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Abstract. Electro-hydraulic servo-systems are widely employed in industrial applications such as robotic ma-
nipulators, active suspensions, precision machine tools and aerospace systems. They provide many advantages
over electric motors, including high force to weight ratio, fast response time and compact size. However, precise
control of electro-hydraulic systems, due to their inherent nonlinear characteristics, cannot be easily obtained
with conventional linear controllers. Most flow control valves can also exhibit some hard nonlinearities such as
dead-zone due to valve spool overlap. This work describes the development of a nonlinear controller based on
the feedback linearization method and including a fuzzy compensation scheme for an electro-hydraulic actuated
system with unknown dead-band. Numerical results are presented in order to demonstrate the control system
performance.
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1. INTRODUCTION

Electro-hydraulic actuators play an essential role in several branches of industrial activity and are frequently
the most suitable choice for systems that require large forces at high speeds. Their application scope ranges
from robotic manipulators to aerospace systems. Another great advantage of hydraulic systems is the ability to
keep up the load capacity, which in the case of electric actuators is limited due to excessive heat generation.

However, the dynamic behavior of electro-hydraulic systems is highly nonlinear, which in fact makes the
design of controllers for such systems a challenge for the conventional and well established linear control method-
ologies. The increasing number of works dealing with control approaches based on modern techniques shows
the great interest of the engineering community, both in academia and industry, in this particular field. The
most common approaches are the adaptive (Guan and Pan, 2008b,a; Yanada and Furuta, 2007; Yao et al., 2000)
and variable structure (Bessa et al., 2010c; Mihajlov et al., 2002; Bonchis et al., 2001; Liu and Handroos, 1999)
methodologies, but nonlinear controllers based on quantitative feedback theory (Niksefat and Sepehri, 2000),
optimal tuning PID (Liu and Daley, 2000), adaptive neural network (Knohl and Unbehauen, 2000) and adaptive
fuzzy system (Bessa et al., 2010a) were also presented.

In addition to the common nonlinearities that originate from the compressibility of the hydraulic fluid and
valve flow-pressure properties, most electro-hydraulic systems are also subjected to hard nonlinearities such as
dead-zone due to valve spool overlap. It is well-known that the presence of a dead-zone can lead to performance
degradation of the controller and limit cycles or even instability in the closed-loop system. To overcome the
negative effects of the dead-zone nonlinearity, many works (Tao and Kokotović, 1994; Kim et al., 1994; Oh
and Park, 1998; S̆elmić and Lewis, 2000; Tsai and Chuang, 2004; Zhou et al., 2006) use an inverse function
even though this approach leads to a discontinuous control law and requires instantaneous switching, which in
practice can not be accomplished with mechanical actuators. An alternative scheme, without using the dead-
zone inverse, was originally proposed by Lewis et al. (1999) and also adopted by Wang et al. (2004). In both
works, the dead-zone is treated as a combination of a linear and a saturation function. This approach was
further extended by Ibrir et al. (2007) and by Zhang and Ge (2007), in order to accommodate non-symmetric
and unknown dead-zones, respectively.

In this work, a nonlinear controller is developed for an electro-hydraulic system subject to a dead-zone input.
The adopted approach is based on the feedback linearization method, but enhanced by a fuzzy inference system
in order to compensate for the undesired dead-zone effects and other uncertainties. Numerical simulations are
carried out in order to demonstrate the improved performance of the proposed control scheme.
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2. FEEDBACK LINEARIZATION

Due to its simplicity, feedback linearization scheme has been largely applied in industrial control systems,
specially in the field of industrial robotics. The main idea behind this control method is the development of
control law that allows the transformation of the original dynamical system into an equivalent but simpler one
(Slotine and Li, 1991).

Consider a class of nth-order nonlinear systems:

x(n) = f(x, t) + b(x, t)u (1)

where u is the control input, the scalar variable x is the output of interest, x(n) is the n-th time derivative of x,
x = [x, ẋ, . . . , x(n−1)] is the system state vector and f, b : Rn → R are both nonlinear functions.

