fuel fill space between the electrodes, it works as the capacitor dielectric. The electric field lines 

travel from one electrode to another through the fuel, than the relative permittivity of the fuel influences the capacitance 

of the sensor. Therefore, if a fuel is a mixture of two different compounds, different contents of the compounds result in 

different capacitances. 

Ethanol has relative dielectric constant of 24 while the relative dielectric constant of water is 79 (Weast et al, 1985). 

The sensor has a characteristic capacitance value for regular hydrated ethanol (AEHC). When ethanol is adultered with 

water its relative dielectric constant changes and the capacitance measured by the sensor changes as well. 

In order to measure the capacitance it is used an electronic circuit with a square wave generator, a counter IC, 

resistors and a microcontroller to collect and send the data to a microcomputer. The period of the wave is proportional 

to capacitance that is proportional to water content in ethanol. 

3. ADABOOST 
    

3.1. Principle 

Researches on Artificial Intelligence and its techniques have been resulted in great advances in many technologic 

fields. Nowadays there are many studies with the aim of improving known techniques as Neural Networks and Decision 

Trees and good results have been achieved by using the boosting technique. Among all algorithms based on this 

technique the Adaptive Boosting, also known as AdaBoost, is one of the most promissory algorithms due to its 

potential, flexibility and simplicity to be applied in different scenarios. Great results have been achieved in a number of 

applications by using AdaBoost and sensor field can also get some benefit of this algorithm. 

According to Freund and Shapire, Boosting can be defined as a general method to improve the performance of any 

learning algorithm (Freund; Schapire, 1996). Therefore, this technique works combined with other algorithms as Neural 

Networks and Decision Trees and in this case they are called weak learner. The principle of the Boosting method is to 

combine all the classifiers generated by the weak learner. It is based on the assumption that the output classifier 

combination provides better results than a single predictor. The AdaBoost algorithm takes as input a training set with 

the format: (X1, Y1), …, (XN, YN); where each xi belongs to some domain X and each label yi is in some label set Y. 

AdaBoost calls a given weak learner repeatedly in a series of rounds t. A set of weights in maintained over the training 

set since the beginning when all training set have the same weight. However, these weights are changed in each round t 

according to the classification suggested by the weak learner. The weight associated to wrong classified examples is 

increased with the purpose of focusing on wrong classifications on the next round (Oza, 2001). Figure 1 resumes the 

algorithm. 
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Figure 1. AdaBoost Algorithm (Freund, Schapire, 1999). 

4.  MATERIALS AND METHOD 

4.1. Sensor fabrication 

The capacitive microsensor was developed at Polytechnic school of University of São Paulo and fabricated at 

LNLS (Synchrotron Light Laboratory). Fabrication involves microfabrication techniques. Photomasks of acetate were 

used to transfer the pattern to photorresist. 

  Two types of sensors were fabricated. One of them has electrodes of  copper and its substrate is a PCB plate made 

of fiberglass. The other type is fabricated on substrate of alumina and its electrodes are made of nickel. 

4.1.1. Copper sensors 

In order to fabricate copper sensors, the copper PCB peaces were cut in desired sizes and cleaned. The 

photolithography process was performed and the copper was selectively etched by a chemical corrosion as illustrated in 

the Fig. 2 (a). 

4.1.2. Nickel sensor 

This process start from an alumina substrate and layers of titanium and gold are deposited on it by sputtering. After 

that a layer of photorresist is deposited, exposed and developed. This creates a photorresist mold. Then the nickel 

electrodes are grown by electroplating. Than the photorresist and the layers of gold and titanium are selectively 

removed. Fig. 2 (b) illustrates this process. 

                (a)                (b) 

Figure 2. Microfabrication processes for: (a) Copper sensors, (b) Nickel sensors. 
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Two MEMS capacitive sensors were fabricated on a copper PCB and used in this study. The copper sensor data 

were analyzed and compared to the data from a nickel electrode sensor (Mendonça et. al., 2010).  Configuration of the 

copper and nickel sensors are shown in the pictures of Figs. 3 and 4 respectively. The Table 1 shows some features and 

specification of the tree sensors used in the experiments. 

Figure 3. Detail of the copper sensor 1.             

Figure 4. Detail of the nickel sensor. 

Table 1. Features of the MEMS capacity sensors. 