Let us now define an appropriate control law that ensures the tracking of a desired trajectory xd =

[xd, ẋd, . . . , x
(n−1)
d ], i.e. the controller should assure that x̃→ 0 as t→∞, where x̃ = x−xd = [x̃, ˙̃x, . . . , x̃(n−1)]

is the related tracking error. On this basis, assuming that the state vector x is available to be measured and
the functions f and g are well known, with |b(x)| ≥ 0, the following control law:

u = b−1(−f + x
(n)
d − k0x̃− k1 ˙̃x− · · · − kn−1x̃

(n−1)) (2)

guarantees that x→ xd as t→∞, if the coefficients ki (i = 0, 2, . . . , n−1) make the polynomial pn+kn−1p
n−1+

· · ·+ k0 a Hurwitz polynomial.
The convergence of the closed-loop system could be easily established by substituting the control law, Eq. (2),

in the nonlinear system, Eq. (1). The resulting dynamical system could be rewritten by means of the tracking
error:

x̃(n) + kn−1x̃
(n−1) + . . .+ k1 ˙̃x+ k0x̃ = 0 (3)

where the related characteristic polynomial is Hurwitz, which ensure the exponential convergence of the tracking
error to zero.

Although feedback linearization represents a very simple approach, an important drawback is the requirement
of a perfectly known dynamical system, in order to ensure the exponential convergence.

3. ELECTRO-HYDRAULIC SYSTEM MODEL

In order to design the adaptive fuzzy controller, a mathematical model that represents the hydraulic system
dynamics is needed. Dynamic models for such systems are well documented in the literature (Merritt, 1967;
Walters, 1967).

The electro-hydraulic system considered in this work consists of a four-way proportional valve, a hydraulic
cylinder and variable load force. The variable load force is represented by a mass–spring–damper system. The
schematic diagram of the system under study is presented in Fig. 1.
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Figure 1. Schematic diagram of the electro-hydraulic servo-system.
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The balance of forces on the piston leads to the following equation of motion:

Fg = A1P1 −A2P2 = Mtẍ+Btẋ+Ksx (4)

where Fg is the force generated by the piston, P1 and P2 are the pressures at each side of cylinder chamber,
A1 and A2 are the ram areas of the two chambers, Mt is the total mass of piston and load referred to piston,
Bt is the viscous damping coefficient of piston and load, Ks is the load spring constant and x is the piston
displacement.

Defining the pressure drop across the load as Pl = P1 − P2 and considering that for a symmetrical cylinder
Ap = A1 = A2, Eq. (4) can be rewritten as

Mtẍ+Btẋ+Ksx = ApPl (5)

Applying continuity equation to the fluid flow, the following equation is obtained:

Ql = Apẋ+ Ctp +
Vt

4βe
Ṗl (6)

where Ql = (Q1 +Q2)/2 is the load flow, Ctp the total leakage coefficient of piston, Vt the total volume under
compression in both chambers and βe the effective bulk modulus.

Considering that the return line pressure is usually much smaller than the other pressures involved (P0 ≈ 0)
and assuming a closed center spool valve with matched and symmetrical orifices, the relationship between load
pressure Pl and load flow Ql can be described as follows

Ql = Cdwx̄sp

√
1

ρ

(
Ps − sgn(x̄sp)Pl

)
(7)

where Cd is the discharge coefficient, w the valve orifice area gradient, x̄sp the effective spool displacement from
neutral, ρ the hydraulic fluid density, Ps the supply pressure and sgn(·) is defined by

sgn(z) =

 −1 if z < 0
0 if z = 0
1 if z > 0

(8)

Assuming that the dynamics of the valve are fast enough to be neglected, the valve spool displacement can
be considered as proportional to the control voltage (u). For closed center valves, or even in the case of the
so-called critical valves, the spool presents some overlap. This overlap prevents from leakage losses but leads to
a dead-zone nonlinearity within the control voltage, as shown in Fig. 2.

The dead-zone nonlinearity presented in Fig. 2 can be mathematically described by:

x̄sp(t) =

 kv
(
u(t)− δl

)
if u(t) ≤ δl

0 if δl < u(t) < δr
kv
(
u(t)− δr

)
if u(t) ≥ δr

(9)

where kv is the valve gain and the parameters δl and δr depends on the size of the overlap region.
For control purposes, as shown by Bessa et al. (2010a), Eq. (9) can be rewritten in a more appropriate form:

x̄sp(t) = kv[u(t)− d] (10)

where d(u) can be obtained from Eq. (9) and Eq. (10):

d =

 δl if u(t) ≤ δl
u(t) if δl < u(t) < δr
δr if u(t) ≥ δr

(11)
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Figure 2. Dead-zone nonlinearity.

Combining equations (5), (6), (7), (10) and (11) leads to a third-order differential equation that represents
the dynamic behavior of the electro-hydraulic system:

...
x = −aTx + bu− bd (12)

where x = [x, ẋ, ẍ] is the state vector with an associated coefficient vector a = [a0, a1, a2] defined according to

a0 =
4βeCtpKs

VtMt
(13)

a1 =
Ks

Mt
+

4βeA
2
p

VtMt
+

4βeCtpBt

VtMt
(14)

a2 =
Bt

Mt
+

4βeCtp

Vt
(15)

The control gain b should be defined as

b =
4βeAp

VtMt
Cdwkv

√
1

ρ

[
Ps − sgn(u)

(
Mtẍ+Btẋ+Ksx

)
/Ap

]
(16)

Based on the dynamic model presented in Eq. (12), a nonlinear controller with a fuzzy compensation scheme
will be developed in the next section.

4. FEEDBACK LINEARIZATION WITH A FUZZY COMPENSATION SCHEME

Consider the trajectory tracking problem and let x̃ = x − xd = [x̃, ˙̃x, ¨̃x,
...
x̃ ] be the tracking error associated

to a desired trajectory xd = [xd, ẋd, ẍd,
...
x d].

Now, defining a control law according to Eq. (2):

u = b−1(aTx +
...
x d − 3λ¨̃x− 3λ2 ˙̃x− λ3x̃) + d (17)

where λ is a strictly positive constant.
It must be emphasized that, since the dead-band parameters δl and δr are unknown, the dynamical model

is not perfectly known and, in this way, the proposed control law is not sufficient to guarantee the exponential
convergence of the tracking error to zero. Figure 3 shows the effect of the unknown dead-zone on the trajectory
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tracking obtained with Eq. (12) and Eq. (17) for xd = 0.5 sin(0.1t) m. The simulation studies were performed
with a numerical implementation, in C, with sampling rates of 500 Hz for control system and 1 kHz for dynamic
model. The adopted parameters for the electro-hydraulic systems were Ps = 7 MPa, ρ = 850 kg/m3, Cd = 0.6,
w = 2.5× 10−2 m, Ap = 3× 10−4 m2, Ctp = 2× 10−12 m3/(s Pa), βe = 700 MPa, Vt = 6× 10−5 m3, Mt = 250
kg, Bt = 100 Ns/m, Ks = 75 N/m, δl = −0.5 V and δr = 0.5 V. The parameter λ of the controller was defined
as λ = 8.
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Figure 3. Tracking performance with feedback linearization and xd = 0.5 sin(0.1t) m.

As observed in Fig. 3(a) and Fig. 3(b), feedback linearization provides trajectory tracking only when the
controlled system is perfectly known. In order to emphasize the inferior tracking performance caused by a
dead-zone input, the phase portrait related to the tracking is shown in Fig. 4.
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Figure 4. Phase portrait of the trajectory tracking with dead-zone input.

It can be clearly ascertained from Figs. 3 and 4 that the presence of an unknown dead-zone leads to an inferior
tracking performance and to a limit cycle in the state space. On this basis, we propose the adoption of fuzzy
inference system within the control law, in order to enhance the feedback linearization scheme. As demonstrated
by Bessa and Barrêto (2010), fuzzy algorithms can be properly combined with nonlinear controllers in order to
improve the trajectory tracking of uncertain nonlinear systems. It has also been shown that such strategies are
suitable for a variety of applications ranging from remotely operated underwater vehicles (Bessa et al., 2008,
2010b) to chaos control (Bessa et al., 2009).

The adopted fuzzy inference system was the zero order TSK (Takagi–Sugeno–Kang), with the rth rule stated
in a linguistic manner as follows:

If x̃ is X̃r and ˙̃x is ˙̃X then d̂r = D̂r ; r = 1, 2, · · · , N

where X̃ and ˙̃X are fuzzy sets, whose membership functions could be properly chosen, and D̂r is the output
value of each one of the N fuzzy rules.