 Electrode width 

(µm) 

Gap between  

electrodes (µm) 

Capacitance on air 

(pF) 

Copper 1 70 90 30,61 

 Copper 2 30 100 16,1 

Nickel 105 55 44,79 

4.2. Fluid preparation and experimental steps 

Mixtures of different concentration of water in the ethanol were prepared with two burettes with capacity of 100 ml 

and 10 ml, with 1ml and 0.05 ml of resolution respectively. 100 ml of anhydrous ethanol were mixed with different 

quantities of deionized water (Tab. 2) so that it was obtained tree testing fluids, two of them considered adulterated 

ethanol fuel and the other regular ethanol fuel. 

Table 2. Quantities and proportion of ethanol and water in the testing fluids. 

Testing fluids 
Amount of 

ethanol (ml) 

Amount of 

water (ml) 

Proportion of 

water (% v/v) 

Fuel 

conformity 

Mixture 1 100 4.7 4.5 No 

Mixture 2 100 5.8 5.5 Yes 

Mixture 3 100 6.9 6.5 No 

The testing fluid was prepared in a transparent plastic container where the MEMS sensors and two temperature 

sensors were placed. After closing the container and performing the electrical connections between sensors and the 

electronic circuit, the recipient was placed in a styrofoam box which contained ice and water. When the two sensors 

indicated a temperature close to 5°C, an electrical resistance was used to heat the water until the testing fluid 
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Figure 5. Flowchart of the experimental procedure. 

 

Figure 6. Scheme of experimental arrangement (a) and pictures of the system configuration (b). 

4.3 Electrical circuit and data acquisition 

The electrical circuit used in this study generates a square wave output signal with period ‘P’ proportional to the 

capacitance ‘C’ measured (Eq. 1). During the experiments the MEMS capacity sensors were connected to this circuit 

which has its output linked to the microcontroller input - it was used the Arduino microcontroller. Once the sensors 

work independently, the circuit was replicated tree times, one for each sensor. 

P = 2R1C[0.405R2/(R1+R2)+0.693]                         (1) 

temperature reaches around 25°C. A mechanical shaker kept the water temperature homogeneous. Figures 5 and 6 
show, respectively, the flowchart and the scheme of the conducted experimental procedure. 
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During the measurements, an acquisition routine embedded at Arduino microcontroller printed the data - time, 

temperature and the period calculated for each sensor - on the computer screen where the microcontroller was 

connected. The temperature was acquired once per second and the the data for each sensor was calculated once per 3 

seconds. For higher precision, the square wave period was calculated as an average os of 20 consecutive waves. 

4.4 Fluid classification  

A database with a total of 1445 examples was built by measuring samples of ethanol fuel with different 

concentrations of water. Five different features were used during this experiment. Two temperature values, acquired by 

two temperature sensors, and three capacitance values acquired by three distinct capacitive sensors. For this study we 

chose a binary approach. Each example is classified as either adulterated or non-adulterated. The criteria used to 

determine the class is in accordance with the Brazilian ANP fuel regulations. 

Firstly, the data was randomly split into two sets. One of them was used as a test set and contains 755 examples. The 

remaining samples were used to build the training sets. Secondly, seven training sets were created by randomly 

collecting different number of samples: 50, 100, 200, 300, 400, 500 and 700. After that, each training set was used to 

train a classifier with the AdaBoost algorithm. The number of iterations during the training step was one of the 

parameters for each training set. The number of iterations, which corresponds to the number of weak classifiers in this 

case, varied between 10 and 2000.  

Two different AdaBoost structures were used for comparison. The first used the software WEKA (Witten and Frank, 

2005) was used to run these experiments with Adaboost.M1 (a monolithic structure) using Decision Stump as the weak 

classifier. The second type of AdaBoost used our own implementation of a cascaded structure and Decision Stump as 

the weak classifier (Viola, Jones, 2001; Barczak, Johnson, Messom, 2008). 

5. RESULTS AND DISCUSSIONS 

5.1 Microsensor response 

The three sensors suggested that the capacitance decreases with the increasing of the temperature as it can be seen 

for one of the copper sensors in the graphic of Fig. 7. The decreasing of the output wave period indicates also the 

decreasing of the capacitance once the two parameters are proportional to each other. The curve points in those graphics 

represent the mean period every 5 measures. 

The fitting of first degree polynomial curves on the Period/Temperature points for the copper sensor 1 are plotted in 

Fig. 7, and the linear correlation coefficient between temperature and period values (Table 3) indicated that the relation 

among these parameters can be approximated by a straight line with little error, since the coefficient value is much close 

to ‘-1’ for all measures performed. 