ABCM Symposium Series in Mechatronics - Vol. 5 
Copyright © 2012 by ABCM

Section II – Control Systems 
Page 442



Considering that each rule defines a numerical value as output D̂r, the final output d̂ an be computed by a
weighted average:

d̂(x̃, ˙̃x) =

∑N
r=1 wr · D̂r∑N

r=1 wr

(18)

or, similarly,

d̂(x̃, ˙̃x) = D̂TΨ(x̃, ˙̃x) (19)

where, D̂ = [D̂1, D̂2, . . . , D̂N ] is the vector containing the attributed values D̂r to each rule r, Ψ(x̃, ˙̃x) =

[ψ1, ψ2, . . . , ψN ] is a vector with components ψr(x̃, ˙̃x) = wr/
∑N

r=1 wr and wr is the firing strength of each rule,
which can be computed from the membership values with any fuzzy intersection operator (t-norm).

Thus, the control law with the fuzzy compensation scheme can be stated as follows

u = b−1(aTx +
...
x d − 3λ¨̃x− 3λ2 ˙̃x− λ3x̃) + d̂(x̃, ˙̃x) (20)

In this work, the adopted fuzzy rule base is presented in Table 1, where NB, NM, NS, ZO, PS, PM and PB rep-
resents, respectively, Negative–Big, Negative–Medium, Negative–Small, Zero, Positive–Small, Positive–Medium
and Positive–Big. The central values of the membership functions, related to the tracking error and its derivative,
are Cx̃ = {−0.032;−0.008;−0.002; 0; 0.002; 0.008; 0.032} and C ˙̃x = {−0.025;−0.005;−0.001; 0; 0.001; 0.005; 0.025}.
With respect to the output of each rule, the following values were heuristically adopted for NB to PB:
D̂r = {−2.0 ; −0.4 ; −0.2 ; 0.0 ; 0.2 ; 0.4 ; 2.0}.

Table 1. Adopted fuzzy rule base.

x̃ / ˙̃x NB NM NS ZO PS PM PB
NB PB PB PB PB PB PB PM
NM PB PB PM PM PM PM PS
NS PB PM PM PS PS PS NS
ZO PM PS PS ZO NS NS NM
PS PS NS NS NS NM NM NB
PM NS NM NM NM NM NB NB
PB NM NB NB NB NB NB NB

In order to evaluate the performance of the proposed control law, Eq. (20), some numerical simulations were
carried out. In the first case, it was assumed that the model parameters were perfectly known, but a dead-zone
input was considered for the electro-hydraulic system. Figure 5 shows the obtained results for the tracking of
xd = 0.5 sin(0.1t) m.

As observed in Fig. 5, despite the dead-zone input, the proposed control scheme allows the electro-hydraulic
actuated system to track the desired trajectory with a small tracking error. Through the comparative analysis
showed in Fig. 5(b), the improved performance of the proposed controller over the uncompensated counterpart
can be easily ascertained.

Now, the capability of the proposed scheme to deal with uncertainties was appraised by choosing the param-
eters for the controller based on the assumption that exact values are not known but with a maximal uncertainty
of ±10% over previous adopted values. Figures 6 and 7 show the obtained results.

As observed in Figs. 6 and 7, even in the presence of parametric uncertainties and a dead-zone input the
proposed controller is able to provide trajectory tracking with a small associated error. By comparing the phase
portrait obtained without the fuzzy compensation scheme (Fig. 4 and with compensation (Fig. 4), the superior
performance of the proposed controller is noticeable.
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Figure 5. Tracking performance with xd = 0.5 sin(0.1t) m and considering a dead-zone input.
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Figure 6. Tracking performance with xd = 0.5 sin(0.1t) m and considering a dead-zone input and uncertainties.
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Figure 7. Phase portrait of the trajectory tracking with fuzzy compensation and considering a dead-zone input.

5. CONCLUDING REMARKS

The present work addressed the problem of controlling electro-hydraulic servosystems with unknown dead-
zone. A nonlinear controller based on the feedback linearization method and enhanced by a fuzzy inference
system was implemented to deal with the position trajectory tracking problem. The control system performance
was confirmed by means of numerical simulations. The adoption of a fuzzy algorithm provided an smaller
tracking error due to its ability to compensate for the dead-zone nonlinearity, as well as the uncertainties with
respect to model parameters.
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