Figure 7.  Copper sensor 1: output signal period as a function of temperature. 
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Water concentration 

(%) 

Linear correlation 

coefficient for 

Copper sensor 1 

Linear correlation 

coefficient for 

Copper sensor 2 

Linear correlation 

coefficient for 

Nickel sensor 

0 -0.9969 -0.9928 -0.9975 

4,5 -0.9971 -0.9955 -0.9870 

5,5 -0.9977 -0.9878 -0.9903 

6,5 -0.9905 -0.9957 -0.9896 

The slope of the curve Period/Temperature was different for each sensor, but once fixed the sensor, different testing 

fluids compositions showed similar slope values. The Table 4 presents the slope angle of the curves obtained for 

different concentration for each sensor. 

Table 4. Slope angles of the fit curves for each sensor and concentrations of water.  

Water concentration 

(%) 

Slope angle of 

Copper sensor 1 

Slope angle of 

Copper sensor 2 

Slope angle of 

Nickel sensor 

0 -27.3 -16.6 -30.2 

4.5 -35.1 -20.4 -33.4 

5.5 -35.5 -21.2 -32.6 

6.5 -38.3 -28.3 -26.0 

Mean -34.5 -21.6 -30.5 

Despite small errors, the slope angles for each sensor are approximately the same for different proportions of water 

in the testing fluids. A large number of experiments would serve to increase the reliability of the average slope angle. 

5.2 Fluid classification with AdaBoost algorithm 

We present the results exploring two aspects. Firstly, we compared the total of hit rates obtained by using the 

monolithic structure, training up to 2000 AdaBoost rounds, with the hit rates obtained by using cascade structure. These 

results are shown by using ROC curves. From this approach it is possible to visualize that monolithic structure reached 

around 60% of hit ratio for 8,5% of false detection (Fig. 8) and the cascade structure reached 80% of hit ratio for the 

same rate of false detection (Fig. 9). The Figs. also that the classifier obtained by monolithic structure converged to a 

certain level no more than 60% even if the false detection increases. On the other hand, with cascade structure it is 

possible to calibrate the correct classification rate up to about 90% to the detriment of false detection increase. 

       

             

Figure 8. ROC curve obtained by Monolithic structure          Figure 9. ROC curve obtained by Cascade structure     

Secondly, we present the evolution obtained according to different rounds during the process. This gives an 

indication of performance as the more rounds of iteration the smaller the training error as well as test error. It is 

expected to converge to a certain level even if the number of rounds keeps increasing. For instance, Fig. 10 shows this 

analysis for the process with 700 samples on training set obtained by monolithic structure and Fig. 11 the results by 

using cascade structure. Over again, the results for the second one were better since the training error was eliminated 

and the test error dropped to level about 5%. It is also important to highlight that the number of rounds achieved by 

using cascade structure after run all layers was less than 650, which shows that its performance was better if compared 

to the first one. We have shown that this combination of algorithm and sensor network works to a reasonable accuracy. 

Table 3. Linear correlation coefficient among temperature and period for each sensor and concentrations of water. 
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         Figure 10. Total error with monolithic structure.                     Figure 11. Total error with cascade structure. 

An advantage of using AdaBoost algorithm is that it can compile information of many different sensors very fast. 

Moreover, it can adapt more accurately to any sensor calibration curve, even if the curve has a complex or unusual 

shape. For instance, the relation between temperature and period presented in section 5.1 can be approximated to a 

straight line. However, unusual functions can be represented more by using AdaBoost, as long as there are enough 

samples in its training session. These benefits can be explored to improve the sensor calibration step in future. Summing 

up, these results have already shown the great potential of the sensor used with AdaBoost. In future work we intend to 

combine the microsensors, AdaBoost classifiers and a microprocessor with the purpose of dealing with the fuel 

adulteration problem. 

6. CONCLUSIONS 

Copper and Nickel microsensors responses indicated that fluids capacitance is directly proportional to the water 

content and inversely proportional to the liquid temperature. 

 The value of the linear correlation coefficient between temperature and sensor output signal period suggested that 

one can be related to the other by a linear function with minor error in the range of 5 to 25°C. It was also observed that, 

despite a little error, the slope angles for each sensor, in a curve temperature/period, are proximally the same for 

different proportions of water in the testing fluids. 

Finally, the use of pattern recognition combined with the proposed MEMS sensors showed good results in the 

analysis of ethanol fuel. The system presented 85% of correction classification analyzing the conformity or not of the 

prepared fluids with sensitivity of the order of 1% in the values of alcoholic concentration. The accuracy is currently 

limited by the number of training samples. 
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